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Abstract—The implementation of boundary conditions is one
of the points where the SPH methodology still has some work
to do. The aim of the present work is to provide an in-depth
analysis of the most representative mirroring techniques used in
SPH to enforce boundary conditions (BC) along solid profiles.
We specifically refer to dummy particles, ghost particles, and
Takeda et al. [1] boundary integrals. A Pouseuille flow has been
used as a example to gradually evaluate the accuracy of the
different implementations. Our goal is to test the behavior of the
second-order differential operator with the proposed boundary
extensions when the smoothing length h and other dicretization
parameters as dx/h tend simultaneously to zero. First, using
a smoothed continuous approximation of the unidirectional
Pouseuille problem, the evolution of the velocity profile has been
studied focusing on the values of the velocity and the viscous
shear at the boundaries, where the exact solution should be
approximated as h decreases. Second, to evaluate the impact
of the discretization of the problem, an Eulerian SPH discrete
version of the former problem has been implemented and similar
results have been monitored. Finally, for the sake of completeness,
a 2D Lagrangian SPH implementation of the problem has
been also studied to compare the consequences of the particle
movement.

I. INTRODUCTION

The SPH simulations in Engineering involve usually solid

boundary conditions (BC) for the velocity field and Dirichlet

and Neumann type BC for other fields as, for instance, the

temperature. In the SPH framework, these conditions are

tackled in a number of ways: by using boundary forces-type

models [2], [3] ; by modifying the structure of the kernel in

the neighborhood of the boundaries [4]; by creating virtual

particles inside the solid boundary domain through mirroring

techniques. This latter approach is the main focus of the

present work. An interesting study for the linear Couette

and Pouseuille flows have been already performed in [5], but

unfortunately the evolution of the kinetic energy was the only

variable monitored in time.

In our case a well know problem as the Pouseuille flow will

be used as a benchmark. The evolution of the velocity profile

and the forces involved in the dynamics of the flow will be

carefully studied.

II. THEORETICAL SETUP.

Before proceeding to the analysis, we briefly recall the

principal results about the consistency of the continuous SPH

formulation without boundaries. The fluid domain is Ω = R
d

and, therefore, its boundary is ∂Ω = ∅.

Let W (x; h) be a function depending on h > 0 defined by

W (x;h) :=
1
hd

W̃
(∣∣∣x

h

∣∣∣) , (1)

We also define the function F (r) as

F (r) := −1
r
W̃ ′ (r) , (2)

In the following we denote by u(x) a smooth scalar field

on R
d.

For the approximation for the Laplacian of a function, the

following formula due to Morris et al. [6] and Español et al.
[7] is used:

〈Δu〉M (x) = 2

∫
Rd

(x′ − x) · ∇xW (x′ − x;h)

|x′ − x|2
[
u

(
x′) − u (x)

]
dx′.

(3)

As proved in [7], it follows:

〈Δu〉M (x) = Δu (x) + O(h2). (4)
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Fig. 1. Unidirectional vector field

Again, note that no a priori assumptions on the smoothness

of u have to be made in order to define 〈Δu〉M.

III. BOUNDARY CONDITIONS

The most representative mirroring techniques in SPH to im-

pose non-slip boundary conditions are: rows of fixed (bound-

ary velocity) dummy particles (U0M) [8], ghost particles with

antisymmetric mirroring (ASM) [9], [10] and the Takeda et
al. [1] imaginary particles.

For the sake of simplicity, we consider unidirectional ve-

locity fields u (x) defined in the upper-half plane

R
d
+ :=

{
(x′, xd) ∈ R

d : xd > 0
}

,

that are infinitely differentiable and that satisfy a non-slip

boundary condition on

R
d
0 := ∂R

d
+ =

{
(x′, 0) : x′ ∈ R

d−1
}

.

A regular solid surface can be approximated with its tangent

plane in the neighborhood of the fluid particle for h � 1.

In this framework, the tangent plane can be identified with

xd = 0.

This class of velocity fields appear in a number of canonical

problems in different physical contexts as, for instance, unidi-

rectional incompressible fluid flow (Couette, plane Poiseuille,

etc.). Note that heat conduction problems also fit this frame-

work by replacing the velocity with the temperature field.

