
Developing Hera-FFX for WCAG 2.0
José L. Fuertes

Dept. LSlis
Tech nica I University of Madrid

Campus de Montegancedo
28660 Boadilla del Monte

Madrid. Spain
+34 91 352 25 46

jfuertes@fi.upm.es

Emmanuelle Gutiérrez
Sidar Foundation

Marqués de Mondejar, 34, 5D
28028 Madrid. Spain

+34 91 725 71 47

emmanuelle@sidar.org

Lo'íc Martínez
Dept. LSlis

Technical University of Madrid
Campus de Montegancedo
28660 Boadilla del Monte

Madrid. Spain
+34 91 352 25 46

loic@fi.upm.es

ABSTRACT
WCAG 2.0 was published in December 2008. It has many
differences to WCAG 1.0 as to rationale, structure and content.
Two years later there are still few tools supporting WCAG 2.0,
and none of them fully mirrors the WCAG 2.0 approach organized
around principies, guidelines, success criteria, situations and
techniques. This paper describes the on-going development of an
update to the Hera-FFX Firefox extensión to support WCAG 2.0.
The description is focused on the challenges that we have found
and our resulting decisions.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Evaluation/methodology, input devices and strategies,
user-centred design, interaction styles; K.4.2 [Computers and
Society]: Social Issues—Handicapped persons/ special needs,
assistive technologies for persons with disabilities

General Terms
Human Factors

Keywords
Web accessibility, accessibility evaluation, evaluation tools

1. INTRODUCTION
The Web Content Accessibility Guidelines (WCAG) have been
the reference document on web accessibility since their
publication in 1999 [8]. One key aspect of WCAG application is
the evaluation of web accessibility. On this issue, the World Wide
Web Consortium (W3C) has highlighted the need for human-
based evaluation and tools to support the process [16].

WCAG were updated and published as WCAG 2.0 in December
2008 [7]. The new set of guidelines was developed with two main
goals: technology-independence (for application to both current
and future web technologies) and testability (where evaluators of
web accessibility should agree on the results of evaluating the
same web content). Based on these two goals, WCAG 2.0 are

different from WCAG 1.0 as to rationale, structure and content.

Given these differences, evaluation tools have to be updated to
WCAG 2.0 and, although this work has started, there are still few
tools supporting WCAG 2.0 two years on.

This paper describes the on-going development of an update to the
Hera-FFX Firefox extensión [12] to support WCAG 2.0. This tool
has a strong focus on fully supporting the new structure of WCAG
2.0 (organized around principies, guidelines, success criteria,
situations, techniques and failures) and on fully supporting an
expert-based manual evaluation of web accessibility.

The contents of the paper are as follows. Section 2 outlines related
work on tools for WCAG 2.0 as a justification of the expediency
of a new versión of Hera-FFX. In Section 3, we explain why there
was a need for tool redesign, and Section 4 outlines the resulting
design decisions. Section 5 follows on with a description of an
initial evaluation of the impact of the tool's use. Finally, Section 6
ends with some concluding remarks and future work.

2. RELATED WORK
Hera-FFX was designed based on most of the desirable features of
web accessibility tools taken from several sources and
summarized in [12]:

• Automatic preliminary evaluation (AE). Any tool should be
able to automatically assess all (or parts of) the checkpoints
that can be automated.

• Support for manual filling of success criteria results (MF).
Once the automatic evaluation is complete, the tool should
provide automated support for the evaluator to fill in the
valúes of all the checkpoints and add comments about each
checkpoint that could be used for later report generation.

• Page presentation modification for assisting checkpoint
evaluation (PM). This modified presentation should highlight
the elements that have to be inspected for a given checkpoint,
and should display the key attributes of those elements.

• Annotated code view for assisting checkpoint evaluation
(CV). The elements specified in the checkpoint should be
highlighted in the HTML code.

• Localpages evaluation (LP). This feature is essential for web
developers, as they should be able to assess the accessibility
of unpublished web pages under development without having
to send the code to a remote server.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148661435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jfuertes@fi.upm.es
mailto:emmanuelle@sidar.org
mailto:loic@fi.upm.es

 Restricted-access pages evaluation (RA). The tool should be

able to evaluate restricted access web pages and secure

pages.

 Rendered-page evaluation (RP). The tool should be able to

evaluate the rendered version of the page, which implies that

it can evaluate locally displayed styles and dynamically-

generated content from scripts.

 Report generation (RG). The evaluators should be able to

save reports based on the automatic and manual inspections

in a handy format.

 Support for training (ST). The tool should provide detailed

information about each checkpoint, including normative text

and techniques to be applied for assessment. This

information is very useful for novice evaluators, as well as

for persons that do not regularly perform accessibility

evaluations.

