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In this work, we propose the Seasonal Dynamic Factor Analysis (SeaDFA), an extensión of Nonstationary 
Dynamic Factor Analysis, through which one can deal with dimensionality reduction in vectors of time 
series in such a way that both common and specific components are extracted. Furthermore, common fac-
tors are able to capture not only regular dynamics (stationary or not) but also seasonal ones, by means of 
the common factors following a multiplicative seasonal VARIMA (jí?, d, q) x (P, D, Q)s model. Addition-
ally, a bootstrap procedure that does not need a backward representation of the model is proposed to be 
able to make inference for all the parameters in the model. A bootstrap scheme developed for forecasting 
includes uncertainty due to parameter estimation, allowing enhanced coverage of forecasting intervals. 
A challenging application is provided. The new proposed model and a bootstrap scheme are applied to 
an innovative subject in electricity markets: the computation of long-term point forecasts and prediction 
intervals of electricity prices. Several appendices with technical details, an illustrative example, and an 
additional table are available online as Supplementary Materials. 
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ponents; VARIMA models. 

1. INTRODUCTION 

When trying to model and forecast high-dimensional vec­
tors of time series, the number of parameters to be estimated 
grows and the "curse of dimensionality" arises. In addition, if 
seasonality is present in the data, not only regular dynamics but 
also seasonal ones must be estimated, making the problem even 
greater. 

This is why dimensionality reduction techniques for vectors 
of time series have been extensively studied. Sargent and Sims 
(1977) and Geweke (1977) were the flrst to propose a dynamic 
factor model. On the one hand, Stock and Watson (2002) ex-
plored dimensionality reduction in panel data used to explain 
one variable. On the other hand, Peña and Box (1987) proposed 
a simplifying structure for a vector of time series valid only for 
the stationary case. Lee and Cárter (1992) extended Principal 
Component Analysis to the case in which the variables are time 
series, and computed long-run forecasts of mortality and fértil -
ity rates by means of extracting a single common factor. Most 
recently, Peña and Poncela (2004, 2006) extended the Peña-
Box model to the nonstationary case. 

However, there is no speciflc dimensión reduction technique 
that can be applied to vectors of time series with a seasonal pat-
tern. There are many examples of this kind of data, such as vec­
tors of macroeconomic variables, meteorological data, and time 
series coming from electricity markets (load and prices). Until 

now, when reducing dimensión in vectors of time series with 
seasonal behavior, the only possible alternative was to desea-
sonalize and then apply some of the methodology cited above 
to reduce the number of parameters to be estimated. 

In this work, two contributions are introduced. First of all, 
Seasonal Dynamic Factor Analysis (hereafter referred to as 
SeaDFA) is presented. It allows the extraction of the common 
factors of a vector of time series, and the estimation of a sea­
sonal multiplicative Vector Auto Regressive Integrated Mov-
ing Average (VARIMA) model, so that both regular and sea­
sonal dynamics can be modeled. Second, with respect to infer­
ence procedures, we propose an alternative bootstrap scheme to 
those derived by Stoffer and Wall (1991) and Wall and Stof-
fer (2002), valid for all models that can be expressed under 
the state-space formulation. Bootstrap methods are considered 
for this purpose instead of other alternatives such as the Fisher 
Information Matrix (Shumway and Cavanaugh 1996), since 
asymptotic results are not applicable if time series are not fairly 
long or if the parameters fall near the boundary of the valid pa­
rameter space. 
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Moreover, an interesting real data example is provided: anal-
ysis of time series of electricity prices, which are relevant from 
both the economic and engineering points of view. In fact, 
a great number of recent references have focused on several 
complex problems affecting different agents involved in en-
ergy markets, such as load forecasting (Cottet and Smith 2003), 
wind energy forecasting (Sánchez 2006), and electricity price 
modeling (Koopman, Ooms, and Carnero 2007). In this work, 
SeaDFA is applied to compute year-ahead forecasts of electric­
ity prices. 

The rest of the article is organized as follows. In Section 2, 
the Seasonal Dynamic Factor Analysis (SeaDFA) and its esti-
mation algorifhm are introduced and explained. In Section 3, 
the bootstrap scheme developed for the SeaDFA is presented. 
In Section 4, a Monte Cario simulation study is provided to 
check the behavior of the bootstrap procedure. In Section 5, the 
model and its bootstrap scheme are applied to forecasting elec­
tricity prices in the Spanish market. Finally, some conclusions 
are provided in Section 6. 

2. SEASONAL DYNAMIC FACTOR ANALYSIS 
(SEADFA) 

In this section we present the Seasonal Dynamic Factor Anal­
ysis, allowing us to deal with common factors following a 
VARIMA(p, d, q) x (P, D, Q)s model with constant. 

2.1 The Model 

Let yt be an m-dimensional vector of observed time series 
generated by an r-dimensional vector of unobserved common 
factors (r < ni). We assume that vector yt can be written as a 
linear combination of the unobserved common factors, ít, plus 
e¡, to which we will refer from now on as speciflc components 
or speciflc factors: 

y, = Q(, + e,, (1) 

where fl is the m x r loading matrix that relates the r-
dimensional set of common factors to the vector of observed 
time series yt, and et is the m-dimensional vector of speciflc 
components. The common dynamic structure of the m observed 
time series is included in the r common factors. We suppose that 
the speciflc components, et, are white noise. So the vector et is 
Gaussian and has zero mean, E[ete'T] = 0 if t ^ r, and diagonal 
covariance matrix S =E[ete¡]. It is straightforward to extend 
this model to the case in which the speciflc factors evolve over 
time according to univariate AR models following the ideas in 
the work of Bai (2003), Peña and Poncela (2004), and Ortega 
and Poncela (2005). We apply such a model in Section 5 to our 
analysis of electricity prices. 

