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ABSTRACT 

 

While multichannel configurations are well established for non-imaging applications, they have not been used yet 

for imaging applications. In this paper we present for the first time some of multichannel designs for imaging 

systems. The multichannel comprises discontinuous optical sections which are called channels. The phase-space 

representation of the bundle of rays going from the object to the image is discontinuous between channels. This 

phase-space ray-bundle flow is divided in as many paths as channels there are but it is a single wavefront both at the 

source and the target. Typically, these multichannel systems are at least formed by three optical surfaces: two of 

them have discontinuities (either in the shape or in the shape derivative) while the last is a smooth one. Optical 

surfaces discontinuities cause at the phase space the wave front split in separate paths. The number of discontinuities 

is the same in the two first surfaces: Each channel is defined by the smooth surfaces in between discontinuities, so 

the surfaces forming each separate channel are all smooth. Aplanatic multichannel designs are also shown and used 

to explain the design procedure. 
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1. INTRODUCTION  

The multichannel configuration was designed in the first place for illumination. Because of their small size and 

hemispheric emission, LEDs are more suitable for compact optics. The approach to designing very thin 

concentrators/collimators has not always been the same. All approaches have in common the idea of dividing the 

light flow into different “channels”, each one of them having its own optics with surfaces that are not shared with 

neighboring channels. Ten years ago, multichannel devices called Stepped Flow-line Optics (SFL) were developed 

[1], [3]. Designed with the flow-line method [4], they rapidly found applications in backlights [5], [6] and for 

combining light sources or efficiently distributing light to several locations [7]-[11]. The main disadvantage of these 

devices lies in their poor manufacturability, due to the flow-line mirrors having deep and complex shapes with much 

larger lateral area than aperture area.   

 

The purpose of this paper is to show the procedure for designing multichannel systems for imaging systems. The 

color correction and the diffraction effects won’t be considered, and we will focus on the study of the design method 

and the possibilities of these kinds of configurations.  

 

 

2. DESIGN OF THE MULTICHANNEL SYTEM 

 

The design procedure explained here is restricted to rotational symmetric cases, i.e., they are 2D designs in the sense 

that only planar profiles are generated. The multichannel optics, based on the SMS method, are characterized by 

having an optical surface called light distributor d which collects the rays coming from the image (depending on the 

case the rays will come from the image, the object, or for afocal systems the rays will come from the entrance pupil), 

and distributes them over a given support surface. The distributor is in general a mirror. The optics to be designed 

will be confined between two support surfaces whose cross sections are the lines l and m (see Fig. 1) which, in this 

example, are straight lines. Fig. 1 also shows the flow-lines of the input and output beams. In the case of Fig. 1, the 

flow-lines of the output beam are vertical parallel lines. Once the multichannel is designed, the flow-lines must be 

continuous so every flow-line of the input beam will be connected with its corresponding flow-line at the output 

beam. The distributor d is designed so that once it reflects the flow-lines of the input beam, they intercept the “mirror 

supporting line” m at the point where the flow-lines of the output beam would intercept it if there was refraction on 

the surface l (see Fig. 2).  
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In this case, since the surface l is flat, all that is necessary is a straight extension of the flow-lines at the output. In 

this way, the irradiance (flow per unit of surface) on both supporting surfaces will be the same. This requirement is 

established to avoid discontinuities on the line l, in order to simplify manufacturing. 

 
 

Fig 1. Design of the distributor d. The optical system to design is bounded by lines l and m. 

 

 
 

Fig 2.  The distributor ensures that the average irradiance on the supporting surface m is equal to that on the supporting surface l. 

 

Once the distributor is known, a refractive and reflective surface can be designed according to two conditions. In the 

next section we will study the different conditions that we can apply to these surfaces in order to obtain designs for 

different applications. 

 

 

3. APLANATIC DESIGN   

 

Aplanatic systems are asymmetric optical designs free from on-axis spherical aberration and linear coma. These two 

conditions entail two further design conditions: (1) stigmatic on-axis image and (2) the Abbe sine condition (note 

that all the rays involved in these conditions are exclusively tangential). The opposite is also true: a design forming a 

stigmatic on-axis image and fulfilling the Abbe sine condition is aplanatic. Aplanatic designs have long been known 

through the work of Schwarzschild [19], Wassermann and Wolf [20], Welford [21], Mertz [22], [23] and others. 

