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Motivation

Multibody systems incorporating discrete viscoelastic elements.
Example: vehicle shock absorber devices, spatial mechanisms,
etc.

m1 m2

λ

γ

Temperature effects
I Heat generated by viscous dissipation can flow to the environment

and/or change the temperature of the element itself
I Damping and stiffness may depend on temperature
I Thermal expansion
I ...
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Formulation
Positions: q1,q2

Length: λ = |q1 − q2|
Viscous stretch: γ

Element temperature: θ

Ambient temperature: θr
(constant)

m1 m2

λ

γ

Free energy function 1 :

ψ(λ, γ, θ) = ψ∞(λ, θ) + Γ(λ, γ, θ)

Legendre transform: ψ(λ, γ, θ)→ e(λ, γ, s)

with s = −∂ ψ(λ, γ, θ)

∂ θ
→ θ = θ̂(λ, γ, s)

Internal energy:

e(λ, γ, s) = ψ(λ, γ, θ̂(λ, γ, s)) + θ̂(λ, γ, s)s

1
Holzapfel, G. and Simo, J.C. A new viscoelastic constitutive model for continuous media at finite thermomechanical

changes. IJSS, 33(20-22):3019-3034, 1996
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Formulation

Evolution equations in entropy form

q̇1 =
1

m1
p1

q̇2 =
1

m2
p2

ṗ1 = −f q1 − q2

λ

ṗ2 = −f q2 − q1

λ

γ̇ =
1

η
g

ṡ =
1

θ

(
g2

η
− h

)
with

f =
∂ e

∂ λ
, g = − ∂ e

∂ γ
, θ =

∂ e

∂ s
, h = c(θ − θr)

damping of dashpot: η(θ) thermal conductivity: c > 0
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Formulation
This continuous mathematical model satisfies:

Non-negative dissipation (Clausius-Plank) condition:

D = fλ̇− ψ̇ − sθ̇ = g2/η ≥ 0

First law of thermodynamics: total energy of a closed system
(element + ambient) must be constant
Second law of thermodynamics: total entropy of a closed system
(element + ambient) must not decrease.
Symmetries: Conservation of linear and angular momentum
(under free motion)

We say that a discrete model that satisfies the previous relations is
thermodinamically consistent

Standard time integration methods may not be thermodinamically
consistent for moderate time steps.
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Numerical experiment
Standard integrator (midpoint rule)

Single particle with mass m connected by a thermoviscoelastic
element with length 1 m to a fixed point in space.

∆t = 0.2 s
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Numerical experiment
Standard integrator (midpoint rule)

∆t = 0.2 s-0.01
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Numerical experiment
Standard integrator (midpoint rule)

∆t = 0.2 s
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Objective and methodology

Objective: For discrete thermoelastic elements, define a time
integration scheme accurate and thermodinamically consistent

Expected superior stability and long term accuracy compared
standard integrators.

Methodology: Geometric or structure preserving integrator.
(warning: non Hamiltonian system ! )
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Methodology

Hamiltonian systems
−→ Hamilton equations (ż = J∇H)

−→ Energy-Momentum methods

Non-Hamiltonian systems
−→ GENERIC 2 (ż = L∇E + M∇S)

−→ Energy-Entropy-Momentum methods 3

First time applied to a dissipative system with internal variables.

2Ottinger, H. Beyond equilibrium thermodynamics. Wiley, 2005
3Romero, I. Thermodynamically consistent time-stepping algorithms for non-linear

thermomechanical systems. IJNME, 79(706-732), 2009
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Energy-Entropy-Momentum (EEM)

Discrete derivative operator. 4 in a partitioned case, for a smooth
f : RN → R:

Df(x,y) · u =

N∑
i=1

Dif(xi, yi) · ui , for x,y ∈ RN ,u ∈ RN

verifying:

Directionality Df(x,y) · (y − x) = f(y)− f(x)

Consistency Df(x,y) = Df

(
x + y

2

)
+ O(||y − x||)

Operator D denotes the standard derivative.