The unobserved common factors ít can be nonstationary, in-
cluding not only seasonal or regular unit roots but also a sea­
sonal or regular autoregressive and/or moving average pattern. 
We assume that ít follows a seasonal multiplicative VARIMA 
model (p, d, q) x (P, D, Q)¡¡ with constant: 

(I - B)d(\ - Bs)D<t>(B)<t>(Bs)ft = c + 0(B)&(Bs)wt, (2) 

where <¡>(B) = (I - 0xfi - <¡>2B
2 <¡>pBP), <t>(Bs) = (I -

<&ifíJ - 4>2B
2s ®pBPs), 9(B) = (I-9iB-62B

2 

0qW), and &(BS) = (I - ©ifi - &2B
2s &qBQs) are 

rxr polynomial matrices, B is the backshift operator such that 
Byt = yf_i, the roots of \</>(B)\ = 0 and \$(BS)\ = 0 are outside 
the unit circle as well as the roots of \0(B)\ =0and \0(BS)\ = 0 
are outside the unit circle, and wt ~ Nr(0, Q) is serially uncor-
related, E[yvty/t_h] = 0,h=£0. We also assume that the noise 
term of the common factors and the observed series are uncor-
related for all lags, E[wte't_h] = 0, V/i. c = Ci • 1 = {c\,..., cr) 
is the vector of constants of the model of the common factors, 
where matrix Ci = diag(ci, ...,cr). Its inclusión in (2) could 
be relevant when trying to compute long-term forecasts in the 
nonstationary case, which is our purpose for the vector of non­
stationary series of electricity prices. 

It should be noted that the model is not identiflable under 
rotations, since for any r x r nonsingular matrix H, the ob­
served vector of time series can be expressed as a linear com­
bination of a new set of factors, yt = Slrft + et, where ft = Hít 

and ñ r = ñ H _ 1 . To solve this identiflcation problem, we can 
always choose either Q = I or fl'fl = I. These kinds of restric-
tions are sufflcient for the static case or even when fhere is a 
single common dynamic factor; ofherwise the model is not yet 
identifled, and we need to introduce an additional constraint to 
be able to estímate the model. Harvey (1989) imposed the con-
dition coy = 0, for j > i, where fl = [coy]. This condition is not 
restrictive since the factor model can be rotated for better inter-
pretation when needed. 

2.2 State-Space Formulation and Its Relationship 
With SeaDFA 

The model presented in Section 2.1 will be estimated under 
the state-space formulation. For this reason it is necessary to 
provide the relationship between SeaDFA and state-space (SS 
hereafter) models. In general, a linear unobserved component 
model with exogenous variables and time-invariant system ma­
trices can be written as a state-space model as follows: 

xt = A«t + Bpt + Cyt, (3) 

«t = T«t-i+Fpt + Git. (4) 

Equation (3) is known as the measurement or observation 
equation and relates the observed m-dimensional series xt with 
the ^-dimensional latent or unobserved state ut components. 
A is the loading matrix, fit is the vector of exogenous variables, 
and matrix B relates the vector of observed series with the vec­
tor of exogenous variables. The matrix S is assumed to be an 
m x m covariance matrix of the observation noise yt, which is 
related to xt by means of C. The second equation, (4), is the 
transition equation. It relates the state-vector ut with the state 
vector at time t — 1 by means of the transition matrix T. The 
matrix Q is assumed to be an r x r covariance matrix of the ad-
ditive noise, 8t, of the transition equation and it is related to ut 

by means of F, and uncorrelated with yt at all leads and lags. 

The system matrices A, B, C, T, F, G, Q, and S are assumed 
to be predetermined in the sense that they are known at time 
t — 1, and since they are flxed the model is said to be time-
invariant. 

Bearing this in mind, (1) and (2) can be directly considered, 
respectively, as an observation equation without exogenous 
variables (A = ñ and C = I), a transition equation in which 
T = * , F = Ci, and, for the SeaDFA, G = I. The VARIMA 
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model in (2) can be reformulated as a transition equation just 
writing the VARIMA model adequately, using the multivari-
ate extensión of the state-space formulation for ARIMA models 
proposed by Ansley and Kohn (1986): 

y, = ñfí + e,, (5) 

f, = C i . l + * f , _ i + w í . (6) 

As a particular case, an exogenous variable of ones, pt = 
1 = ( 1 , 1 , . . . , 1)', will be introduced in the transition equation 
in order to estímate the constant in the model of the common 
factors. It is not necessary to include exogenous variables in the 
measurement equation that relates the vector of observed time 
series with the set of common factors and specific factors. Thus, 
in the SeaDFA, B is the nuil matrix and F = Ci. 

Once the general formulation of state-space models given by 
(3) and (4) has been linked with the equations of the SeaDFA, 
(l)-(2), and only for illustration purposes, in the Supplementary 
Materials available online we provide an example of how to 
build the transition matrix * in the particular case in which the 
observed series yt present seasonality. 