In general, such a velocity field takes the following form

(see figure (1)):

u (x) := (u (xd) , 0, ..., 0) . (5)

We assume that u (x) satisfies the boundary condition:

u (x′, 0) = (u (0) , 0, ..., 0) = (UB, 0, ..., 0) ,

where UB is the boundary velocity magnitude and, close to

the boundary inside the fluid domain, the component u takes

the form:

u (xd) = UB + a1xd + a2x
2
d + .... (6)

The mirroring techniques we deal with produce an extension

u (x) of the velocity field u (x) to the whole space R
d. Here,

Fig. 2. Constant extension U0M

we analyze the action of the continuous SPH approximation of

the Laplacian operator on these mirrored (extended) velocity

fields. Due to the specific form of the velocity fields, this

corresponds to an extension of the scalar function u (xd),
defined only of the half axis xd ≥ 0, to a function u (xd)
defined on the whole real line R.

The SPH approximations to the Laplacian of u, 〈Δu〉M

are of the same order of differentiability of u.

Finally, we introduce the following h-independent constants

that will appear repeatedly in the rest of the article:

M0 :=
∫

Rd

F (|y|) dy, (7)

M1 :=
∫

R
d
+

ydF (|y|) dy, (8)

Cp :=
∫

Rd

|yd|p W̃ (|y|) dy, (9)

Note that C0 = 1 , M0 = 2 and M1 = 1/
√

π.

Let us consider a general polynomial profile u (x) = UB +
xp

d with p ≥ 1 for the calculations performed in section III.

A. Constant extension (U0M)

Define the constant extension of u as (see Figure 2):

u (x) :=
{

u (x) xd > 0,
UB xd ≤ 0.

This technique is usually referred to as the Dummy Particles

(DP) method. It is simple to implement and has been used, for

instance, by Monaghan [8] for modeling a transient Couette

flow.

Since the function u (x) only depends on xd, we obtain

the following expression for the boundary values of the SPH

Laplacian approximation:

〈Δu〉M (x′, 0) =
2
h2

[∫
R

d
+

u (hyd)F (|y|) dy − UB

M0

2

]
=

=

⎧⎪⎨
⎪⎩

2M1

h
, for p = 1,

1, for p = 2
hp−2 (p − 1)Cp−2, for p > 2.

, (10)
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Fig. 3. Antisymmetric extension ASM

For details of the derivation of the equation 10, see [11].

B. Antisymmetric extension (ASM)

Next we consider the antisymmetric extension of u defined

as (see Figure 3):

u (x) :=
{

u (x) xd > 0,
2UB − u (x′,−xd) xd ≤ 0.

This is the most widespread method to implement the solid

BC. In the SPH literature it is generally referred to as the

ghost particles (GP) method (e.g. [9], [10], [12]).

The expression for the Laplacian is:

〈Δu〉M (x′, 0) = 0. (11)

We again refer to [11] for a justification of these results.

C. Takeda et al. [1] extension

We define the Takeda et al. [1] extension of a function

u (xd) by:

u (x′
d, xd) :=

⎧⎨
⎩

u (x′
d) x′

d > 0,

(u (xd) − UB)
x′

d

xd
+ UB x′

d ≤ 0,

where xd > 0 and x′
d ∈ R. Note that this extension procedure

is slightly different from those previously discussed. Indeed,

it associates to each point xd in the fluid domain an extended

field u (x′
d, xd) defined for x′

d ∈ R and the extension actually

depends on the point xd. Figure 4 provides an illustration of

this procedure.

As done before, let u (xd) = xp
d + UB with p ≥ 1. Clearly,

we have:

u (x′
d, xd) :=

{
(x′

d)
p + UB x′

d > 0,

xp−1
d x′

d + UB x′
d ≤ 0.