 Multi-session capacity (MS). An evaluation tool should

provide some multi-session capacity, enabling the user to

store current work and to load this work later to resume the

assessment.

 Flexibility to integrate other accessibility guidelines (FL).

There are other web accessibility requirements, apart from

WCAG 1.0, such as the US Section 508 Standards, the

Spanish UNE 139803:2004 Standard or the German

“Barrierefreie Informationstechnik-Verordnung”. Users

should be able to change the guidelines and checkpoints, as

well as the evaluation code to adapt the tool to other

accessibility requirements.

Based on our experience of dealing with WCAG 2.0, we consider

a new feature on top of the above eleven in this paper:

 Fidelity to WCAG 2.0 structure (WS). An evaluation tool

should follow the WCAG 2.0 structure to ease the

understanding of the good and bad practices in a web page

according to the techniques, failures, situations and success

criteria. One of the problems with evaluating web

accessibility according to WCAG 1.0 was the lack of

objectivity, as different experts could output different results.

We believe that the W3C‟s “Techniques for WCAG 2.0”

document could greatly improve this point if expert

evaluators are able to provide detailed information about

which techniques have been successfully applied and which

failures have been found using an international common

vocabulary. And the fact that this is a living document means

that there is always an internationally-agreed and up-to-date

checklist of techniques and failures available that evaluators

can use to evaluate accessibility and compare the evaluation

outcomes provided by others. For this reason, we believe that

any tool should enable the evaluators to check both

techniques and failures as defined by the W3C

An additional feature would be to analyse the quality of the results

that each tool outputs automatically, that is, how many false

positives and false negatives are produced. The focus of our

paper, though, is on support for the manual evaluation process,

and this is not such a relevant feature in this case, because a

human evaluator should always be able to change or override the

result output by the tool. For this reason we will omit the quality

of the results from this description of related work.

We have found only four tools providing support for WCAG 2.0:

AChecker [13], TAW [10], Total Validator [15] and Worldspace

Fire Eyes [11]. Table 1 lists the features of these four tools.

AChecker (abbreviated as ACH in Table 1) is an open source

Web accessibility evaluation tool [13]. It supports a variety of

international accessibility guidelines like Section 508, Ley Stanca

(Italy), WCAG 1.0 and 2.0, and BITV (Germany). There is a

public web version, a PHP version for installation on your own

server, and a plugin for TinyMCE.

TAW (abbreviated as TAW in Table 1) is a three-member family

[10]: TAW3 WebStart, which is the online version of TAW;

TAW3 with a click, which is a browser plug-in for Mozilla

Firefox; and TAW3 standalone, a multiplatform software

application that complements and extends the functionality of

TAW WebStart. For the time being, only the online version works

with WCAG 2.0, although is at the beta stage.

Total Validator (abbreviated as TVA in Table 1) is a free one-stop

all-in-one validator comprising a HTML validator, an accessibility

validator, a spelling validator, a broken links validator, and the

ability to take screenshots with different browsers to see what

your web pages really look like [15]. There is a web version, a

Firefox extension, and a desktop version for purchase. The user

can choose to check compliance with WCAG 1.0 or 2.0 or Section

508.

Worldspace FireEyes (abbreviated as WFE in Table 1) is a web

accessibility tool that ensures that both static and dynamic content

within a web portfolio are compliant with standards such as

WCAG 1 (Priorities 1, 2 and 3), WCAG 2 (levels A and AA),

Section 508 and contains some dynamic rules that test for WAI-

ARIA compliance [11]. This tool is fully JavaScript aware and

handles event-based page content. It works as a complement of

the Firebug Firefox extension.

Table 1: Features of tools supporting WCAG 2.0

 ACH TAW TVA WFE

Type mixed online mixed extension

AE    

MF    

PM    

CV    

LP    

RA    

RP    

RG    

ST    

MS    

FL    

WS    

The feature coverage of the tools listed in Table 1 is summarized

below:

 Type of tool. There are multiple versions of Achecker and

Total Validator; TAW is an online tool and FireEyes is an

extension for Firefox.

 Automatic preliminary evaluation (AE). All of the tools

incorporate automatic accessibility evaluation.

 Support for manual filling of success criteria results (MF).

Registered users can manually fill in the results in AChecker.

The status of an issue can be edited by the users in FireEyes.

TAW online and Total Validator do not make provision for

manual validation.

 Page presentation modification for assisting checkpoint

evaluation (PM). All the tools except AChecker show a

modified view of the page to help identify issues.

 Annotated code view for assisting checkpoint evaluation

(CV). All the tools display the page source code for the user,

annotated with marks associated with key issues.