It should be noticed that some nonlinear constraints appear 
between the elements of the transition matrix, and this will be 
important in the estimation procedure described in the follow­
ing subsection. 

2.3 SeaDFA Estimation 

The previous state-space formulation depends on a set of pa-
rameters A = {c, * , ñ, S, Q} that must be estimated from the 
observed vector of time series. Also the common factors, ít, and 
the specific ones, et, must be estimated. Notice that for the case 
of SeaDFA we impose Q = I r because otherwise the model re-
mains unidentified under rotations, so Q does not need to be 
estimated. 

For estimation, máximum likelihood is used under the as-
sumption that the initial state is normal, fo ~ Nr(¿¿0, P|j), where 
fi0 and PQ are the initial mean and covariance, and are both as-
sumed to be known conditional on A [for extensions on initial-
ization of the Kalman fllter, see the book by Durbin and Koop-
man (2001)]. The errors et and y/t are jointly normal and seri-
ally uncorrelated. Furthermore, for simplicity we also assume 
that et and y/t have no cross-correlation. 

In addition to nonstationarity included in the articles by Peña 
and Poncela (2004, 2006), in this work we include the possi-
bility of common factors following a multiplicative seasonal 
VARIMA model with constant. Seasonality introduces some 
additional nonlinear constraints between parameters in the ma­
trix * , as described in the example included in the online Sup­
plementary Materials, and this implies that these nonlinear re-
strictions must be imposed when the estimation is carried out. 

For simplicity we will explain the estimation algorithm for 
models without a moving average component. 

In general, the log-likelihood for any model that can be 
expressed under SS formulation, ignoring a constant (see 

Shumway and Stoffer 2006, for details on SS models), is given 
by the expression 

1 " 
logZ.(A) = - - £ l o g | Z , ( A ) | 

Í= I 

1 " 
- - J ]€ Í (A) / (5 : Í (A)) - 1 € Í (A) , (7) 

Í= I 

where et are the innovations and T.t is their variance-covariance 
matrix, which are obtained by running the Kalman fllter (these 
recursions as well as those related to the Kalman smoother are 
given in Appendix A in the online Supplementary Materials). It 
is important to highlight the dependence of the innovations et in 
the parameters included in A. The log-likelihood given by (7) is 
a complicated function that is highly nonlinear in the unknown 
parameters. Estimation proceeds by numerically maximizing 
logL(A), using a Newton-Raphson algorithm. The common 
factors, ít, will^be obtained from the Kalman fllter in the last 
iteration, thus ít = ft\t = $= E[ít\Yt], where Yt = {yi, . . . , yt}. 
(See Appendix A in the online Supplementary Materials for the 
Kalman fllter and smoother recursions.) 

Direct maximization of (7) can be difflcult in practice if 
there is a large number of parameters to be estimated. This 
is the case for our SeaDFA model. For an m-dimensional ob­
served vector of data yt, with r common factors following a 
VARIMA(p, d, 0) x (P, D, 0)s, the parameters to be estimated 
and their dimensions are: 

• the constant of the model of the common factors, c, which 
is r by 1. 

• the transition matrix * including the dynamics of the com­
mon factors, where the number of parameters to be esti­
mated is r2(p + P). 

• the loading matrix ñ that relates the observed vector of 
time series yt to the un observed set of common factors ít, 
whose dimensions are m by r. However, for j > i a>ij = 0, 
so the number of elements to be estimated in fl is mr — 
r(r-l) 

2 • 

• the variance-covariance matrix of the noise of the mea­
surement equation (variance-covariance matrix of the spe­
cific components), S, which is a diagonal matrix, so the 
number of parameters to be estimated is m. 

Therefore, the number of parameters to be estimated in A is 
r+r2(p + P) + mr- 2 + m. Since m isusually large (this is 
the reason for reducing dimensionality to r), even for low orders 
of the regular and seasonal AR, p and P, and for a relatively 
small number of factors, r, say 2 or 3, the number of parameters 
to be estimated is high. An alternative to direct maximization of 
(7) is the Expectation-Maximization (EM) algorithm presented 
by Shumway and Stoffer (1982). 

For both estimation procedures (direct optimization or EM 
algorithm), an important issue is the selection of the number of 
common factors, r, as well as the orders (d, D, p, and P) of 
the seasonal VARI model for the common factors. For a pre-
liminary selection of the number of common factors, the tests 
proposed by Peña and Poncela (2006) or Forni et al. (2000) 
are used. A crucial stage is the selection of unit roots (regular 
and seasonal). In general, when dealing with data that present 



a strong seasonal pattern, it can be useful to start considering 
a seasonal unit root, that is, D = 1. Thus, SeaDFA can be es-
timated considering r common factors (r is an output obtained 
by performing the tests mentioned above) that follow an I{\)¡¡ 
model. Once this has been done, the stationarity of the esti-
mated speciflc components, e¿ = yt - Qít, must be checked. 
If fhey are nonstationary the number of unit roots must be in-
creased (trying, e.g., d=l,d = 2,or even D = 2if necessary). 

When the number of regular and seasonal unit roots have 
been selected, the speciflc factors must be checked for cross-
correlation. If present, this would indicate further common dy-
namic structure that should be incorporated in the common 
component. It could even point to a need to increase the num­
ber of common factors initially considered. Some iteration may 
be necessary to achieve speciflc factors with negligible cross-
correlations. 