Note that for p = 1, we have u (x′
d, xd) = x′

d+UB. Concerning

the Laplacian, we obtain:

Fig. 4. Takeda et al. [1] extension

Fig. 5. Velocity field not satisfying the boundary condition UB

〈Δu〉M (x′, 0) = 2hp−2

∫
R

d
+

yp
dF (|y|) dy =

=
{

0 for p = 1,
hp−2 (p − 1) Cp−2 for p > 1,

(12)

D. Flows not satisfying the boundary condition

In this section we shall consider again velocity fields of the

form (5) but we shall not assume that the value of u (xd) as xd

approaches the boundary xd = 0 coincides with the boundary

value UB (see Figure 5). These velocity fields appear as initial

values in a number of viscous flows, as for instance unsteady

Couette flow, plane semi-infinite plate flow or, more generally,

free shear layer flows [13].

Let us denote by VB the value of u (xd) for xd → 0+; we

are assuming that UB �= VB. One remark should be done:

1) The Takeda et al. [1] extension produces a singular
function, that is not even well-defined at xd = 0. The

extended field equals in this case

u (x′
d, xd) :=

⎧⎨
⎩

(x′
d)

p + VB x′
d > 0,

xp−1
d x′

d + (VB − UB)
x′

d

xd
+ UB x′

d ≤ 0,

(13)
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which clearly has not a definite value at xd = 0.

Therefore, the Takeda et al. [1] extension does not seem

to be suitable to deal with discontinuous extensions.

The remaining mirroring techniques we have dealt with so

far will produce an extended field u presenting a discontinuity

at xd = 0. Therefore, the behavior of the continuous SPH ap-

proximations of differential operators acting on these extended

fields will present singularities on xd = 0 of higher order than

those already described for the case UB = VB.

As previously discussed, the singularities induced by the

U0M and ASM models are stronger when the field does not

satisfy the boundary condition. We illustrate this by analyzing

the U0M model, the results for the ASM model are rather

similar. Consider the field u (xd) = VB + xp
d for p ≥ 1; u will

denote its extension by UB for xd < 0. The Laplacian gives:

〈Δu〉M (x′, 0) = hp−2pCp−1 +
VB − UB

h2
M0. (14)

We therefore see that the boundary value of the derivative

behaves as 1/h whereas that of the Laplacian is more singular,

behaving as 1/h2.

In conclusion, none of the mirroring techniques discussed

here is suitable to deal directly with velocity fields that do not

satisfy the boundary condition exactly. This difficulties can

be overcome by suitably modifying the velocity field in the

neighborhood of the boundary in order to perform a continuous

matching with the boundary value UB. The exact nature of

these modifications will be the subject of future work.

IV. RESULTS

A time dependant plane Poiseuille flow can be described in

R
2 by the mathematical expression, see [13]:

ρ
∂u(x2, t)

∂t
= −∇P + μΔu(x2, t) (15)

where ρ and μ are the fluid density and viscosity respec-

tively, u is the first component of the unidirectional velocity

field u = (u, 0) and ∇P is a constant pressure gradient that

drives the flow between the two parallel plates towards the

increasing x1 values. The parallel plates will be set at x2 = 0
and x2 = 1 consequently the boundary conditions can be

expressed as:

u(0) = 0
u(1) = 0

The solution to this problem is a superposition of a linear

velocity field (p = 1) plus a quadratic velocity field (p = 2),

this is:

u(x2) =
−∇P

2μ
x2(1 − x2) (16)

The Pouseuille flow is a sufficient paradigmatic example

that presents most of the inconsistencies detected in the
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Fig. 6. Snapshots of νΔu at the first and the last(stationary stage) time
step.h = 1/15
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Fig. 7. Evolution of the velocity at the boundaries for different h values.

formulation described before when (16) is introduced as initial

condition.

The equivalent expression to the equation (18) for a SPH

particle, where the vertical velocity component is zero, see

[12] is:

dua

dt
= −∇Pa + Πa (17)

where the subscript a refers to the particle that carries

over the considered property and Πa represents the viscous

interaction. The kernel used in the discretized SPH simulations

is the normalized Gaussian kernel with support 3h [14], where

h is the smoothing length.

To quantify the viscous interaction the Morris viscosity

model (MVT) was used [6]. The stopping criteria used to quit

the simulation was:

max
i

{μΔuk
i −∇P} ≤ 10−1 (18)

where uk
i is the velocity value of the fluid particle i at the time

step k. The steady state is reached when the pressure gradient

is balanced with the viscous force for all fluid particles.

