
número 21/2009

•41Puerta, F.; Gómez-Elvira, M.A.; San Antonio, C.; Pérez, E.; Conejo, M.A.

The logarithmic spiral, autoisoptic curve 
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ABSTRACT
In the Line of Investigation that in the department of 

“Technical Drawing” in the School of Agriculture Enginee-
ring of Madrid, we carry out on the study of The Techni-
cal Curves and his singularities, we demonstrate an inter-
esting property of the Logarithmic Spiral.

The demonstrated property consists of which the lo-
garithmic spiral is a autoisoptic curve, that is to say that 
if from a point P anyone of the spiral tangent straight 
lines draw up to the previous arc, these form a constant 
angle α. This demonstration is novel and in addition we 
get to contribute a method to calculate the angle α given 
the equation of the spiral.

1. Introduction

We name Isoptic of a given curve, to the geome-
tric place of the points from which one sees the cur-
ve one under constant angle. That is to say: both 
tangent straight lines we draw to the curve from 
any point of the isoptic, form always the same an-
gle. 

It’s immediate to see, for example, that the isop-
tic of a circumference is another circumference. 
When the angle is a right angle the curve names 
ortoptic. We know that the ortoptic curve of a conic 
is a circumference. 

It is not diffi cult to demonstrate that the isoptic 
curve of two circumferences is a Spiral of Pascal. 

¿Are there auto-isoptic curves? In this paper we 
will see that,

1. The Logarithmic Spiral � = a� is autoisoptic. 

2. We will give a method to calculate the isoptic 
angle � depending on a. 
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3. We will determine a for the spiral auto-ortop-
tic (� = 90º).

2. The logarithmic spiral is autoisoptic

We have A
1
 a point of the logarithmic spiral  

� = a� (Figure 1), corresponding to the value � = �
1
. 

The tangent in A
1 will form with the vector radio OA

1
 

a angle V given for the next equation

tgV =        =       = cte   (1)

If � is an given constant angle, and we have A
2 

the point in the curve corresponding to � = �
1
 + �. 

Then we will have: 

OA
2
 = a �1 + � = OA

1
 · a�    (2)

And, analogously, the tangent in A
2
 will form 

with the vector radio OA
2
 the same angle V. T

1
 is the 

point of intersection of the tangents to the spiral in 
A

1
 y A

2

 In the point A
3
 corresponding to �

1
 + � + � we’ll 

have:

OA
3
 = OA

2
 · a�    (3)

And we’ll name T
2 to the point of intersection of 

the tangents in A
2
 y A

3
.

Is evidente that the quadrangles OA
1
T

1
A

2
 and OA-

2
T

2
A

3
 are similar (both quadrangles have the equal 

angles and two proportional sides) and the angle 
A

1
T

1
A

2
 is equal to the angle A

2
T

2
A

3
 , and equal, both, 

to 180º – �.

But, besides,

T
1
OT

2
 = �      (4)

and

OT
2
 = a� · OT

1
    (5)

That is to say: T
1
 y T

2
 describe a spiral of the 

form � = b� too. The value of b depend, of course, 
of the value �. Therefore, if we varythe angle �, 
always there will be some value where T

1
, T

2
,...will 

be PRECISELY in � = aω , consequently this curve is 
AUTOISOPTIC.

Let’s watch, fi nally, that when we obtain points 
of � = a� varying the angle �, they can be points of 
the next spiral arc or of another arc further, depen-
ding of the variation of the value.

3. Calculation of thr autoisoptic angle 
of the logarithmic spiral

As we have demonstrated, the tangents from 
any point of the logarithmic spiral � = a� to the  next 
spire, form a constant angle (Figure 2). 