2.4 EM Algorithm for SeaDFA 

The main idea behind the EM algorithm is that if in addi-
tion to the observations Y„ = {yi, . . . , y„} we could observe the 
state variables, that is, the common factors F„ = {fo, f i , . . . , f«} 
in the particular case of the SeaDFA, then we would consider 
{Y„,F„} as the complete data, and its joint density function 
would be given by the expression (see Shumway and Stoffer 
2006, for details): 

n n 

/A(Y„,F„) =//l0iPo(fo)n/*,Q(f^-i)n^(yíiff)- (8) 
í=i í=i 

Assuming Gaussianity, the log-likelihood of the complete 
data {Y„,F„} is given by the following expression (see Ap-
pendix B in the online Supplementary Materials for details): 

logLY,F(A) = -l- ln |P°| + ^((Pgj-^fo - ii0)(to ~ lio)') 

n 

+ n l n | S | + t r ^ c c ' 
Í = I 

n 

+ J]tr((f í-*f í_1)(f í-*f í_1) /) 
Í = I 

n 

-2 - t r J ] c / ( f í -* f í _ 1 ) 
Í = I 

+ ¿ t r ( S - 1 ( y í - ñ f í ) ( y í - ñ f í )
/ ) • (9) 

t=\ J 

The complete data {Y„,F„} is not available since the state 
variables, the unobserved common factors Ft in the case of 
SeaDFA, must also be estimated. The EM algorithm provides 
an iterative method for flnding the MLEs of A, based on the in-
complete data Y„ by successively maximizing the conditional 
expectation of the complete data likelihood. This procedure 
consists of maximizing the expression of the conditional ex­
pectation £'{logLY,F(A)|Y„, A*7-1)} with respect to the param­
eters. The vector Aü) = {c^, * 0 ) , ñ ü ) , S ^ } includes all pa­
rameters estimated at thej'th iteration. 

The algebraic derivations needed for the E-step and M-step 
are given in detail in Appendix B in the online Supplementary 
Materials. They are respectively: 

• the Anal expression of the conditional expectation 
£{logLY,F(A)|Y„,A^-1)},and 

• maximization of £'{logLY,F(A)|Y„, A^-1^} with respect 
to the parameters that must be estimated. 

The advantage of using the EM instead of direct maximiza­
tion of (7) is that we obtain closed expressions for the esti-
mates of ñ and S (ñ and S, respectively), so the numerical 
optimization with the nonlinear constraints due to seasonality 
in common factors illustrated in the example presented in the 
online Supplementary Materials, only involves r + r2(p + P) 
parameters. However, the log-likelihood function given by (7) 
has r + r2(p + P) + mr - 2 + m parameters, and taking 
into account that m~^> r, this implies a great reduction in the 
number of variables involved in the optimization procedure. 

The E and M steps are repeated alternately until convergence 
in the log-likelihood is reached: 

0. Initialize the procedure, giving initial valúes to A ^ = 
{c(0); ,j,(0); ñ (0) ; s(0)j_ Q i s flxed t 0 b e t h e i d e n t i t y m a_ 

trix. 
For the subsequent iterations,; = 1 , 2 , 

1. Run the Kalman fllter and smoother using the recursions 
given in (A.1)-(A.9) in Appendix A in the online Sup­
plementary Materials, and get the valué of the incomplete 
data log-likelihood, logLYÍA^-1^). 

2. Perform the E-step, calculating £'{logLY,F(A)|Y„, 
^(7-1)} = £(/'); using (B.12) in Appendix B in the online 
Supplementary Materials. 

3. Perform the M-step to update the estimate of the hyperpa-
rameter A = {c, * , ñ, S}, getting Aü) = {c®, * ü ) , « ü ) , 
S^}, from (B.13)-(B.15) in Appendix B in the online 
Supplementary Materials, obtaining ñ ^ and S^, and 
maximizing (B.16) to get c® and * ^ \ 

4. If E® — ¿í^-1) < e, with e small enough, then stop. If 
convergence has not been reached, then steps 1, 2, and 3 
are iteratively repeated. 

3. BOOTSTRAP SCHEME FOR SEASONAL 
DYNAMIC FACTOR ANALYSIS 

In this section we provide a bootstrap scheme for assessing 
uncertainty in the máximum likelihood estimates of parameters 
of our Seasonal Dynamic Factor model, as well as computing 
forecast intervals. 

Furthermore, since SeaDFA is a particular case of a model 
that can be written using the state-space formulation (as shown 
in Section 2.1), this bootstrap scheme is able to assess the pre­
cisión of estimates of any state-space model. This is an advan­
tage, since a wide range of statistical and econometric models 
can be represented under this formulation. In fact, many authors 
have focused on estimation of time series models by state-space 
methods (see Harvey 1989 and Durbin and Koopman 2001). 

Application of classical inference methods relying on asymp-
totic theory is subject to the availability of large datasets, as in-
vestigated by Ansley and Newbold (1980), among others. For 
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this reason bootstrap techniques are a powerful alternative to 
inference procedures based on the Fisher Information Matrix. 
Moreover, bootstrap methods have a large advantage because 
they allow the uncertainty due to parameter estimation to be 
taken into account, which enhances the coverage of the fore-
casting intervals. 