The initial velocity used for the for the fluid particles is

equal to the exact analytical solution u0(x2) = −∇p
2μ x2(1 −

x2), the pressure gradient has been fixed to ∇P = −9.8,

μ = 0.744 and ρ = 1 for all simulations.

286



6th international SPHERIC workshop Hamburg, Germany, June, 08-10 2011

V. 1D CONTINUOUS TIME DEPENDANT POUSEUILLE FLOW.

The equation (18) has been discretized in time by an

Euler time scheme, while the Laplacian operator has not

been discretized and the integrals coming from this part have

been accurately calculated by Matlab. The spatial domain

considered is x2 ∈ R. In this context the (continuous) solution

of the Pouseuille flow should be recovered as h tends to zero.

At the first time step, when the Laplacian of the initial

condition is calculated with the U0M extension the result

presents a erroneous values in a boundary layer close to the

plates, see the red curve in figure 6. This incorrect tendency

of the viscous force calculated at the boundaries has been

already predicted as 1/h in section II. It has opposite sign to

the expected correct value (order ∇P ), consequently it acts as

a boundary driving force that helps the pressure gradient to

increase the velocity of the particles closest to the boundaries.

Using the results obtained in section II, we can calculate the

slip velocity at the boundary v1
b after the first iteration:

v1
b = Δt(−∇P + μ∇2(

−∇P

2μ
(x2 − x2

2))) = (19)

Δt(−∇P + (
−∇P

2
(∇2x2 −∇2x2

2))) = (20)

Δt(−∇P + (
−∇P

2
(
2M1

h
− 1))) = (21)

−Δt∇P (
M1

h
+

1
2
) (22)

This velocity perturbs the initial condition (analytic solu-

tion) on the boundary as 1/h. The velocity v1 could be decom-

posed in two parts, a constant profile v1
b plus another profile

v1
nb that satisfies the boundary condition, as v1 = v1

b +v1
nb. The

Laplacian of v1 will have two contributions at the boundary:

μ∇2v1
b = μ∇2v1

b + μ∇2v1
nb = (23)

−μ
M0v

1
b

h2
+ O(

∇P

2
) + O(−∇P

M1

h
) (24)

The momentum equation can be written as:

dvb

dt
= −μ

M0v
1
b

h2
+ O(

∇P

2
) + O(−∇P

M1

h
) −∇P (25)

We can observe in equation (25), that the term −μ
M0v1

b

h2

plus O(∇P
2 ) create a friction force that works against the

pressure gradient −∇P and the third term O(−∇P M1
h ). In

our simulation the driving forces (pressure gradient plus third

term) are bigger than the friction terms, creating a positive

acceleration at the boundary. This acceleration increases the

slip velocity vb, but this effect increases also the first term.

There is an instant t = tn where the equilibrium between

the driving and the friction forces is obtained and the friction

coming from the slip velocity is able to equilibrate the driving

terms. The residual velocity in that instant can be estimated

as:

0 0.02 0.04 0.06 0.08
−50

−40

−30

−20

−10

0

10

20

30

time

ν(
Δ2 u)

b

 

 

h=1/20
h=1/30
h=1/40
h=1/60

Fig. 8. Evolution of the μΔ2u at the boundaries for different h values. The
asymptotic value tends to ∇P = −9.8 when h → 0

μ
M0v

n
b

h2
∼ O(

−∇P

2
) + O(−∇P

M1

h
) (26)

then,

vn+1
b ∼ O(h) + O(h2) (27)

Looking at figure 7 we can see the boundary velocity

evolution from the first initial value towards the stationary

value for different values of the smoothing kernel h. This

tendency is basically produced by the presence of the term

−μ
M0v1

b

h2 which creates a large deceleration of the boundary

fluid when h is small enough. Similarly, the evolution of

the viscous force μΔu at the boundary has been plotted

for different h values, see figure 8. From figure 8 we can

appreciate that all curves start in −∇P
2 ( 2M1

h − 1) and tend to

the value ∇P = −9.8 that balances the pressure gradient and

takes the problem to the stationary state.

The absolute errors in the stationary solution compared

to the exact solution for the whole fluid have been plotted

in figure 9, where we can clearly appreciate that the error

decreases when h tends to zero.