 Local pages evaluation (LP). Local pages can be assessed

using the Firefox plugin and desktop versions of Total

Validator and FireEyes.

 Restricted-access pages evaluation (RA). The desktop

version of Total Validator and FireEyes enable the user to

evaluate pages with restricted access.

 Rendered-page evaluation (RP). Only FireEyes can evaluate

dynamic pages that use JavaScript to update page content.

 Report generation (RG). All the tools generate some form of

HTML accessibility report, although the quality of such

reports is variable.

 Support for training (ST). All the tools, except Total

Validator, offer some information about success criteria and

the related techniques and failures. Total Validator includes

links to the WCAG techniques document only.

 Multi-session capacity (MS). Only FireEyes offers support

for saving and reloading current evaluation projects (on a

server) to continue the evaluation.

 Flexibility to integrate other accessibility guidelines (FL).

The only tool that enables the user to add and redefine the

tests (both automatic and manual) to be run is AChecker (if

installed on a server). The other tools just enable the user to

select one guideline from a fixed set.

 Fidelity to WCAG 2.0 structure (WS). TAW is the only tool

to use and refer to the techniques and failures as defined by

the W3C, albeit in a limited manner. For instance, it does not

enable the user to assign a situation to each element of a web

page.

The conclusion of our analysis of related work is that none of the

existing tools supporting WCAG 2.0 provide full coverage of

what we consider to be the desirable features and that Hera-FFX

intends to cover.

3. THE NEED FOR REDESIGN
Two years ago we presented Hera-FFX [12], an add-on for the

Firefox web browser that supports semi-automatic web

accessibility evaluation. This tool, based on Hera on-line [4], was

able to provide guidance and help to human evaluators trying to

assess the accessibility of a web page based on WCAG 1.0. Both

tools have been successfully used by partners of the Sidar

Foundation [14] and the Technical University of Madrid to

evaluate web sites accessibility and also as a supporting

technology for teaching web accessibility [3].

Hera on-line had some limitations, which led to the development

of Hera-FFX. The first weak point was that Hera was unable to

analyse local web pages. The second drawback was related to the

evaluation of web pages that require some sort of user

authentication. Like almost all other comparable tools, Hera often

could not analyse these restricted access pages. The third snag

was that Hera was unable to evaluate the rendered version of a

web page, including locally displayed styles and dynamically-

generated content from scripts.

Hera-FFX was developed to overcome the above difficulties by

running an automatic preliminary evaluation of the web pages as

they are browsed, as well as enabling the user to manually

evaluate the accessibility of any of the pages.

One of the main features of Hera-FFX was its flexibility, as it was

designed with the option of changing the guidelines used. This

should have enabled Hera-FFX to adapt to the new WCAG 2.0,

but Hera-FFX‟s flexibility was not enough to cope with the huge

modification of WCAG 2.0 structure, leading us to develop a

completely new version of the tool.

More specifically, the main issues that we found can be

summarized as follows:

 WCAG 1.0 has only two de facto levels: guidelines and

checkpoints. The WCAG 2.0 structure has a greater number

of more complicated levels: principles, guidelines, success

criteria and techniques and failures.

 WCAG 1.0 checkpoints were quite simple. WCAG 2.0

success criteria are rather complex. They include sufficient

techniques (providing guidance and examples for meeting

the guidelines using specific technologies), advisory

techniques (potentially enhancing accessibility) and common

failures (examples of bad practices that cause web pages to

fail to meet the success criteria). In addition, techniques are

grouped around situations. This way, only the techniques

listed under one specific situation should be applied when

that situation has been identified as applying to each element

under assessment.

 WCAG 2.0‟s openness means that a live document is kept by

the W3C on techniques and failures. Anyone can provide

their own technique or failure, without this having to be

approved or published by the W3C. The W3C can also

update this document whenever they find new techniques or

failures of general interest. In fact, this document was

recently first updated by the W3C to include techniques and

failures to cope with Adobe Flash among others [9]. But this

openness means that any tool should be implemented to be

open enough to easily integrate the new techniques and

failures and keep it updated.

 New formulas are needed to cope with the way the partial

results of the evaluation of the techniques and failures have

to be aggregated to output the results for the success criteria.

A detailed study has to be undertaken to account for the fact

that the compliance of one technique means nothing in

success criteria terms, whereas just one failure means that the

success criteria are not met, even if some techniques are

compliant.

 The human evaluator should be allowed to assign manual

results to a success criterion without having to evaluate each

failure and each technique on each web page element.

Sometimes, an evaluator will be experienced enough to rate a

success criterion without further analysis.

Accordingly, the development of the new Hera-FFX should deal

with all these issues, providing all the desirable features for a web

accessibility evaluation tool.