The existence, under certain conditions, of asymptotic the-
ory involving the consistency of parameter estimates obtained 
by máximum likelihood and state estimators obtained from the 
Kalman fllter (see Ljung and Caines 1979 or Spall and Wall 
1984) has allowed other authors (Stoffer and Wall 1991; Wall 
and Stoffer 2002; Rodríguez and Ruiz 2009) to be able to de-
velop procedures for bootstrapping state-space models, resam-
pling from the innovations and generating bootstrap replicas of 
the model under study using the innovation form representation 
(see Anderson and Moore 1979). 

Our bootstrap procedure is an alternative to those of Stoffer 
and Wall (1991), Wall and Stoffer (2002), and Rodríguez and 
Ruiz (2009), which is not based on the innovations form rep­
resentation and allows for the computation of percentile-based 
forecasting intervals, as will be explained in Section 3.2. 

3.1 Inference on the Parameters of the SeaDFA 

By means of the new bootstrap procedure we will obtain 
percentile-based confldence intervals for each element in the 
loading matrix ñ , as well as for the parameters of the VARIMA 
model for the common factors, * , the constant c, and the 
variance-covariance matrix of the speciflc factors, S. We will 
be able to test the signiflcance of the elements in these matri­
ces. 

The bootstrap scheme consists of the following steps: 

1. The model deflned by (5)-(6) is estimated following the 
EM algorithm described in Section 2. Once thishas been 
completed, the parameters involved, "c, * , ñ, S,¿í0, PQ, 
jare available. In addition, we have consistent estimates, 
it, of the state variables it, derived from the Kalman fllter 
at the last iteration [conditions for consistency in the esti­
mation of the latent state-variables are given in the article 
byBai(2003)]. 

2. Obtain the estimated speciflc factors, e¿ = yt - Slit, and 
the estimated residuals of the transition equation, w¿ = 
í - * f í - i . 

3. Standardize and rescale the estimated speciflc factors, e¿, 
as well as the estimated residuals of the transition equa­
tion, wt. 

One should bear in mind the relationship between % and 
et, and their variance-covariance matrices, S = E[ete't] and 
S^ = E\e{e't\. It can be shown that S = Sj + var(sí —%) = 
S« + Scorrection- The matrix Scorrection = var(sí -~e~t) can be con-
sidered as a correction factor, as in the model proposed by Har-
vey, Ruiz, and Sentana (1992). An expression for vsr(et — ei) is 
derived in Appendix C in the online Supplementary Materials. 
The same correction applies to the relationship between wt and 
v/t: 

et = (et-I)(Si)-1'2S1'2, 
(10) 

yrt = (wt-w)(Q^r1/2, 

where Qw = E[wtw't]. Note that for SeaDFA, Q = I. In a gen­
eral SS model, (10) would be w, = (% - W)(QM)-1/2Q.1/2. 

4. Draw an iid resample, e*t, from Fge, for e = 1 , . . . , m, 
where Fge is the empirical distribution function of each 
corrected speciflc factor, Fee(x) = \YTt=\I(£e,t < x). 

5. Draw an iid resample, w*t, from F%¡, for i = 1 , . . . , r, 
where f#,. is the empirical distribution function of each 
corrected series of residuals of the model for the common 
factors, F^(x) = ¿ E ^ / í w ; , , <x). 

6. Build a bootstrap replica of the common factors using 
the transition equation: f¡' = i^f¡_1 + w*, where w* = 
(w\v..., w*ty. 

7. Build a bootstrap replica of the data, using bootstrap repli­
cas of the common and speciflc factors obtained in steps 
4 and 6, fjf and e*, respectively: y* = ñf^ + e*, where 

8. Repeat steps 4 to 7, N times, where N is the number of 
bootstrap replicates. 

Notice that although both ei and % could be dependent, the 
bootstrap replicas e*t and w*t are not, since they are obtained 
by sampling independently from the respective empirical distri-
butions, Fee (x) and F%¡ (x). This approach also holds for simpler 
models, as the estimated residuals can present correlation; see 
the article by Ljung (1986). Sampling independently (iid) from 
the empirical distribution function is the usual approach to guar-
antee independence in the bootstrap replicas [see, for instance, 
the work of Thombs and Shucany (1990) and Pascual, Romo, 
and Ruiz (2004)]. Moreover, when sampling from the empir­
ical distribution functions, F%e(x) and F%¡(x), we are doing it 
for each e = 1 , . . . , m and each i = 1 , . . . , r, respectively. In this 
way we are not only ensuring that e* and e* are independent, 
but also e*t and e*t, for a given t. The same holds for the w*. 

Estimating the SeaDFA for each of the N replicas ob­
tained in step 8, we have c*, **, ñ*, and S* and fheir respec­
tive bootstrap distribution functions, Fit, F l , , f i , , and F~t. 
They are used to compute percentile-based confldence inter­
vals for all these parameters using the following expression: 
[q*(a/2),q*(l - a/2)], where, for example, when calculat-
ing intervals for the elements c¡ in the constant of the model, 
c = (c i , . . . , cr)', q*(:) = F~~l. Finally, bootstrap confldence 
intervals for the loads, coy, and VARIMA parameters, *y, are 
obtained from the corresponding bootstrap distribution func­
tions, F* „ and F*t, of the elements (/, /) of matrices ñ* and 

>J >J 

**, respectively. 
The percentile-based confldence intervals for loads and 

VARIMA parameters will allow, for example, for testing the 
equality of loads, or whether the parameters of the VARIMA 
model of the common factors are signiflcant. The results ob­
tained can be used to impose constraints among loads or 
VARIMA parameters that can be applied in a subsequent es­
timation of the SeaDFA. 