Recently Lynden-Bell and Willstrop derived an analytic expression of more general aplanats [24], [25]. The Abbe 

sine condition can be derived from the condition of zero linear coma, but this is just one possible approach. For 

instance, Clausius, who derived the Abbe condition in 1864, did it from thermodynamic arguments [21] (we can also 

say that he used the conservation of etendue theorem [2]). In 1884, Hockin provided proof using path differences 

along tangential rays [21]. 

 

Aplanatic designs are particular cases of two-surface SMS 2D designs [4], [12]-[18]. An SMS design is a more 

general case, which in its simpler version can form a stigmatic image of two off-axis points. When these two points 

of the (two surface) SMS design is at an infinitesimal distance apart around the axis, the SMS design becomes an 

aplanatic design [14]. 

 

Two rotationally symmetric surfaces give enough degrees of freedom to meet both the Abbe sine condition and the 

Fermat principle, so that two optical surfaces are enough to produce an aplanatic design. The best known examples 

are aplanatic lenses (two refractive surfaces), and Schwarzschild’s mirrors. Once the refractive indexes of the 

different media are established, there are only two constants to determine uniquely the two profiles of the aplanatic 

design. Of course, the optical system may have more than two surfaces. In general it is possible to design an 

aplanatic system by designing only two of them, i.e., considering all other surfaces prescribed. These other surfaces 

can be used for different purposes. In this work we use an additional surface (the distributor) to design ultra thin 



aplanatic systems with a continuous optical surface (that supported by l) in which the incident wavefronts are 

separated, individually focused, and rebuilt in different optical channels that operate in parallel. 

 

 As we explained before, the first part of the design is the design of the distributor. Depending on the application that 

we are looking for, the distributor has to fulfill the Abbe-sine condition. That Abbe sine condition is given by: 

 

    
     

      
       (1) 

  

Here n and n’ are the indexes of refraction of the materials where the object and the image are immersed, θ is the 

angle of the ray coming from the object with the optical axis, and α in the angle in the image. 

 

If the object is in the infinity and the image is not immersed in a material, the Abbe condition is given by   

 

              (2) 

 

Here x is the height of the ray entering into the optical system, f the focal length  and α is the angle of this ray with 

the optical axis in the image.  

 

Using (2) we can design a multichannel configuration for an objective. We will assume a wavelength of 586 nm and 

a refractive index of 1.5. The focal length of the objective is 800 mm.    

 

 
Fig 3. The distributor is designed in such a way that the rays coming from the image after the reflection on it find line m at a point with coordinate 

x=fsinθ. 
 

After design of the distributor, we have to design each channel. Note that each channel is composed of two surfaces. 

Theses surfaces are calculated using the Abbe sine condition and the constant optical path length. Aplanatic design 

of the channels is calculated with different optical path lengths so that their refractive surfaces are continuous.   

 

 
Fig 4. Aplanatic design of the objective.  

  

It must be considered that the aplanatic design only gives us good image quality on axis. In order to obtain good 

image quality for more than a wavefront, the SMS method can be used or an optimization process can be applied. In 

the next section, we will show an example where an optimization process was applied. 

4. EXAMPLES  

In the previous section we have seen how the multichannel configuration can be used in order to design focal 

systems. However the multichannel configuration can also be used to design afocal systems. These kinds of systems 



are used in a wide range of applications such as power changers in microscopes, FLIR systems, laser beam 

expanders, etc. 

In this section we are going to show a couple of monochromatic examples. The first one is a 6.5x telescope, located 

in front of a CCD camera with 122.4 mm of focal length, F/11.2  and  ±0.85º of field of view.   

For the afocal design we have used a similar method. The difference is the condition that the distributor as well as 

the two surfaces must fulfill. That condition is given by the magnification expression of the pupils: 

           (3) 

Here x’ is the coordinate of the ray in the exit pupil and x the coordinate of the ray in the entrance pupil and M is the 

magnification. The design of the 6.5x telescope it shown in fig (5). 

 

Fig 5.  6.5x Multichannel telescope. 

