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Abstract 

A novel time integration scheme is presented for the numerical solution of 
the dynamics of discrete systems consisting of point masses and thermo-
visco-elastic springs. Even considering fully coupled constitutive laws for the 
elements, the obtained solutions strictly preserve the two laws of thermody-
namics and the symmetries of the continuum evolution equations. Moreover, 
the unconditional control over the energy and the entropy growth have the 
effect of stabilizing the numerical solution, allowing the use of larger time 
steps than those suitable for comparable implicit algorithms. Proofs for 
these claims are provided in the article as well as numerical examples that 
illustrate the performance of the method. 
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1. Introduction 

Enormous efforts have been devoted in the last decades to the develop-
ment of accurate and robust time integration methods for general evolution 
equations, and in particular in Mechanics. Even though conserving problems 
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have attracted most of the attention in this respect (see, for example the re­
cent monograph Leimkuhler and Reich (2004)), general dissipative problems 
are obviously extremely relevant. 

With regards to accuracy, even the classical texts devoted to initial valué 
problems (e.g., Richtmyer and Morton (1967); Gear (1971)) identified and 
analyzed the concept of "order of accuracy". However, it was later realized 
that methods with low order of accuracy could provide more precise solutions 
that higher order methods, especially in long term simulations. Whereas the 
"order of accuracy" is a well defined property of a discretization scheme, the 
real "accuracy" is a more elusive concept that requires further analysis. In 
relation to this, results obtained in the last two decades have concluded that 
integration schemes which are capable of preserving (part of) the qualitative 
features of the evolution problem they are meant to approximate are often 
extremely accurate in long term simulations (Hairer et al., 2002). For exam­
ple, the use of symplectic methods has become widespread for Hamiltonian 
problems (Sanz-Serna and Calvo, 1994). For this type of problems, ubiq-
uitous in Mechanics, Energy and Momentum conserving methods (Labudde 
and Greenspan, 1976a,b; Simó and Tarnow, 1992; Simó et al., 1992; González, 
2000) have also become widely employed. 

Structure preserving algorithms, as this type of methods are known, not 
only are remarkably accurate but are robust too. In particular, Energy and 
Momentum conserving methods control the growth of the numerical solution 
(and its perturbations) resulting in extremely stable methods which can often 
employ time step sizes one order of magnitude larger than comparable im-
plicit methods. This statement is well documented in the literature and early 
numerical evidence for it can be found, for example, in (Simó and Tarnow, 
1992; Simó et al., 1992; Simo and Tarnow, 1994; González and Simó, 1996). 

Most energy conserving methods are second-order accurate. However if 
higher order accuracy is required, as for example in certain wave propagation 
problems, conserving methods with higher orders of accuracy can be obtained 
using composition, as in (Tarnow and Simo (1994)), or using space-time 
formulations (see Grofi et al. (2005)). Bounded energy growth, and high 
frequency algorithmic dissipation, can be simultaneously obtained by using 
Energy Dissipative, Momentum Conserving methods (Armero and Romero, 
2001a,b; Romero and Armero, 2000; Armero and Romero, 2003). In this 
way, not only structural damping is represented in an acceptable way, but 
all the benefits of energy control and discrete conservation are preserved. 
This is an important extensión of conserving methods and time integration 



methods that preserve momenta, control the energy growth, and possess high 
frequency artificial dissipation have been proposed by many authors (Kuhl 
and Ramm, 1996; Botasso and Borri, 1997; Bauchau and Bottasso, 1999; 
Kuhl and Crisfield, 1999; Bottasso et a l , 2001; Borri et al., 2001). 

These two properties of structure preserving methods, namely enhanced 
accuracy in long term simulations and robustness, have made them very 
popular in Computational Mechanics. Moreover, their use in Multibody 
System Dynamics has also increased during the last years (García Orden 
and Goicolea, 2000, 2005; Betsch and Uhlar, 2007), in this case motivated by 
their excellent performance integrating systems with constraints. 

In view of the success of structure preserving methods for conservative 
problems there is now interest in extending them to dissipative problems. In 
particular, several recent works have tried to broaden the ideas of the Energy-
Momentum methods to specific dissipative methods such as frictional con-
tact (Ortiz et al., 2000), plasticity (Meng and Laursen, 2002), viscoelasticity 
(Grofi and Betsch, 2010), etc. To the authors' knowledge, the first attempt 
to systematically generalize Energy-Momentum to dissipative problems has 
been presented in (Romero, 2009, 2010b,a). In these works, a general method­
ology was presented that allows the formulation of time integration methods 
that strictly preserve the two laws of thermodynamics, as well as the sym-
metries, for general thermomechanical problems. Starting from a GENERIC 
reformulation of the evolution equations (Ottinger, 2005), they describe a 
general methodology for the design of structure preserving discretization of 
dissipative evolution equations. Part of the formulation process is based on 
the ideas of the Energy-Momentum method and the resulting algorithms 
share with the later some of the appealing features discussed above which 
derive from the preservation of structure. 