3.2 Bootstrap Procedure for Forecasting 

As far as forecasting is concerned, the main objective is to 
obtain not only point forecasts but also an uncertainty mea-
sure. Bootstrap techniques have been applied for this pur-
pose (Thombs and Schucany 1990; García-Jurado et al. 1995; 
Alonso, Peña, and Romo 2002). The previous scheme intro-
duced in Section 3.1 can be modifled if we want to obtain 
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bootstrap confldence intervals for the forecasts of vector yt. 
The conditional distribution of future observations given the 
observed vector of time series should be replicated. We pro-
ceed as in the article by Cao et al. (1997), flxing the las t / 
observations of the common factors. In the particular case of 
the common factors following a VARI(p, d) x (P, D)s, f = 
(P + D)s + (p + d). In this way, we genérate bootstrap tra-
jectories of the future observations conditioning on the last / 
observed valúes. The flrst steps of the bootstrap procedure for 
forecasting coincide with steps 1 to 7 proposed in the previous 
subsection. The forecasting steps are the following: 

8. Each bootstrap replica of future valúes for common fac­
tors is calculated using the relationship: f¡+h = ** x 
tf+h-i + w*+/z' íorh=l,... ,H, where H is the forecast­
ing horizon, f*n = %, and w*+h = {w\t+h, w*2t+h,..., 
Wm t+h)' and each w*t+h is generated by resampling 
from F%¡. The bootstrap resamples of future speciflc 
components e*+h = {e\t+h, e*t+h,..., e*mt+h)' are gen­
erated by resampling from (F^,..., F^m), respectively. 

9. Future bootstrap observations are calculated for vector 
yt using the relationship y*+h = &*f¡+h + e*+h, for h = 
Í,...,H. 

10. Repeat steps 8 and 9, N times, where N is the number 
of future bootstrap observations for forecasting horizons 
varying from 1 to H, that are calculated for the vector yt. 

Finally the bootstrap distribution function of y*t+h is used 
as estimator of the conditional distribution of yt+h given the 
observed sample. Bootstrap confldence intervals for yt+h = 
(yi,t+h, ••-, ym,t+h) are obtained using the quantiles of the cor-
responding bootstrap distribution functions. The (1 - a) • 100% 
forecast interval for yk,t+h is [q*(a/2),q*(l - a/2)], where 
q*(.) = F*~1 are the quantiles of the estimated bootstrap dis-

tribution. Additionally, the prediction steps of our method can 
be modifled in order to compute conditional forecast errors. 
This can be done by subtracting the conditional forecast and 
the future bootstrap observation generated using steps 8 to 10. 
The computation of the conditional forecast can be done by im-
posing e*+h = 0 and w: t+h ' = 0. 

4. SIMULATION STUDY 

In this section the performance of the bootstrap procedure 
introduced in the previous section is illustrated by means of a 
Monte Cario simulation study. We also check the performance 
of the SeaDFA. We report the results for the following two mod­
els, which have been selected to check the behavior of the boot­
strap scheme under different conditions: 

• Model i: In the flrst experiment we consider a model with 
a common nonstationary factor [common trend, 1(1) with 
constant, c = 3], for m = 20 observed series. The loading 
matrix is « = (1,1,1, 1, 2,1,1, 1, 1, -0 .5 , 1,1, 1, 1,1, 1, 
1,1,1, l)',E(et) = 0, var(eí) = S = 0.1-I2 0and£(w í) = 
0, var(wí) = Q = a\ = 1. This model has been selected 
because it is similar to the model that appears in the article 
by Peña and Poncela (2004), and we have added the con­
stant to validate its estimation, since we have included this 
possibility in our model. 

• Model 2: In the second model under study we check the 
performance of our procedure when there is a seasonal pat-
tern affecting two common factors. There are two common 
nonstationary factors following a seasonal multiplicative 
VARDVIA model: 

[I-B<] I 
0.1 
0 

0 
-0.15 

B' 

>-C o> : Wí 

for m = 25 observed series, the loading matrix ñ = 
[ñi ñ 2 ] , where « i = (1, 1, 1,1, 2, 1,1,1, 1, -0 .5 , 1,1,1, 
1, 1,1, 1, 1,1,1, 1, 1,1,1, 1)'and ñ 2 = 0.3 • (0,1, 1, 1,1, 
1, 1,1, 1, 1,1,1, 1, 1,1, 1, 1,1,1, 1, 1,1,1, 1, 3)',E(et) = 
0, var(eí) = 0.1 - I25 ,£ (WÍ) = 0 2 x i , var(Wí) = I2. 

R = 100 realizations of each model have been generated 
and estimated, and P = 1000 future valúes yr+h have been 
generated for different forecasting horizons, h = 1 and 10, 
while two sample sizes, T, have been considered: 50 and 
200. For each vector of series simulated and estimated N = 
500 bootstrap resamples have been generated as described in 
the previous section, and the corresponding model was esti­
mated. For k = 1 , . . . , m, the (1 — a) • 100% prediction inter­
vals [Q*M(a/2), Q*M(l — a/2)] were computed. The coverage 
is estimated as CM = #{Q*M(a/2) < yp

kT+h < Q*M(\ - a/2)}, 
where y^T+h is the vector of future valúes generated in the 
^ t t \ „ r.-i • T P(l-a/2) P(a/2) , , 

flrst step. Meanwhüe, using Lj = yk T+h — yk T+h and LB = 
Q*M{1 - a/2) - Q*M{a/2), we obtain the "theoretical" and boot­
strap interval lengths. Lj is the estimated "true" mean interval 
length, and Cj is the nominal coverage. 