4. THE NEW HERA-FXX
WCAG 2.0 contains more detailed information: the number of

levels of the structure has been increased and new concepts have

been added. Figure 1 shows a comparison of the organizational

levels of Hera-FFX 1 and WCAG 2 (dotted lines show possible

concept equivalence).

Hera-FFX 1 did not consider the definition of principles. The first

level was the guidelines (present in both WCAG 1.0 and 2.0).

Checkpoints could be equivalent to success criteria, as they both

refer to the baseline accessibility recommendations. Situations are

another completely new concept.

Hera-FFX 1 WCAG 2.0

Guidelines

Checkpoints

Tests

Guidelines

Success
criteria

Situations

Principles

Common failures

Additional failures

Sufficient techniques

Advisory techniques

Additional techniques

Figure 1: Concept equivalence between Hera-FFX 1 and

WCAG 2.0

The tests used by Hera-FFX to automatically evaluate the

checkpoints could be equivalent to WCAG 2.0‟s sufficient

techniques and common failures, as they are able to specify

algorithmic tests on certain web page elements and automatically

output results. Even so, rather than providing for the independent

evaluation of these tests, Hera-FFX displayed information about

the tests to support decision making on the value of the respective

checkpoint. This is another obstacle to the adaptation to WCAG

2.0, as the independent evaluation of techniques and failures is

one of the key improvements over WCAG 1.0. In WCAG 2.0 one

technique or failure can be reused for several success criteria.

Taking this into account, the new version of Hera-FFX should

evaluate each individual technique and failure only once, either

automatically or manually. This result could then be propagated to

all of the success criteria related to each technique or failure.

The other set of techniques, the advisory techniques, do not really

influence web content accessibility evaluation. They are intended

merely as accessibility improvements, which, on their own, do not

guarantee success criteria fulfilment. For this reason we decided

not to take them into account in the new tool.

The new Hera-FFX 2 solves all these problems. The core of the

tool had to be redesigned to cope with the new structure and

characteristics of WCAG 2.0.

In addition, the user interface also needed to be modified to be

able to guide the human evaluator through the new WCAG 2.0

structure. The changes empowered users to identify situations

(whenever necessary), and assign values to the failures or

techniques, but also to the success criteria as a whole.

But the user interface retains the freedom of navigation that it

inherited from the previous version. This freedom allows the user

to evaluate the success criteria in the desired order, offering

support for evaluation by priority level, by principle and

guideline, or in any other order preferred by the user. Figures 2

and 3 show two different web page evaluation screens.

Figure 2: Summary table of the evaluation process

Figure 3: Evaluating a success criterion

One of the biggest issues was related to the aggregation of the

individual evaluation results to output the global evaluation value.

Hera-FFX 2 allows the user to evaluate the accessibility of a web

page using the following structure: success criteria, element

categories, elements, situations, techniques and failures as defined

by WCAG 2.0, plus additional techniques and failures defined by

users. In addition, it can automatically evaluate some techniques

and failures.

For any item that is evaluated (technique, failure, element,

element category, success criterion, guideline, principle), either

directly or by aggregation, Hera-FFX has one six-element array to

represent its evaluation. This array takes the form [fail, NA,

verify, ok, unknown, partial]. Each position lists the number of

instances found for that particular evaluation result.

If the array is applied to a simple element (i.e., one HTML

element when evaluating one success criterion), then only one

position can have a value, and this value must be 1. If the array is

applied to a complex item (i.e., one success criterion that is

applied to several categories of elements), then each position

contains the total number of values aggregated from the child

elements. Some examples follow:

 Single item, result = [0, 1, 0, 0, 0, 0]. This result means not

applicable: the current success criterion cannot be applied to

that item.

 Single item, result = [0, 0, 0, 1, 0, 0]. This means pass (OK).

The current item successfully conforms to the current success

criterion.

 Complex item, result = [1, 0, 2, 3, 5, 4]. In this case, the

current item (i.e., a category of HTML elements) has 15

child items with the following results: 1 item fails, 0 items

are not applicable, 2 items need manual evaluation, 3 items

conform to the success criterion, 5 items could not be

evaluated and 4 items only partially conform to the success

criterion.

In addition, the internal representation changes when the current

item contains child items belonging to several conformance

levels. For instance, one guideline contains several success

criteria, and each success criteria has a different conformance

level. In that case, the evaluation result consists of an array of

three six-element arrays:

Result = [[fail, NA, verify, OK, unknown, partial],

 [fail, NA, verify, OK, unknown, partial],

 [fail, NA, verify, OK, unknown, partial]]

The first element of this complex array is the aggregated result for

conformance level A, the second element corresponds to level AA

and the third to level AAA.