In the present article we formúlate, analyze, and implement Energy-
Entropy-Momentum methods for discrete thermo-visco-elastic elements fol-
lowing the same ideas alluded to above. In the present case, the conserv-
ing/dissipative structure of the equations is relatively simple and one does 
not need to appeal to the underlying GENERIC formalism in order to split 
the evolution operators. 

The thermo-visco-elastic elements are generalized discrete standard mod-
els in which the elastic and viscoelastic response is fully coupled with the 
temperature and serve as testbed for the development of numerical meth­
ods for more complex, three dimensional, thermo-visco-elastic material mod-
els. Also, these simplified discrete elements have interesting applications in 
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Figure 1: Thermo-visco-elastic element. 

niultibody dynamics. For example, the correct treatnient of the thermal and 
viscous effects in dampers can be very important when modeling shock ab­
sorbere of vehicles traveling on rough surfaces (Lion and Loóse, 2002). The 
proposed methods not only provide the correct and nieaningful energy bal­
ance for the system but show, as expected, excellent robustness as compared 
with standard implicit methods. We must stress that the added stability 
is obtained without any artificial numerical damping which, although com-
monly used for niultibody applications, often has the effect of breaking the 
symmetries of the problem and spoiling, for example, the conservation of 
angular momentum (Armero and Romero, 2001a). 

The rest of the article is organized in the following way. In Section 2 
the governing equations of the discrete thermo-visco-elastic element are pre-
sented. They are based on the finite strain thermo-visco-elastic model pro­
posed in (Holzapfel and Simó, 1996) and are shown to be consistent with 
the two laws of thermodynamics. Then, a numerical method for integrating 
these equations is presented in Section 3. The algorithm preserves the funda­
mental laws identified in the continuum model as well as possible symmetries 
in the equations. The numerical examples of Section 4 serve to illustrate the 
conservation/dissipation features of the new method and compare it with 
standard implicit methods. The article closes with a summary of results in 
Section 5. 



2. The discrete thermo-visco-elast ic model 

In this section we formúlate the dynamic equations of a single discrete 
thermo-visco-elastic element, verifying that such evolution equations comply 
with the two laws of thermodynamics. 

For that , consider an element such as the one depicted in Figure 1 con-
sisting of one thermoelastic spring Si in parallel with another thermoelastic 
spring 5*2, this one in series with a thermo-viscous dashpot D. This is the sim-
plest generalization of the standard solid element that encompasses thermal 
coupling. Simpler models might be obtained by restricting, for example, the 
thermal coupling to the viscous element. Moreover, by setting the viscosity 
to zero one recovers the simpler discrete thermoelastic element. 

At each of the two ends of the element, a point mass of valué ma is placed 
(a = 1,2). If the position at time t of each of these masses is denoted q«(í), 
then the corresponding momenta is p a = maqa, where the superposed dot 
indicates the time derivative. We consider also the possibility of external 
forces ía acting on each of the point masses. The temperature of the whole 
element is assumed to be unique and denoted by 9, the length of the element 
is A = |qi — q2 | and the stretch of the dashpot is denoted by 7. Infernal heat 
flow is not considered, and the environment is considered to be a thermal 
reservoir at constant temperature. 

To completely define the thermodynamic state of the element we propose 
the following free energy function 

^X,9n) = ^(X,9) + T(X,9n). (1) 

The functions ÍJJ°° and V represent, respectively, the free energy of the spring 
Si in Figure 1 and the Maxwell element consisting of S2 and D. Following 
the ideas presented in (Holzapfel and Simó, 1996) we restrict the functional 
form of the free energy V to be 

T(x,erf) = p^(x,e) + f,(e)1
2-p1

dtljC<
d

{^e) . (2) 

with (3 > 0,/j, > 0. The basic motivation of selecting and presenting the 
specific format of the free energy function given by expressions (1) and (2) is 
to early introduce a model that has a direct rheological interpretation that 
may prove helpful to devise applications to real spring-damper assemblies. 