4González, O. Design and analysis of conserving integrators for nonlinear hamiltonian
systems with symmetry. PhD Thesis, Stanford Univ., Dep. of Mechanical Engineering (1996)
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EEM scheme

q̇1 =
1

m1
p1

q̇2 =
1

m2
p2

ṗ1 = −f
q1 − q2

λ

ṗ2 = −f
q2 − q1

λ

γ̇ =
1

η
g

ṡ =
1

θ

(
g2

η
− h
)

−→

q1,n+1 − q1,n

∆t
=

1

m1
p1,n+1/2

q2,n+1 − q2,n

∆t
=

1

m2
p2,n+1/2

p1,n+1 − p1,n

∆t
= −f∗

(q1 − q2)n+1/2

λn+1/2

p2,n+1 − p2,n

∆t
= −f∗

(q2 − q1)n+1/2

λn+1/2

γn+1 − γn
∆t

=
1

η∗
g∗

sn+1 − sn
∆t

=
1

θ∗

(
g∗

2

η∗
− h∗

)
with

f = ∂e/∂λ

g = −∂e/∂γ
θ = ∂e/∂s

−→
f∗ = Dλe(λn, λn+1)

g∗ = −Dγe(γn, γn+1)

θ∗ = Dse(sn, sn+1)

and η = η(θ) , h = c(θ − θr) −→ η∗ = η(θ∗) , h∗ = c(θ∗ − θr)

J.C. García, I. Romero (UPM) Thermoviscoelastic elements MBD 2011 12 / 24



EEM Scheme

A closer look at the partitioned discrete derivative:

Dλe(λn, λn+1) =
e(λn+1, γn+1, sn+1)− e(λn, γn+1, sn+1)

2(λn+1 − λn)

+
e(λn+1, γn, sn)− e(λn, γn, sn)

2(λn+1 − λn)

Dγe(γn, γn+1) = ...

Dse(sn, sn+1) = ...
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EEM Scheme
It can be shown that this scheme satisfies:

Non-negative viscous dissipation: Dn = g2
n/ηn ≥ 0 , ∀n

First law of thermodynamics in discrete form: En+1 − En = 0

with E =
1

2m1
p2

1 +
1

2m2
p2

2 + e(λ(q1,q2), γ, s) + σθr

Second law of thermodynamics in discrete form: Sn+1 − Sn ≥ 0

with S = s+ σ

Symmetries: linear and angular momentum (under free motion):
Ln+1 − Ln = 0 , Jn+1 − Jn = 0

with L = p1 + p2 and J = q1 × p1 + q2 × p2
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Numerical experiment
EEM vs. midpoint

∆t = 0,2 s
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Numerical experiment
EEM vs. midpoint

∆t = 0,2 s

Midpoint

-0.01

0

0.01

0.02

0.03

0.04

0 5 10 15 20

γ
(m

)

Time (s)

EEM

-0.02

Midpoint

280

300

320

340

360

380

0 5 10 15 20
θ

(K
)

Time (s)

EEM

260

Viscous stretch (γ) vs. time Temperature (θ) vs. time

J.C. García, I. Romero (UPM) Thermoviscoelastic elements MBD 2011 16 / 24



Numerical experiment
EEM vs. midpoint
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Application: satellite maneuver

(a) Upper view, showing the
rockets R1 and R2

(b) Lower view, showing the
hinges of the right solar panel

with the satellite body.
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Application: satellite maneuver
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Figura: Angular momentum vs. time. EEM, ∆t = 0,2 s
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Application: satellite maneuver
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Figura: Energy vs. time. EEM, ∆t = 0,2 s
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Application: satellite maneuver
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Application: satellite maneuver

Stiffeners 5,6,7,8
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Figura: Stiffeners’ temperature vs. time. EEM, ∆t = 0,2 s
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Conclusions

Presented novel procedure to represent the nonlinear dynamics of
a discrete viscoelastic element with temperature effects
Large displacements, non-linear elastic behaviour and
temperature-dependent mechanical properties
Energy-entropy-momentum method: complies with first and
second law of thermodynamics in a discrete form and preserves
symmetries.
First time applied to a dissipative system with internal variables.
Numerical experiments suggest that proposed method possesses
superior stability compared to typical implicit methods
It can be integrated in a standard multibody package.
Already working on a infinite dimensional case
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