This array structure is quite flexible as it provides for:

 Individual evaluation of an object assigning a “1” to just one

position in the array. This is used for techniques, failures and

global evaluations.

 Evaluation of a parent object depending only on the

evaluation values of its child objects. The parent object value

is output using an aggregation algorithm. This is used for

groups of techniques, elements, situations, element

categories and success criteria.

 Evaluation of an object that depends on both the evaluation

values and the conformance level of its sub-objects. In these

cases, it is useful to store quantitative information about the

number of elements with each value and conformance level,

creating one array per conformance level. This is used for

guidelines, principles and final web page evaluation.

The terms “parent” and “child” in the above description refer to

the internal conceptual model of Hera-FFX, where one principle

contains several guidelines, one guideline contains several success

criteria, one success criterion contains several situations and

several failures, one situation contains technique groups, and one

technique group contains other groups or techniques. Thus, for

instance, the parent of a situation is its corresponding success

criterion and the child of a situation is a group of techniques.

A web page evaluation involves different elements, each with

characteristics requiring different analyses. For this reason, three

different aggregation algorithms are needed: permissive,

restrictive and semi-permissive.

A description of the algorithms follows, including a formalization

that uses the following notation:

 The „i‟ and „j‟ variables represent six-element arrays

corresponding to child items of the current item.

 The “eval” function is applied to simple items and returns the

position of the „1‟ value. For instance, eval([0, 1, 0, 0, 0, 0])

is NOT APPLICABLE and eval([0, 0, 0, 1, 0, 0]) is PASS.

 In some cases auxiliary subsets of items are used: “S1”,

“S2”… Each subset represents a set of child items with the

same value.

 The “card” function returns the cardinality of one set (that is,

the number of items).

The aggregation algorithms are:

1. Permissive algorithm. It is applied to elements having

different means of passing the evaluation, where just one

success is enough. One example is the set of sufficient

techniques applicable in one situation. The permissive

algorithm can be represented by the following values

hierarchy and is detailed in Table 2:

PASS >> VERIFY >> UNKNOWN >> PARTIAL >> FAIL >> N/A

Table 2: Permissive algorithm

Condition Result

 (()) PASS

 (()) (()
)

VERIFY

 (()) (()
 ()
)

UNKNOWN

 (()) (()
 ()
 ()
)

PARTIAL

 (()) (()
 ()
 ()
 ()
)

FAIL

 ()
NOT

APPLICABLE

2. Restrictive algorithm. It is used for elements that have

several means of failing the evaluation, all of which have to

be successful to prevent failure. An example is the set of

common failures associated with a single success criterion.

This algorithm can be represented with the following values

hierarchy and is detailed in Table 3:

FAIL >> PARTIAL >> VERIFY >> UNKNOWN >> PASS >> N/A

Table 3: Restrictive algorithm

Condition Result

 (()) FAIL

 (()) (()
)

PARTIAL

 (()) (()
 ()
)

VERIFY

 (()) (
 ()
 ()
 ()
)

UNKNOWN

 (()) (()
 ()
 ()
 ()
)

PASS

 ()
NOT

APPLICABLE

3. Semi-permissive algorithm. It is a generalization of the

permissive algorithm. It is applied to elements that have

different means of passing the evaluation, where a minimum

number of successes are required to pass. This is the case of

some sets of sufficient techniques applied to some success

criteria. It uses the same hierarchy as the permissive

algorithm, plus an n parameter to specify the minimum

number of PASSES required (Table 4).

The aggregation method also depends on the type of elements

considered, as explained below. Note that it is the tool that

chooses which algorithm to apply for a given item, depending on

its meaning. For instance, if the current item is a group of

sufficient techniques linked with an OR operator and with no

requirement on a minimum of positive results, then the permissive

algorithm is used. If the current item is a group of failures, then

the restrictive algorithm is applied.

Technique evaluation

One technique or failure (tf) can be evaluated on each page

element using an automatic test or manually by the human

evaluator. If both values exist, the manual score (HumanResult)

takes precedence over the automatic score (AutomaticResult).

IF (ThereIsHumanResult(tf)) THEN

 RETURN HumanResult(tf)

ELSE

 RETURN AutomaticResult(tf)

Aggregate evaluation of groups of techniques

A group of techniques (tg) can contain other groups or individual

techniques. Therefore, the evaluation value of a group of

techniques can be obtained from its techniques or subgroups.

First, an accumulated array is built by adding the arrays of the

subgroups or child techniques. Then one of the three algorithms is

applied to output the final result. If the current group has an AND

operator, then the restrictive algorithm is used because the result

for the group will be the least favourable value in the array. If the

operator is OR, then the permissive algorithm is used because the

group will have the most favourable value. A much less common

possibility is the establishment of a minimum number of

successful results. In these cases, the operator is called ORN,

because it is a generalization of the OR operator, restricted to tg.N

successful values to pass. In this case, the semi-permissive

algorithm is used.