From the general expression (1), the total infernal forcé / , the forcé g 
due to the dashpot, and the entropy s of the element can be calculated by 



the expressions: 

dip dip dip 
/ = d A ' 9 = -j^r s = ~Je- (3) 

The equation of balance of linear momentum can be stated, for each mass, 
as 

ó q« d A d q„ d q« 

The last balance law to be considered is the balance of energy of the 
element. Let h be the heat flowing out of the element into the environment 
and e = tp + 9s be its internal energy. Then, the balance of energy states 
that the power / A exerted on the element is employed to change its internal 
energy or transferred into the environment through heat: 

/Á = é + h = ^ Á + ^ í + ^ 7 + 9. + W + fc. (5) 
dA aO oj 

Using the definitions (3), the balance of energy can be simplified to 

9s = gAf — h . (6) 

To cióse the equations that define the response of the element, an evo-
lution equation of the viscous deformation must be given. The simplest one 
is 

j = -g (7) 
V 

where r¡ = 2¡IT is the viscosity of the dashpot, and r is a relaxation time. 
To summarize, the complete set of evolution equations of the thermo-visco-
elastic element is 

. _ 1 
4 a Pa > 

dq, 
1 

i = -g v 

/ # ^ + f«, 
(8) 

-h 
V 

We check that the discrete model defined by equations (1) to (8) satisfies 
the entropy production inequality in the Clausius-Plank form. This amounts 



V = f\-ip-s6 

-fX~d\x~Jee~ 
= 91 

1 2 
= ~9 , 

V 

dtfj. 

to the requirement that the dissipation V = f\—rip—s0 must be non-negative. 
Using the chain rule and the equations of the model we find that 

s6 

(9) 

which is non-negative and, moreover, vanishes only when the viscous forcé is 
zero. 

2.1. The first law of thermodynamics 
The first law of thermodynamics postulates that the power supplied to a 

system (either by mechanical or thermal means) is employed in changing its 
total energy (internal plus kinetic). We verify next that the model previously 
defined is consistent with this fundamental principie. 

For a thermo-visco-elastic element possibly connected to other mechanical 
systems, the power exerted by forces acting on it and the thermal power 
received are defined, respectively as: 

2 

-'mee / y '-a ' Si 
C í = l 

Pth = -h . 

a Ha, ( 1 Q ) 

The total energy of the same element is E = K + e, the sum of the internal 
energy e, previously defined, and the kinetic energy 

K = -Y-^-^ (11) 
a=\ 

With this notation, the first law of thermodynamics reads 

Pmec + Pth = É. (12) 

Using the definitions of the kinetic and internal energies, the time deriva-
tive of the total energy can be calculated: 



Employing the definitions of momentum, internal forcé, entropy, forcé in the 
dashpot, and the chain rule, the previous equation simplifies to 

2 2 d A 2 / d W 
É = ^2éloc-Pa + ̂ 2f^ qa-g

Af+s6 = Y^ P« + / ^ — j-cía-h, (14) 
«=i «=i o q " «=i V a^J 

which, in view of equation (8)2, amounts precisely to the sum of the external 
power supplied to element, proving the satisfaction of the first law. 

2.2. The second law of thermodynamics 

We next verify that system consisting of the element and the environment 
possess an non-decreasing entropy. In this work we only consider thermal 
exchange between thermo-visco-elastic elements and the environment, and 
thus it is unnecessary to study the entropy generated by heat conduction 
among possible interconnected mechanical elements. 

In what follows, the environment is considered to be a thermal reservoir 
at constant temperature 9r. The total entropy S at time t of the system 
consisting of a thermo-visco-elastic element and the reservoir is defined to be 

/"* h 
S = s+ - d i . (15) 

In addition to the evolution equations (8), the heat conduction between the 
mechanical element and the environment must be governed by an additional 
equation which we postúlate to be 

h = c(9- 6r) , (16) 

with c > 0 being the thermal conductivity between the element and the envi­
ronment. Different constants allow to consider different thermal insulations 
for the elements in the system. 

The rate of change of the total entropy can be calculated using (8)4 and 
(16) 

h g2 , / 1 1 \ 92 c s = i + T, = ,e + h{<rr-e)=íi + Wr<-,,'-e) • <17) 

which is always non-negative, henee proving the second law of thermody­
namics. We emphasize that this proof can be trivially extended to the case 
with several thermo-visco-elastic elements, since each of them exchanges heat 
with the environment independently. 



2.3. Symmetries 

Noether's theorem indicates that every mechanical system has a con-
servation law for each symmetry on its evolution equations. In the system 
studied in this section, translational and rotational symmetries might appear 
and the corresponding conserved quantities would be the linear and angular 
momentum, defined respectively as 

2 2 

L = ^ P « , J = ^ q a x p « . (18) 

The classical results concerning the conservation of these momenta in the 
situations in which the resultant forcé and torque vanish, are valid for the 
proposed model. The proofs are omitted. 

In this section we have formulation a model for a thermo-visco-elastic 
system that satisfies the laws of thermodynamics and exhibits additional 
conservation laws resulting from the symmetries of the equations. The evo­
lution equations (8) can be solved numerically to intégrate the state variables 
q«, Pa, 9,7 in time. Instead of employing standard methods for this task we 
propose in the next section a novel time integration scheme that preserves 
all these qualitative features of the model. 