To test the result obtained in the equation (27), the residual

slip velocities have been approximated by a second order

polynomial vslip = ah2 +bh, as we can observe in figure 10 a

second order polynomial fits the computational values obtained

accurately and shows that the residual slip velocity tends to

zero consistently when the smoothing length decreases.

The absolute error of the stationary velocity profile com-

pared to the exact solution is plotted in 9 for different h values.

When a different extension ASM is used in order to impose

the boundary conditions, the Laplacian of the initial condition

gives a erroneous zero value close to the boundary, see figure

11. Consequently, at this point, viscous friction does not

equilibrate the pressure gradient and increases the velocity of

the closest particles to the boundaries producing a slip velocity

v1
b .

v1
b = Δt(−∇P + (

−∇P

2
(∇2x2 −∇2x2

2))) = −Δt∇P (28)
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Fig. 9. Absolute error of the stationary velocity field compared with the
analytical solution for different values of the parameter h when the U0M
extension is used.
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Fig. 10. Dependence on h and h2 of the slip boundary velocity.

Due to the absence of friction at the boundaries, the initial

condition (analytic solution) is locally perturbed. As in the

U0M case, the velocity v1 could be decomposed in two parts,

a constant profile v1
b plus another profile v1

nb that satisfies the

boundary condition, as v1 = v1
b + v1

nb. The Laplacian of such

velocity will have two contributions at the boundary:

μ∇2v1 = μ∇2v1
b + μ∇2v1

nb = −μ
2M0v

1
b

h2
(29)
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Fig. 11. Snapshots of νΔu at the first and the last (stationary stage) time
step when the U0M extension is used.h = 1/20
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Fig. 12. Absolute error of the stationary velocity field compared with the
analytical solution when the U0M extension is used.

The resulting momentum equation can be written as:

dv2
b

dt
= −∇P − μ

2M0v
1
b

h2
(30)

The second friction term −μ
M0v1

b

h2 works against the pres-

sure gradient. At the beginning of our simulation the driving

pressure gradient is bigger than the friction term, creating

an acceleration at the boundary. This acceleration increases

the slip velocity vb and consequently the friction term also

grows. There is an instant t = tn where the equilibrium is

obtained and the friction coming from the slip velocity is able

to equilibrate the pressure gradient. The residual boundary

velocity can be calculated as:

μ
2M0v

n
b

h2
= −∇P (31)

Then, the residual slip velocity will be:

vn
b =

−∇P

2M0μ
h2 (32)

The coefficient −∇P
2M0μ in our case is equal to 3.25 which is

equal to the coefficient of the interpolation expression used in

figure 10. This means than the theoretical prediction shown in

equation 32 agrees perfectly with the computational results.

In figure 13 the evolution of the residual boundary velocity

has been plotted. We can observe that the asymptotic final

value is the result of the two opposite forces (viscous friction

−μ
2M0v1

b

h2 and pressure gradient) that work against each other

until they reach the final stationary state. The consistency of

this residual velocity is guaranteed by the fact that its final

value tends to zero when the smoothing length h decreases. A

complementary result is shown in figure 14 where μ times the

Laplacian of the velocity calculated at the boundary is initially

equal to −∇P
2 ( 2M1

h − 1).
When the Takeda extension is used, just the first time step

can be calculated with this continuous methodology. When

the Laplacian of the initial condition is calculated with the

Takeda extension the result gives a erroneous halved value in a
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Fig. 13. Evolution of the velocity at the boundaries for different h values
when the ASM extension is used.
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Fig. 14. Evolution of the μΔ2u at the boundaries for different h values
when the ASM extension is used.

boundary layer of size h. This wrong friction at the boundaries

does not equilibrate the pressure gradient and consequently the

velocity of the closest particles to the boundaries increases

producing a slip velocity v1
b .

v1
b = Δt(−∇P + μ∇2(

−∇P

2μ
(x2 − x2

2))) = (33)

Δt(−∇P + (
−∇P

2
(∇2x2 −∇2x2

2))) = (34)

−Δt
∇P

2
(35)

As we know from section II, the existence of a slip velocity

that does not satisfy the boundary condition makes the Takeda

extension produce a singular function, that is not even well-

defined at the boundaries. The extended field has not a definite

value at x2 = 0 and x2 = 1. Therefore, the Takeda extension

cannot be studied with this continuous algorithm and its study

will be postponed to further discrete approximations.
Finally a re-normalized Takeda extension, see [11], has

also been tested. The viscous friction at the first iteration

is calculated exactly μΔ2u0 = ∇P and consequently the

stationary condition is satisfied un = u0.