 If � = 0, � = a0 = 1. As the equation (1) is correct, 
the equation of the tangent to the curve in the point 
A(1,0) is:

y =       (6)

Now let’s fi nd the point of intersection P of this 
tangent with the next spire: 

� = a�     (7)

yLa = x – 1     (8)

That is to say, � · sen�·La = � · cos� – 1

�
�'

1
La

x – 1
La

 Figure 1. Graphical base for the analytic demonstration of 
which Logarithmic Spiral is autoisoptic

 Figure 2. Graphical base for the calculation of the autoisop-
tic angle of the Logarithmic Spiral. 
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If we replace the value � in the previous equa-
tion, we willl obtain: 

a� · sen� · La = a� · cos� – 1   (9)

Therefore:

a� =       (10)

As we want the FOLLOWING spire and cos(�+2�) 
= cos� and sen(�+2�) = sen�, the result will be:

a�+2� =     (11)

Then:

� =            – 2�  (12)

We can watch that the previous equation is like 
that � = f(�). If we try solve it by iteration, that is 
to say obtaining from an approximate value � = �

1 

: �
2 = f(�

1
) : �

3
= f(�

2
); ... Then it result that the suc-

cession �
1
, �

2
, �

3
, … diverges. In this case we have 

to write the equation like that: � = f-–1 (�) = ϕ(�) and 
now the succession �

1
, �

2
 = ϕ(�

1
), �

3
 = ϕ(�

2
) … cer-

tainly converges. 

If we write:
      (13)

a�+2� =            =  

Being:

sent =      (14)

and

cost =      (15)

Then:

a�+2� =      (16)

And

sen(t – �) =     (17)

Therefore

� = t – arcsen     (18)

If we solve this equation by iteration we obtain 
�

p
. And �

p
 = a�p + 2�. That is to say: 

x
p
 = �

p
·cos�

p     (19)

y
p
 = �

p
·sen�

p      (20)

These equations give us the point A(x
p
, y

p
).
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cos� – La · sen�

1

cos� – La · sen�

1

cos� – La · sen�

1
L

La

Now we are going to calculate the value of the 
autoisoptic angle �. If M is the corresponding point 
to � = � – �, the tangent straight line in M will pass 
for p and then we will have: 

      = tg (V – �)    (21)

          = tg (V – �)  (22)

Consequently: 

� = V – arctg     (23)

Equation that is solved by iteration.

4. Deduction of the auto-ortoptic 
logarithmic spiral

We have � = a� (Figure 3). For � =     ⇒ � = a   .

If tgV =      =      , then the tangent in (1,0) is:

y =     (x–1) and the tangent in  0,a   is: 

y – a   = – La · x

Let’s fi nd the point of intersection P of the tan-
gent straight lines: 

    (x – 1) = a    – La · x    (24)

x – 1 = a    La – (La)2x    (25)

 �(La)2 +1
1

cos� La · sen�
 �(La)2 +1  �(La)2 +1

– sent · cos� – cost · sen�
 �(La)2 +1

1

 �(La)2 +1
1

 �(La)2 +1
La

sent(t - �)
 �(La)2 +1

1

1
 �(La)2 +1a�+2� ·

1
 �(La)2 +1a�+2� ·

y
P
 – y

M

x
P
 – x

M

y
p
 – a�–� · cos(�–�)

x
p
 – a�–� · sen(�–�)

y
p
 – a�-� · cos�

x
p
 – a�–� · sen�

�
2

ρ
ρ'

1
La

1
La

1
La

 Figure 3. Graphical base for the deduction of the Auto-
ortoptic Logarithmic Spiral
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x[1+(La)2] = a    La +1    (26)

x =       (27)

y =          –1  =      · 

Consequently the value for y is:

y =      (28)

Then, from the equations (27) and (28) we can 
deduce:

x2 + y2 =           = 

=          = 

=            =    (29)

Therefore: 

�x2 + y2 = � =     (30)

On the other hand: 

tag� =      =      (31)

What turns out to be that: 

� = arctg        + 2�   (32)

(This if it is the following spire)

It will be necessary to verify, to obtain the auto-
ortóptica, the following thing: � – a� = 0

For � = 1,05 we have � – a� > 0 (we save the cal-
culations)

For � = 1,06 we have � – a� < 0 

If we write:

La =      =     (33)

For iteration we obtain (for example from 
�=1,055) with the calculator: a = 1,056879.

That is to say, � = 1,056879� is AUTO-ORTOPTIC. 

5. Conclusions

1. The Logarithmic Spiral � = a� is autoisoptic.

2. We have given a method to calculate the isop-
tic angle � depending on a.

3. We have calculated a for the spiral auto-ortop-
tic (� = 90º).

4. The content of this paper we have not seen it 
in the existing bibliography relating to logari-
thmic spirals.
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