3. Consistent integration: energy-entropy method 

In this section we develop a numerical method to integration the system of 
ordinary differential equations 8. The salient feature of the proposed method 
is that it preserves all the conservation laws identified in Section 2. 

The point of departure for obtaining the set of discrete evolution equa­
tions is to express (8) in entropy form. In order to do that, we apply the 
Legendre transformation to the free energy function íf;(X,j,9) with respect 
to the temperature 9. The conjugated variable is the entropy s and the 
transformed function is the infernal energy function e(A,7, s): 

5^ (A,7 ,0 ) 
89 

e(A,7,s) = ^(A,7,0(A,7,s) ) + 0(A, 7 , s ) s , (19) 

where 9(X,j, s) is the temperature function obtained by the inversión of 
(19)i. Either by applying the properties of the Legendre transform or just 
by using relations (3), it is follows that: 

de de n de . . 
oX 0 7 os 



A key ingredient of the formulation is the use of the díscrete derívatíve 
in a partitioned introduced in (González, 1996). For our purposes, 
let us consider a smooth function / : E w —• IR with N > 1. A second-order 
accurate discrete derivative D / : RN x RN —• RN is defined by: 

N 

Df(x,y)-u = Y,Vif(xi,yi)-Ui, (21) 
í=i 

where x,y E E w and u E E w . The terms Dlf(xi,yi) may be interpreted as 
approximations to the partial derivatives of / respect to the z-th variable. 
Df(x, y) satisfies the directionality and consistency conditions of the discrete 
derivative, namely: 

D / ( a j , y ) - ( y - a j ) = / ( y ) - / ( a j ) (22) 

Df(x, y) = Df {^^j +0(\y-x\2), (23) 

for all x,y E RN. The operator D in (23) denotes the standard derivative. 
One of the properties of the discrete derivative that is employed in what 
follows is a discrete versión of the chain rule. As proved in (González, 1996, 
pg 75), given functions / : RN ->• E, / : E M ->• E, and vr : RN ->• E M , with 
N > M and / = / °7r, then if ir is at most of degree two, the following chain 
rule applies: 

Df(x,y) = Dn(^±y-)TDf(n(x)My)) • (24) 

We consider next the formulation of a time-stepping scheme for the evo-
lution equations (8) in a time interval [0, T]. For that, we consider a partition 
of the integration interval into subintervals of the form (tn,tn+\) of length 
Atn = tn+\ — tn which, for simplicity, is assumed to be constant and denoted 
simply as Ai. Then the proposed time integration method is given by the 



q2 

P I 

P 2 : 

Ai 
,ra+l — 

Ai 

,n+l ~ 

At 

,ra+l ~~ 

Ai 

ln+l • 

cl2,ra 

P l , n 

P2,ra 

~ln 

At 

Sn+l " Sn 

algebraic system of equations: 

q i , n + i — q i , n _ 1 
— Pl,ra+l/2 

1 
— P2,ra+l/2 

_ <•* (^1 ~ q2)ra+l/2 2 

- - / — * + tl 
^ra+1/2 

, * ( q 2 - q i W i / 2 . ~f (2 5) 
— - / x h 12 

An+1/2 

= -g* 
rj* 

= ±(g--h-
At 9* \ r¡* 

where Xn+i/2 = |qi,n+i/2 - q2,n+i/2| and (-)n+l/2 = \{-)n + §0)n+i-
The terms fi and í2 are second-order approximations of the external forces 

at the corresponding nodes, and the terms f*,g* and 9* are second-order 
discrete approximations of the total internal forcé, the dashpot forcé and the 
temperature, respectively, given by: 

/* = DAe(Ara,Ara+1) , 

#* = -DM7n,7n+i ) , (26) 
9* = Dse(sn,sn+1) . 

The terms related to viscosity and heat conduction are: 

rf = r¡(6*) , h* = c(9* - 9r) . (27) 

Note the parahehsm between the continuous expressions (20) and their dis­
crete counterparts (26). 