The results for Models 1 and 2, and nominal coverage of 
95%, are shown in Table 1. Since the number of series, m, 
is 20 in Model 1 and 25 in Model 2, we provide results only 
for some of the observed series, chosen after consideration of 
the structure of the loading matrix ñ . It can be observed that 
even for small or modérate sample sizes the valúes obtained for 
coverages are cióse to the nominal coverage, even in Model 2 
in which the transition matrix must be estimated and nonlin-
ear constraints appear between its elements. As expected, when 
the sample size increases, coverages are nearer to their nominal 
valúes. Although we focused on coverages for the forecasts, the 
results obtained show that the coverages for the parameters of 
the model are also correct. 

Our scheme incorporates the uncertainty due to parameter 
estimation by reestimating the SeaDFA for each of the N boot­
strap replicates generated in step 8 of Section 3.1. Although 
some authors found that incorporating this uncertainty can im-
prove the results (Alonso, Peña, and Romo 2002; Pascual, 
Romo, and Ruiz 2004), for the two models presented in this 
section there are no signiflcant differences (in terms of cover­
ages) between reestimating and not the SeaDFA for each boot­
strap replicate. This means that under some circumstances we 
can beneflt from some computational savings, not attempting to 
account for parameter uncertainty. This can be done by gener-
ating 

f* 
lt+h • 

yt+h: 

*n+h-i 

«*?+* + • 

Yí+¿' 

't+h' 



Table 1. Models 1 and 2. Nominal coverages 95 percent 

Horizon S ampie size 
h T 

Model 1 1 50 

200 

10 50 

200 

Model 2 1 50 

200 

10 50 

200 

Series 

i 
1 
5 

10 
15 
20 

1 
5 

10 
15 
20 

1 
5 

10 
15 
20 

1 
5 

10 
15 
20 

1 
5 

10 
15 
25 

1 
5 

10 
15 
25 

1 
5 

10 
15 
25 

1 
5 

10 
15 
25 

CM 
Theoret. 95% 

93.742 
93.828 
93.392 
94.166 
93.750 

94.352 
94.292 
94.306 
94.320 
94.158 

91.756 
91.704 
91.608 
91.844 
91.700 

94.238 
94.154 
94.256 
94.184 
94.668 

92.258 
92.290 
91.614 
93.328 
93.214 

94.360 
94.516 
93.384 
94.448 
94.106 

93.178 
93.152 
92.374 
93.456 
93.004 

94.400 
94.254 
94.148 
94.164 
94.264 

(se) CM 

0.203 
0.226 
0.209 
0.185 
0.199 

0.174 
0.184 
0.167 
0.159 
0.186 

0.406 
0.435 
0.449 
0.419 
0.433 

0.165 
0.171 
0.174 
0.167 
0.139 

0.280 
0.287 
0.329 
0.200 
0.207 

0.179 
0.185 
0.293 
0.158 
0.182 

0.208 
0.213 
0.261 
0.188 
0.206 

0.175 
0.168 
0.170 
0.158 
0.158 

Cov (below) 
2.5% 

3.136 
3.214 
3.202 
2.988 
3.164 

2.888 
2.892 
2.832 
2.972 
3.024 

4.318 
4.336 
3.944 
4.344 
4.400 

3.090 
3.156 
2.760 
3.158 
2.670 

3.748 
3.804 
4.426 
3.654 
4.048 

2.842 
2.784 
3.206 
2.858 
2.944 

3.500 
3.606 
3.780 
3.562 
3.666 

2.926 
2.868 
2.938 
2.954 
2.850 

Cov (above) 
2.5% 

3.122 
2.958 
3.406 
2.846 
3.086 

2.760 
2.816 
2.862 
2.708 
2.818 

3.926 
3.960 
4.448 
3.812 
3.900 

2.672 
2.690 
2.984 
2.658 
2.662 

3.994 
3.906 
3.960 
3.018 
2.738 

2.798 
2.700 
3.410 
2.694 
2.950 

3.322 
3.242 
3.846 
2.982 
3.330 

2.674 
2.878 
2.914 
2.882 
2.886 

LT 

4.120 
7.920 
2.334 
4.107 
4.120 

4.089 
7.921 
2.328 
4.107 
4.092 

12.487 
24.811 
6.339 

12.459 
12.450 

12.480 
24.813 
6.300 

12.443 
6.910 

4.138 
8.081 
2.621 
4.278 
5.431 

4.136 
8.031 
2.592 
4.283 
5.409 

4.436 
8.700 
2.875 
4.650 
6.182 

4.448 
8.780 
2.855 
4.695 
6.169 

LM 

4.064 
7.881 
2.257 
4.102 
4.055 

4.059 
7.826 
2.296 
4.067 
4.038 

12.235 
24.379 
6.220 

12.220 
12.239 

12.370 
24.622 
6.275 

12.358 
6.894 

3.975 
7.782 
2.511 
4.177 
5.300 

4.105 
8.019 
2.563 
4.255 
5.411 

4.308 
8.439 
2.719 
4.504 
5.890 

4.415 
8.673 
2.839 
4.610 
6.115 

(se) LM 

0.027 
0.061 
0.014 
0.026 
0.026 

0.019 
0.039 
0.011 
0.021 
0.020 

0.054 
0.107 
0.026 
0.054 
0.051 

0.054 
0.099 
0.027 
0.048 
0.027 

0.034 
0.070 
0.014 
0.030 
0.026 

0.020 
0.046 
0.010 
0.020 
0.023 

0.031 
0.059 
0.015 
0.025 
0.033 

0.025 
0.047 
0.014 
0.026 
0.029 

that is, replacing 4>* by 4> and Si* by fl in the scheme we ini-
tially provided in Section 3.2. 