FORALL child IN tg

{

 IF IsTechGroup(child) THEN

 result = result + EvalTechGroup(child)

 ELSE

 result = result + EvalTechnique(child)

}

IF (OperatorType(tg) = AND) THEN

 RETURN RunRestrictiveAlgorithm(result)

ELSE IF (OperatorType(tg) = OR) THEN

 RETURN RunPermissiveAlgorithm(result)

ELSE

 RETURN RunSemiPermissiveAlgorithm(result, tg.N)

Table 4: Semi-permissive algorithm

Condition Result

 () where

 * (())+
PASS

 () ()

 * (())+

 * (())+

VERIFY

 () ()

 ()

 * (())+

 * (())+ ,

 * (())+

UNKNOWN

 () ()

 () ()

 S1 = {i | (eval(i) = PARTIAL)},

 * (())+,

 S3 = {i | (eval(i) = VERIFY)},

 S4 = {i | (eval(i) = UNKNOWN)}

PARTIAL

 () ()

 () ()

 ()

 * (())+

 * (())+

 S3 = * (())+

 * (())+

 * (())+

FAIL

 ()
NOT

APPLICABLE

Aggregate evaluation of situations

Each situation (sit) contains only one group of techniques

(TechGroup(sit)). Thus, the result of one situation is the result for

this group applying the above process.

tg = TechGroup(sit)

RETURN EvalTechGroup(tg)

Aggregate evaluation of elements

The value of the evaluation of one element (el) for one success

criteria (sc) is calculated from the results for the group of

techniques in its situation (el.sit) and from its common failures.

First the failures are aggregated using the restrictive algorithm

(one failure is enough to decide that the element has failed). And

the situation is only evaluated if there are no failures or they are

declared not applicable.

FORALL fail IN sc

 failresult = failresult +

 EvalFailure(fail, el)

res = RunRestrictiveAlgorithm(failresult)

IF (res = FAIL) THEN

 RETURN FAIL

ELSE IF (res = PARTIAL) THEN

 RETURN PARTIAL

ELSE IF (res = VERIFY) THEN

 RETURN VERIFY

ELSE IF (res = UNKNOWN) THEN

 RETURN UNKNOWN

ELSE

 RETURN EvalSituation(el.sit)

Aggregate evaluation of elements category

In general, the value of the evaluation of an elements category

(elemcat) is calculated by applying the restrictive algorithm to the

sum of the results of its child elements, because if a problem is

detected in one of the elements there will be a problem with the

category. But if a global evaluation has been manually established

by the user, then this global value is used.

IF (GlobalValue(elemcat) ≠ VERIFY) THEN

 RETURN GlobalValue(elemcat)

ELSE

{

 FORALL el IN elemcat

 result = result + EvalElement(el)

 RETURN RunRestrictiveAlgorithm(result)

}

Aggregate evaluation of success criteria

The value of the evaluation of a success criterion (sc) is calculated

by applying the restrictive algorithm to the sum of the results of

its elements categories, because if one of them fails then the

whole criterion will fail. But if a global evaluation has been

manually established by the user, then this global value is used.

IF (GlobalValue(sc) ≠ VERIFY) THEN

 RETURN GlobalValue(sc)

ELSE

{

 FORALL elemcat IN sc

 result = result + EvalElementCat(elemcat)

 RETURN RunRestrictiveAlgorithm(result)

}

Aggregate evaluation of guidelines

Guidelines must reflect the results of their success criteria, taking

into account that each success criterion belongs to a certain

conformance level, and results are aggregated among success

criteria at the same level. This means that three values are output

per guideline, one for conformance level A, one for AA and one

for AAA.

FORALL sc IN guideline

{

 IF (ConformanceLevel(sc) = A) THEN

 resultA = resultA + EvalSC(sc)

 ELSE IF (ConformanceLevel(sc) = AA) THEN

 resultAA = resultAA + EvalSC(sc)

 ELSE

 resultAAA = resultAAA + EvalSC(sc)

}

RETURN [resultA, resultAA, resultAAA]

Aggregate evaluation of principles

Principles also must reflect the results of their success criteria.

The evaluation is similar to the aggregation of guidelines, grouped

by level.

FORALL guideline IN principle

 resultarray = resultarray +

 EvalGuideline(guideline)

RETURN resultarray

Final evaluation

The value of a web page evaluation is calculated from the results

of the success criteria taking into account the conformance levels.