Elaborated expressions for (26) can be obtained according to (González, 
1996, pg 75), resulting in: 



D7e(7n,7n+i) = 

r\\ f\ \ \ _ e(^n+l,ln+l, S
n+l ) - e ( A 

ni ln+l, Sn+l) 
u e^Ara, Ara+iJ — — r— 

¿\^n+l — ^n) 

e(Ara+i, 7ra, sn) - e(Xn, j n , sn) 

2(Ara+i — Xn) 

e(A 
ni ln+l i s

n+l ) - e ( A 
ni Ini Sn+l) 

2(7n+l - ln) 
e(A ra+i,7 ra+i, sn) — e(Ara+i,7ra, sn) 

2(7n+i - ln) 
e(A ) -e(Xn,ln,sn) 
e(A ra+i,7 ra+i, sn+i) — e(A ra+i,7 ra+i, sn) 

(28) 

Dse(^n,sn+i) = 

¿\S'n+l Sn) 

ln the limit case Xn+i = Xn,^n+i = ln and sn+i = sn, the previous discrete 
derivatives simplify to: 

DAe(Ara,Ara) = - [-DAe(Ara,7ra+i,sra+i) + Dxe(Xn,jn, sn)] 

D7e(7ra,7ra) = - [JD
7e(Ara,7ra,sra+i) + D1 e(Xn+i^m sn)} (2 9) 

Dse(sn,sn) = - [Dse(Xnrfn,sn) + Dse(Xn+i, 7n+l, sn)] 

ln the next sections it will be shown that the time stepping (25) exactly 
satisfies the first and second laws of thermodynamics in a discrete form. 

3.1. The first law of thermodynamics in discrete form 

The discrete versión of the first law states that the balance of external 
work (niechanical or thermal) equals the balance of total energy (internal 
plus kinetic) in a time step for the element. We verify next that the model 
previously defined is consistent with this fundamental principie. 

In order to check this assertion, let us denote by z = (qi, q2, Pi, P2,7, s) 
the element state and introduce the notation: 

DV(vra,Vra+1) = (DVí(vltn,Vltn+l),....,DVN(vNtn,VNtn+l)) , (30) 

for v = (vu...,vN) ERN. 



The balance of total energy of the element, based on the directionality 
property (22) of the discrete derivative in the partitioned case (21) reads: 

En+l ~ En = DE[Zn, Zn^\) • \Zn^\ — Zn) 

= D q i £ ( q 1 ) r a , q 1 ) r a + 1 ) • ( q i ; í l + i - q i ; í l ) 

+ D q 2 £ ; ( q 2 ) r a , q 2 , n + l ) • (q2,n+l - q2,n) 

+ D P l £ ; ( p i ; í l , P l , n + l ) • (P l ,n+1 - P l , n ) (31) 

+ D P 2 £ ; ( p 2 ) r a , P 2 , n + l ) • (P2,n+1 ~ P2,n) 

+ D7£;(7ra,7ra+i) • (7„+i - 7„) 

+ DsE(sn, sn+i) • (sn+í - sn) 

Taking into consideration the expression for the total energy E = K + e, 
rewritten here in order to highlight the dependence on the different terms on 
the state variables, we have: 

£ = ¿ p 5 + ¿ r í + e(A(q-q2)'7-s)- (32) 

The different terms of the previous expression may be further elaborated 
using the definition of the discrete derivative and the chain rule (24): 

n q i P / \ r\\ (\ \ \ ( q i ~~ Cl2)ra+l/2 
Dq i£;(qi ) r a ,qi ) r a+i) = D e(Ara,Ara+i)-

An+l/2 

_ p (^1 ~ q2)ra+l/2 

Ari+1/2 

Dq2£(q2) r a ,q2) r a+1) = DAe(Ara,Ara+1) 

= / 

\ „ , \ ^ N ( q 2 - q i W i / 2 

Ari+1/2 

* ( q 2 — qi) ra+l /2 

A. ra+1/2 

Pin+l/2 
DP^(p 1 ) r a ,p 1 ; r a + 1 ) = ^ ± ^ (33) 

DP 2£(p2 ) r a ,p2 ) í l + 1) = 
P2n+l/2 

mi 

D7£;(7ra,7ra+1) = D7e(7ra,7ra+i) = -g* 

DsE(sn,sn+i) = Dse(sra,sra+i) = 9* 



Further manipulation of relations (31) using (33) and the discrete evolution 
equations (25) leads to: 

I? T? —(t P i , n + i — P l , n \ / x 
&n+l — &n — I II TT I ' i q i , n + l — Ql.riJ 

P2,ra+1 — P2,ra i / s 
(q2,ra+l — Cl2,rjJ Ai 

qi,n+i - qi,n 

Ai 
Cl2,ra+1 — q2,ra 

Ai 

• (Pl,ra+1 — Pl,ra) 

' (P2,ra+1 — P2,ra) 

= fi • (qi)ra+i - qi,„) + f2 • (q2,n+i - q2,n) ~h*At, (34) 

which proves the second-order approximation of the energy balance of the 
element. 