VI. 1D DISCRETE APPROXIMATION

In this section, the scheme used to solve the Pouseuille

problem will be a Eulerian approximation where a column of
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Fig. 15. Snapshots of νΔu calculated with the 1D Eulerian discrete
approximation at the first and the last(stationary stage) time step using the
U0M extension. h = 1/15 and h/dx = 512/15.
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Fig. 16. Absolute error of the stationary velocity field compared with the
analytical solution when the ASM approximation has been used.

particles remains in fixed positions. Comparing this procedure

with the one presented in section V, the main difference

consists in the calculation of the Laplacian integrals which will

be calculated as smoothed sums over the neighbor particles.

A column of fluid particles have been distributed along the

interval x2 ∈ (0, 1) and no particle is set either at x2 = 0
nor at x2 = 1. Four rows of particles have been added to

the upper and bottom parts to impose the non-slip boundary

condition, where different velocities are prescribed according

to the different extensions.

Using the U0M extension, the viscous shear calculated at

the first and last time steps has a similar shape compared to

the semi-discrete calculation presented in section V, see figure

15. Analogous results are obtained when the other extension

are used, not shown here.

The global absolute error in the velocity field at the station-

ary state has been plotted when the extension ASM is used

and the consistency of the result is clearly observed, see figure

16.

As we can see in figure 17 the U0M and the ASM extensions

present similar dependence of the residual slip velocity on

the smoothing length h if we compare to the continuous

case studied in section V. This means that in this problem

the substitution of the integrals by sums does not affect the
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Fig. 17. Dependence on h and h2 of the slip boundary velocity.

boundary conditions excessively. It is also important to remark

that when the Takeda extension is used the values of the slip

velocity are more accurate compared to the other extensions

(ASM and U0M), and as the others present a consistent

tendency where the slip velocity tends to zero with h.

VII. 2D LAGRANGIAN DISCRETE APPROXIMATION

As SPH is well known as a Lagrangian numerical method,

we tried to extend our previous ideas to this context where

only the flow incompressibility and unidirectionality have been

used as dominant hypothesis. In this section, the scheme used

to solve the Pouseuille problem will follow a classical 2D

Lagrangian SPH approximation. Comparing this procedure

with the former one, in this case fluid particles fill a 2D

domain (x1, x2) ∈ [0, 1]x[0, 1] and move every time step. A

periodic boundary condition is used for the inflow and outflow

boundaries.

The equation (18) has been discretized in space according

to the standard SPH formulation and in time by a second

order Leap-Frog scheme [16]. The ratio between h and dx
has been fixed for all simulations in this section h/dx = 2.

The selection of the time step has been based on the viscous

diffusion and acceleration terms [16]. Two error sources will

be present in the following calculations [15]: first, due to

the use of a kernel smoothing function and second, coming

from the evaluation of integrals as finite sums. For the U0M

and ASM extensions the boundary conditions are imposed

after every predictor and corrector loop, while in the Takeda

extension the boundary conditions are imposed locally in the

viscous force calculation part.

In figure 17 we can appreciate how the U0M extension

shows a similar tendency as in the previous implementations

but the residual slip velocity has been increased by the La-

grangian movement of the particles, when the ASM extension

is used this increment is almost neglegible, but the Takeda

extension shows a unexpected large residual velocity that is

still under interpretation.

VIII. CONCLUSION

The mechanism by which the non slip boundary conditions

are implemented in a SPH code has been deeply understood.

This paper shows how an apparently inconsistent shear force

calculated at the initial step can be finally balanced by another

boundary force that appears when slip velocities are present

at the boundary. This convergent process allows an accurate

solution of the Poiseuille problem when the smoothing length

h and the ratio dx/h both tend to zero.
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