FORALL principle

 resultarray = resultarray +

 EvalPrinciple(principle)

RETURN resultarray

5. EVALUATION
Hera-FFX 2 is under active development but a working prototype

exists and has been evaluated to assess the impact on the use of

the tool in relation to the accuracy of the results provided by

novice evaluators.

Previous work has researched the testability of WCAG 2, both by

novices [1][5] and by experts [6]. In all cases researchers agree

that some success criteria are not testable, that is, 80% of the

evaluators did not agree on the correct result.

In our case we already ran an experiment with novice evaluators

[1] and decided to determine the impact of Hera-FFX on this type

of evaluators. We had data from several courses on web

accessibility where no tool was used, and we compared them with

new students.

The current version of Hera-FFX 2 was used by four students

attending the “challenges of ICT accessibility for people with

functional diversity” module as part of a Master in Software and

Systems taught at the Technical University of Madrid‟s Computer

Science School. Part of the module focused on web accessibility,

and we used a collaborative learning approach as described in [2].

These four students were somewhat less familiar with web

accessibility than the students from previous courses, because the

module included learning goals for a broader concept of

accessibility beyond just the web domain.

Of course, this is a very low number of evaluators, and our

conclusions will not be statistically significant. Our goal,

however, was to find out if the use of an early version of Hera-

FFX 2 had any impact at all.

The students of the module were set the exercise of evaluating one

web page. The web page was our University‟s home page, which

we had also used in previous experiments. Although the contents

have changed since our last experiment, the structure is the same.

For this reason, we believe the results of the evaluation exercise

will be comparable.

Figure 4 shows the percentage of students that provided the

correct result in our previous experiments (web accessibility

courses in the ATHENS 2009 and 2010 programme) and when

using Hera-FFX 2 (labelled as MUSS).

Figure 4: Comparing results when using no tool (ATHENS

2009 and 2010) and when using Hera-FFX 2 (MUSS)

Our experiment shows that roughly 50% of the success criteria

yielded better results using the tool, even though the students were

less well trained than the students from other courses. This leads

us to believe that the use of the tool will be beneficial in future

modules.

On the one hand, some key examples of the benefits of using

Hera-FFX were success criteria 1.1.1, 1.2.1, 1.2.2, 1.4.2, 2.4.2,

and 3.2.1, where 100% of the four students agreed on the correct

results.

On the other hand, there are also some cases where the four

students clearly performed worse than in other courses, especially

on success criteria 1.3.3, 1.4.1, 2.4.1, 2.4.4, 3.3.2 and 4.1.1. We

were concerned about these results, and we held a session in our

module to discuss the findings. We reached the conclusion that

the main reason for these mistakes was a knowledge gap due to

the limited amount of time that students had had to work on

WCAG 2.0, where we found that tool use had been unable to

offset this missing knowledge.

In addition, although we did not perform any detailed usability

evaluation, we were interested in the user experience of Hera FFX

2. We asked our four students to give their opinion about the tool

that they had used. All the students had a very positive opinion of

the tool, and they especially highlighted the intuitiveness of the

user interface. They also stated that the tool was effective and

useful for evaluating the accessibility of web pages.

Of course, there were some exceptions, all of which, however,

were related to tool instability, which was understandable as it

was an unfinished product.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented the on-going development of

Hera-FFX 2, a Mozilla Firefox plug-in supporting the manual

evaluation of web accessibility based on WCAG 2.0.

Hera-FFX 2 has two main contributions. First, it is a tool that

enables a full and detailed manual evaluation of the accessibility

of a web page, with the additional support of a few automated

tests. Second, it is a tool that mimics the complete structure of

WCAG 2.0: principles, guidelines, success criteria, situations,

techniques and failures.

Although the tool is under active development, the current

prototype has been evaluated by a small number of students with

positive results, leading us to think that we are working in the

right direction.

There is still quite a lot of future work to be done. The user

interface of the tool is being improved based on the feedback from

the first evaluation. One specific complex issue is the generation

of an HTML report. In the current version, the report is too big to

be useful. In addition, we plan to add the function of generating

semantic EARL-based reports that could be used by other tools.

Other future work is related to adding more automated tests

(which are easy to incorporate as each test is programmed as a

JavaScript function) and updating the tool as soon as new

techniques and failures are published by the W3C.

ACKNOWLEDGMENTS
We would like to acknowledge work by Carlos Núñez on

implementing the current prototype of Hera FFX for WCAG 2.0.

REFERENCES
[1] Alonso, F., Fuertes, J. L., González, Á. L., and Martínez, L.

2010. On the testability of WCAG 2.0 for beginners. In

Proceedings of the International Cross-Disciplinary

Conference on Web Accessibility (W4A2010). (Raleigh,

USA, April 2010). DOI=

http://dx.doi.org/10.1145/1805986.1806000.