An alternative result can be obtained applying the first law to the entire 
system (element plus the environment). In this case, the first principie states 
that the time derivative of the total energy is just the external mechanical 
power supplied to the system. The discrete versión of this result is obtained 
considering the following discrete evolution equation for the ambient entropy 
a: 

Cra+l — &n h* 

~^r~ = rr'
 (35) 

with h* given by expression (27)2. Using this equation, the ambient energy 
balance results: 

Ktl ~ Enmb = 0r{On+l ~ On) = h* At , (36) 

and employing (34) is immediately obtained that the energy balance equals 
the external mechanical work. A corollary of this result is that the total 
discrete energy is exactly constant provided that the external forces vanish. 

3.2. The second law of thermodynamics in discrete forín 

We must verify that the discrete total entropy of the system never de-
creases. Using the discrete evolution equations (25) and (35), the balance of 



total entropy results in: 

Ai (g*2 \ Ath* 

which is non-negative provided that relation (27)2 is verified. 

5.5. Discrete symmetries 
Finally, it is possible to prove that the discrete scheme possesses the 

translational and rotational symmetries of the continuous evolution problem. 
Let us denote by f* the consistent internal forcé of the element, given by: 

An+1/2 

Taking into account the relations (25)3,4, the balance of linear momentum 
results: 

2 2 

Ln+1-Ln = Y,(Pa,n+l-Pa,n) = A i [ ( - f * + f i ) + (f* + f 2 ) ] = A i J ] f« , 

(39) 
which proves the exact conservation of the linear momentum for a force-free 
motion. 

On the other hand, a convenient point of departure for the evaluation of 
the angular momentum balance is the following expression: 

2 

Jra+l — Jra = 2_^ |_Cla,'«+l/2 X (Pa ,n+1 — Pa,ra)J ~~ |_Pa,ra+l/2 X \<ia,n+l ~ <!«,«)] • 

(40) 

Using expressions (25)1,2 is immediately verified that pa,ra+i/2 x (qa>n+i — 
<ia,n) = 0 for a = 1, 2. Employing relations (40) and (25)3,4 with the defini-
tion (38) it follows that: 

2 

Jra+l — Jra = 2_^ Cla,'«+l/2 X (Pa,ra+1 — Pa,n) (41) 

2 

= Aí (q2 - qi) ra+1 /2 X f * + Ai Y^ q«,n+i/2 X f„ . (42) 
a = 0 



Finally, using the definition (38) it is verified that the first term of (42) 
vanishes and the exact conservation of angular momentum for a force-free 
motion is obtained. 

4. Numerical s imulations 

We consider in this section two representative simulations which will illus-
trate the performance of the proposed forniulation, comparing it with other 
standard integration schemes. 

4-1. Single partióle system 

Let us consider a mechanical system consisting of a particle of mass m 
connected by a thermo-visco-elastic element to a fixed point of space. The 
free energy of the main spring is given by: 

V>°°(A, 6) = ^ log2 A _ pc{e - 9r) log ± + C o ( e - e r - 9log £j , (43) 

where 9b is the ambient temperature, (3C is the thermo-elastic coupling pa­
rameter and CQ is the heat capacity. The format of the free energy function 
is taken from (Romero, 2009) and accounts for nonlinear (logarithmic) de-
formations, a thermomechanical Gough-Joule type coupling and dilatation 
in the first, second and third terms respectively. 

The term c\ is assumed to have a linear dependence with the tempera-
ture, given by C\{ff) = cw — Cu{6 — 9r), with cw,Cn > 0. The parameter 
¡i associated with the free energy function of the Maxwell element (2) is 
assumed to have also a linear dependence with the temperature, given by 
¡i{9) = fio — i¿i(6 — 9r), with fj,o,fj,\ > 0. Finally, parameter (3 in (2) is as­
sumed to relate the stiffness of the associated linear springs at the ambient 
temperature, ¡3 = 2fj,0/cw. 

The damping parameter r¡ of the damper is assumed to follow an expo-
nential law: 

r¡{9) = r^oexp 
1 1 

with ?7o, a > 0 . (44) 

The dependency of the damping with the temperature is very important for 
realistic simulations of some practical systems; for instance, for the accurate 
dynamical characterization of vehicles equipped with oil shock absorbers on 
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Figure 2: Trajectory 

long and rugged tracks. In this case, an increment of the shock absorber 
temperature produces a reduction of the oil viscosity, influencing the handling 
and comfort behavior. Experimental force/velocity curves in the literature of 
automotive shock absorbers (see, for example, Lion and Loóse (2002)) follow 
quite accurately exponential laws such as (44). 