For this example we have used BK7 as material and we have assumed a wavelength of 587 nm.  To design this 

system we started using the aplanatic design. Afterwards we optimized it in order to minimize the angular error for 

each field of view  

There are different ways to study the behavior of the afocal system; some computer programs simply use a very 

large image distance for ray tracing evaluation, while others use a “perfect lens” at the exit pupil. In this case we will 

evaluate the behavior of the afocal system using a “perfect lens” of 795.6 mm of focal length obtaining the following 

results: 

                             

Fig 6. Geometrical spot diagram versus field of view .The FOV is the FOV in the entrance pupil and RMS is diameter of the spot obtained in the 

image of the perfect lens. 

As we can see in figure 6, the aplanatic design is not enough to warranty that the telescope is going to work well for 

all the field of view. This means that the telescope is going to introduce aberrations for off-axis fields. For this 

reason it is necessary to optimize the design in order to have good image quality for all the field of view of the 

camera. 

 

 



Taking into account that the physical diameter of the Airy disc is given by: 

                              (3) 

we obtained diffraction spot of ~ 16 μm. Because of this fact we can relax the image quality on axis and focus the 

optimization in order to obtain the best image quality off axis, obtaining the red curve on the figure 6, where we 

notice that almost all the FOV of the camera is diffraction-limited.  

 

The aplanatic design works well for laser beam expander applications, first because the color correction of the laser-

based optical system is much easier due to the fact the wavelength band of the laser is extremely narrow, and 

secondly because laser systems are often corrected for small fields of view and this is quite suitable for aplanatic 

design. 

In this case we are going to compare an academic example of a laser beam expander 4x given in [26] with the 

multichannel configuration of a beam expander of 4x. The academic design is shown in the following figure: 

 

 

Fig 6. Academic design of beam expander 4x.  

In this design a wavelength of 600 nm and a refractive index of 1.52 were assumed. The multichannel configuration 

is completely suitable for this kind of configuration. For this design we decided to introduce some variations in 

relation to the previous designs. Instead of designing all the systems in a certain material, we decided to use a thin 

refractive element and two mirrors. 

As previously mentioned it is possible to create an aplanatic design using more than two surfaces. In this case we 

have designed the mirror and the second surface of the refractive element prescribing the first surface. The refractive 

element has the same refractive index as in example 1.52.  

  



In the previous designs, we have presented configurations with obscurations. In order to avoid this we decided to 

design only half of the distributor. Note that the procedure is the same as with the previous afocal design. The only 

difference is that the entrance pupil is decentered, obtaining the following design: 

 

Fig 7.  Multichannel design of beam expander 4x with 12.5 mm of length.  

 

The results obtained for this design can be shown in figure 8 where we present ray trace curves. In these ray trace 

curves the abscissa is the normalized exit pupil radius in the y direction, and the ordinate is the error between the 

theoretical angle of incident for this ray in exit pupil, and the real angle of incident.   

Note that this is an alternative way to study the behavior of the rays for focal systems, similar to the ray trace curves 

for focal systems where the ordinate is the distance above or below the chief ray on the image that the rays intercept 

on the image plane.   

 

 (a) 

 (b) 

Fig 8. Ray trace curves for the multichannel beam expander 4x (a) on axis, (b) 0.1 degree in the object space. 

    



The results obtained for this example have been obtained without any optimization. Note that even if the real usable 

field of view of the beam expander is zero, the system must be designed over a small field of view in order to 

accommodate the assembly and the alignment tolerances. 

 

5. CONCLUSIONS 

 

We have presented a procedure to design thin optical systems, in particular an objective and a couple of examples of 

afocal systems. The designs contain a distributor element that makes the design thin. The remaining optical elements 

are grouped in channels which are designed independently to the other ones. Depending on the conditions the 

multichannel can be used for different applications. Two afocal systems were shown as examples: a telescope 6.5x 

which was optimized in order to obtain a good image quality for all the field of view considered, and a beam 

expander 4x. The beam expander configuration gave us an idea that the compactness of the multichannel 

configuration. 

 

The results obtained for a monochromatic system show that the multichannel configuration can be a possibility in 

order to perform very thin optical imaging systems. The color correction of these systems needs to consider one 

condition more over the construction of the channels. This new condition will vary the design procedure a bit. For 

this reason the color correction and the considerations for the manufacturability shall be presented in a future work.   
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