[2] Alonso, F., Fuertes, J. L., González, Á. L., and Martínez, L.

2010. Using collaborative learning to teach WCAG 2.0.

0 50 100

1.1.1 Non text content

1.2.1 Audio-only and Video-only

1.2.2 Captions

1.2.3 Audio Description

1.3.1 Info and Relationships

1.3.2 Meaningful Sequence

1.3.3 Sensory Characteristics

1.4.1 Use of Color

1.4.2 Audio Control

2.1.1 Keyboard

2.1.2 No Keyboard Trap

2.2.1 Timing Adjustable

2.2.2 Pause, Stop, Hide

2.3.1 Three Flashes

2.4.1 Bypass Blocks

2.4.2 Page Titled

2.4.3 Focus Order

2.4.4 Link Purpose

3.1.1 Language of Page

3.2.1 On Focus

3.2.2 On Input

3.3.1 Error Identification

3.3.2 Labels or Instructions

4.1.1 Parsing

4.1.2 Name, Role, Value

ATHENS 2009 ATHENS 2010 MUSS

Lecture Notes in Computer Science 6179 (July 2010), 400-

403.

[3] Benavídez, C., Fuertes, J. L., Gutiérrez, E., and Martínez, L.

2006. Teaching Web Accessibility with “Contramano” and

Hera. Lecture Notes in Computer Science 4061 (July 2006),

341-348.

[4] Benavídez, C., Fuertes, J. L., Gutiérrez, E., and Martínez, L.

2006. Semi-Automatic Evaluation of Web Accessibility with

HERA 2.0. Lecture Notes in Computer Science 4061 (July

2006), 199-206.

[5] Brajnik, G. 2009. Validity and Reliability of Web

Accessibility Guidelines. In Proceedings of ASSETS’09

(Pittsburgh, Pennsylvania, USA, October 25 - 28, 2009).

ACM Press. 131-138. DOI=

http://dx.doi.org/10.1145/1639642.1639666.

[6] Brajnik, G., Yesilada, Y., and Harper, S. 2010. Testability

and Validity of WCAG 2.0: The Expertise Effect.

Proceedings of ASSETS’10 (Orlando, Florida, USA, October

25 - 27, 2010). ACM Press 2010. 43-50. DOI=

http://dx.doi.org/10.1145/1878803.1878813.

[7] Caldwell, B., Cooper, M., Reid, L. G., and Vanderheiden, G.

(eds). 2008. Web Content Accessibility Guidelines 2.0.

World Wide Web Consortium Recommendation (December

2008). http://www.w3.org/TR/WCAG20/.

[8] Chisholm, W., Vanderheiden, G., and Jacobs, I. (eds.) 1999.

Web Content Accessibility Guidelines 1.0. World Wide Web

Consortium Recommendation (May 1999).

http://www.w3.org/TR/WCAG10.

[9] Cooper, M.; Reid, L.G.; Vanderheiden, G. and Caldwell, B.

(eds.) 2010. Techniques for WCAG 2.0. Techniques and

Failures for Web Content Accessibility Guidelines 2.0. W3C

Working Group Note (October 2010)

http://www.w3.org/TR/WCAG20-TECHS/.

[10] CTIC Foundation. 2011. TAW 3.

http://tawdis.net/index.html?lang=en.

[11] Deque Systems. 2011. Worldspace FireEyes.

http://www.deque.com/products/worldspace-fireeyes

[12] Fuertes, J. L., González, R., Gutiérrez, E., and Martínez, L.

2009. Hera-FFX: a Firefox add-on for semi-automatic web

accessibility evaluation. In Proceedings of the International

Cross-Disciplinary Conference on Web Accessibility

(W4A2009) (Madrid, Spain, April 2009). 26-35. DOI=

http://dx.doi.org/10.1145/1535654.1535661.

[13] Gay, G., Qi Li, C. 2010. AChecker: open, interactive,

customizable, web accessibility checking. In Proceedings of

the International Cross-Disciplinary Conference on Web

Accessibility (W4A2010) . (Raleigh, USA, April 2010).

DOI= http://dx.doi.org/10.1145/1805986.1806019.

[14] Sidar Foundation. 2011. Fundación Sidar - Acceso Universal,

Seminario SIDAR (in Spanish). http://www.sidar.org/.

[15] Total Validator. 2011. http://totalvalidator.com/.

[16] World Wide Web Consortium. 2010. Evaluating Web Sites

for Accessibility: Overview.

http://www.w3.org/WAI/eval/Overview.html.

	3. THE NEED FOR REDESIGN
	4. THE NEW HERA-FXX
	5. EVALUATION
	6. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