The data employed in the simulation is m = 1 kg, X0 = 1 m, 9r = 300 
K, cío = 100 Nm, cn = 0.5 NmK"1 , (3C = 4 NmK"1 , c0 = 1 NmK"1 , ¡i0 = 5 
Nm"1 , ¡ix = 0.1 N m ^ K " 1 , 'q0 = 100 Nsm"1 , a = 10 K, c = 10 N m s ^ K " 1 . 
The motion is integrated up to 20 s with a constant time step size Ai = 0.2 
s and initial conditions: 

q0 = [3, 0] m , q0 = [0,1] m/s , 7 o = 0 m , 0O = 380 K . (45) 

The solution of the evolution equations in entropy form is obtained with 
three methods: the standard midpoint rule, the trapezoidal rule and the 
energy-entropy method (EEM). What is more, a reference solution is com-
puted with the midpoint rule and a timestep Atref = 0.005 s. Figure 2 shows 
the trajectory of the particle as obtained with all methods. The integration 
with the midpoint rule and the trapezoidal rule blows up at t = 14 s and 
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Figure 3: Length of the element A vs. time 

t = 15.7 s, respectively, but the consistent method correctly integrates the 
motion as it approaches a relative equilibrium. 

Figure 3 show the evolution of the length of the element (A), Figure 4 
the infernal variable (7) and Figure 5 the evolution of the temperature (9). 
All the curves associated with the midpoint integration show large oscilla­
tions developing long ahead the definitive blow up of the computation. On 
the other hand, the trapezoidal rule shows a smoother behavior but a more 
abrupt failure, with no warning. Figure 6 shows the evolution of the angular 
momentum, which is exactly constant for both the midpoint rule and the 
consistent integration, and totally erratic for the trapezoidal rule. Figures 7 
indicate that the failure of the midpoint integration is related with a positive 
growth of the total energy, violating the first law of thermodynamics. The 
same comment can be made about the trapezoidal rule. On the other hand, 
the consistent integrator produces a constant total energy, which exactly 
agrees with the behavior of the original evolution equations (8). 

Finally, Figure 8 shows the evolution of the total entropy. Both the 
midpoint and the trapezoidal rules produce a solution in which the total 
entropy apparently never decreases, although there are small oscillations in 
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its evolution. This quahtative feature can not be guaranteed and, in fact, 
does not hold when larger time step sizes are selected. 

Note that the failure of the midpoint rule documented in this example 
could be avoided reducing the integration time step. The apparent supe-
riority of the EEM is mainly related to stability, while exactly complying 
with the laws of thermodynamics and the symmetries of the original system, 
which improves the reliability of the obtained solution. 
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4-2. Satellite maneuver 

The second experiment simulates a maneuver of a satellite with flexible 
solar panels, with the model depicted in Figure 9. The body i s a l x l x l m 
cube with a mass of 500 kg, and each panel is 4 m long, 1 m wide and 0.1 m 
thick. Each panel is hinged to the satellite body by three smooth spherical 
joints and connected by four discrete thermo-visco-elastic elements, acting 
as stiffeners of the panels. 

(a) Upper view, showing the rockets 
Ri and R2 

(b) Lower view, showing the hinges 
of the right solar panel with the 

satellite body. 

Figure 9: Satellite model, showing the solar panels' hinges and the rockets 
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Figure 10: Rocket torces vs. time 

The satellite body is equipped with two rockets R\ and R2 that provides 
the necessary thrust to perform the maneuver, aimed to change of attitude 
of the satellite in 90°. The maneuver starts firing both rockets during 1 s, 
initiating a rotation of the whole satellite. After one and a half turn, the 



movement of the panels stabihzes and the rockets are fired again; this second 
firing takes place in the precise moment of time required to stop the rotation 
leaving the satellite with the new orientation. The time-dependent forces of 
the rockets are shown in Figure 10, and the motion is illustrated in Figure 
11. 



Figure 11: Snapshots of the maneuver (from top to bottom, left to right). Consistent 
integration, At = 0.2 s 



Both the satellite body and the panels are modeled with an homogeneous 
Saint Venant-Kirchhoff material. The material of the body has a density 
Pb = 500 kg/m3 , a Young modulus Eb = 1 GPa and Poisson coefficient 
Ub = 0.3. The panels have a density pp = 10 kg/m3 , a Young modulus 
Ep = 5000 Pa and a Poisson coefficient vv = 0.3. Eight-node hexahedral 
finite elements with a fully nonlinear geometrical forniulation are employed 
for both the body and the panels 

The parameters of the thermo-visco-elastic stiffeners are A0 = 1 m, 9r = 
300 K, cío = 100 Nm, c n = 0.5 NmK"1 , (3C = 4 NmK"1 , c0 = 1 NmK"1 , 
¡io = 5 Nm"1 , ¡ii = 0.1 N m - ' K " 1 , r¡0 = 100 Nsm"1 , a = 10 K. The ambient 
temperature is 0r = 10 K and the thermal conductivity is c = 20 Nms _ 1 K _ 1 . 

The motion obtained with the consistent integration of the dynamical 
equations is shown in Figure 11. The consistent formulation of the elastic 
parts of the system follows an energy-momentum scheme (Simó and Tarnow, 
1992; Simó et al., 1992; González, 2000), and the dissipative thermo-visco-
elastic stiffeners implements the energy-entropy-momentum formulation pre-
sented in this paper. 

Figure 12 shows the evolution of the angular momentum, where the effect 
of the maneuvering rockets is clearly visible. Figure 13 shows the evolution 
of the energy for both the satellite and the ambient, and the total energy too. 
It is remarkable how the satellite looses energy, that is exactly transferred to 
the ambient maintaining the total energy constant when the rockets are not 
operative. Figure 14 shows the evolution of the entropy for both the satellite 
and the ambient, and the sum of both. It is remarkable how noticeable the 
effect of the rockets are, and how the total entropy never decreases. Figure 
15 shows the evolution of the temperature of the eight stiffeners; again, the 
effect of the maneuvering rockets is clearly visible, and a symmetry between 
the stretched and compressed states is observed. 

In order to analyze the behavior of the proposed method, a set of ex-
periments are performed with different integrator schemes and different step 
sizes. The selected integrators are the implicit midpoint rule and the trape­
zoidal rule, with step sizes 0.1 and 0.2 s. Figure 16 shows the evolution of the 
modulus of the angular momentum. Note that the midpoint rule apparently 
is stable and behaves correctly for Ai = 0.1 s, computing a constant angular 
momentum during the free motion as expected. However, the trapezoidal 
rule does not have this property and exhibits a noticeable instability before 
the end of the simulation. For Ai = 0.2 s, both the midpoint and the trape­
zoidal rule present clear instabilities in the first part of the simulation, before 
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Figure 12: Angular momentum vs. time. Consistent integration, Ai = 0.2 s 

the second firing of the maneuvering rockets. 
Figure 17 shows that the first principie of thermodynamics is violated by 

both the midpoint and the trapezoidal rule during the simulation; the effect 
is more apparent with the larger time step. The total entropy evolution is 
shown in Figure 18. Again, it should be noted that the midpoint behaves 
correctly for Ai = 0.1 s, but it shows a large unrealistic increase in the first 
part of the simulation for Ai = 0.2 s. 

The behavior of the temperature in one of the stiffeners is shown in Figure 
19. It is observed that the midpoint rule behaves correctly, apart from incip-
ient instabilities that appear in the last part of the simulation for Ai = 0.1 s. 
This instability shows up earlier as the time step increases, as shown in the 
plot for Ai = 0.2 s. 
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5. Conclusions 

We have presented in this paper a novel procedure to intégrate the nonlin-
ear dynamics of a discrete viscoelastic element with temperature effects. The 
element may experience large displacements, it may have a non linear elastic 
behavior, and incorpórate stiffness and damping dependency on temperature. 
The element is immersed in a constant temperature environment, exchang-
ing heat during the motion. To the authors' knowledge, this is the first fully 
thermodynamically consistent method for a thermomechanical problem that 
includes internal variables. 

The proposed time-stepping procedure, which we refer to as the Energy-
Entropy-Momentum method (EEM), is a second order accurate, implicit 
method that complies with both the first and second laws of thermodynamics 
in discrete form: the energy evaluated on the discrete motion remains con­
stant, while the total entropy never decreases. The procedure also preserves 
the magnitudes related with the symmetries of the continuous evolution equa-
tions, namely the linear and angular momentum under free motion. 

The numerical experiments suggest that the proposed method is more 
robust than comparable second order, implicit methods, namely the trape­
zoidal and midpoint rules. Moreover, the presented simulations indicate that 
the observed instabilities in these classical integrators are clearly related with 
their inability to control the energy growth of the solution and entropy. This 
type of observations is well documented in the literature of energy-momentum 
methods for elastodynamics, and we can speculate that in the current con-
text, the loss of dissipative structure of the discrete evolution equations is re-
sponsible for the stability loss. In contrast with the trapezoidal and midpoint 
rules, the EEM method preserves the dissipative character of the solution, 
while preserving the laws of thermodynamics and the symmetries, as proved 
before. Moreover, the long term solutions obtained correspond to relative 
equilibria, suggesting that these trajectories are the attractors of the motion. 

The method presented in this article is the finite-dimensional counterpart 
to a space-time discretization of finite strain thermo-visco-elasto-dynamics, 
a much more complex initial boundary valué problem. An additional valué 
of the proposed method is that it serves as guideline for the formulation of 
EEM algorithms for the infinite dimensional problem on which we are 
currently working. 
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