Bearing in mind that for the models here considered there are 
not signiflcant differences between the results obtained with the 
reduced scheme that allows reducing computational costs and 
the complete one explained in Section 3.2, an additional step 
consisting of running the fllter with the estimates of the current 
bootstrap replica and the actual data valúes [as an extensión in 
the direction of the proposal by Rodríguez and Ruiz (2009)] 
might not be necessary. Comparing our results in terms of cov­
erages with those provided by Rodríguez and Ruiz (2009), we 
can state that ours for SeaDFA are similar to theirs for the Uni-
variate Local Level model. Although it is beyond the scope of 

this article, it would be of interest for further research to com­
pare for different univariate, multivariate, and factor models, 
the performance of the fhree aforementioned schemes. 

5. FORECASTING ELECTRICITY PRICES IN 
THE SPANISH MARKET 

In this section the SeaDFA and its bootstrap scheme are ap-
plied to compute point forecasts and forecast intervals for elec-
tricity prices in the Spanish market. 

Currently, electricity is traded under competitive rules, as is 
the case for other commodities, and this has opened a new fleld 
of research. The special features that electricity presents (non-
storability and the need to satisfy demand instantaneously) are 



responsible for the largely unpredictable behavior of its price. 
This, together with the great importance of this strategic sector 
in the national economy, supports the need to develop speciflc 
models for predicting electricity prices. Moreover, from the en-
gineering point of view, the availability of accurate forecasts of 
electricity prices allows the appropriate scheduling of genera-
tion units. 

Before the liberalization of electricity markets, demand was 
the only variable of interest, and a lot of works focused on this 
issue (Cottet and Smifh 2003), alfhough in the current context 
of liberalized markets, forecasting electricity prices, both in the 
short and long run, is of great interest. 

Short-term or one-day-ahead forecasting is useful for plan-
ning the production of the generation units, minimizing costs, 
and improving bidding strategies so as to maximize proflts. 
Some well-known references in this fleld include the articles 
by Nogales et al. (2002), Contreras et al. (2003), and Conejo 
et al. (2005), all of which used time series models to produce 
one-step-ahead forecasts for electricity prices in some weeks, in 
both the Spanish and the Californian markets. Koopman, Ooms, 
and Carnero (2007) analyzed spot prices coming from several 
European markets. Recently, García-Martos, Rodríguez, and 
Sánchez (2007) provided a computational experiment to obtain 
the combination of univariate time series models with the best 
global performance in the period under study, 1998-2003. 

Médium- and long-term forecasting (where the forecasting 
horizon is between one month and one year) are useful to re­
duce the risk that every bilateral contract implies. By means 
of bilateral contracts, customers and generators can agree to 
trade a certain amount of power at a certain price. However, 
every contract implies a risk since the seller must purchase 
the amount of energy agreed for every day in the Pool. Hav-
ing accurate long-term forecasts (covering at least the length 
of the bilateral contract) is crucial to maximize proflts and/or 
reduce risks. Nevertheless, there are very few published works 
concerning long-term forecasting of electricity prices. Vehvi-
lainen and Pyykkonen (2005) provided medium-term forecasts 
for monthly electricity prices in the NordPool. They included 
exogenous variables that affect the prices, such as temperature. 
Conejo et al. (2010) carried out a discretization which consisted 
of considering for each month four peak loads and four base 
loads, that is, they predicted 48 valúes per year and incorpo-
rated additional information on flnancial derivatives. By doing 
so, they obtained year-ahead forecasts for the prices in the Ger­
mán Market (the European Energy Exchange, EEX) and gen-
erated realistic scenarios that characterize all the possible re-
alizations of the generating process of the prices. The novelty 
of this work is the long forecasting horizon. They introduced 
the forward prices as an explanatory variable, but these prod-
ucts are only well developed in a few electricity markets, such 
as the EEX in Germany. Finally, with respect to factor analysis 
and electricity markets, Frestad (2008) demonstrated that elec­
tricity swap returns could be explained by a set of uncorrelated 
common and unique risk factors in the Scandinavian market. 

Here, we have selected the Spanish market, which accord-
ing to several authors (Nogales et al. 2002; Contreras et al. 
2003) is less predictable than, for instance, the Pennsylvania-
Jersey-Maryland (PJM) interconnection or the NordPool, due 
to its higher proportion of outliers and a lesser degree of com-
petition as well as the fact that during peak hours the Spanish 

market shows an even higher dispersión. This fact causes more 
uncertainty in periods of high demand, producing less accurate 
forecasts. 

For these reasons computing long-term forecasts for electric­
ity prices in the Spanish market presents a good challenge for 
testing the performance of the SeaDFA, and also a novelty since 
there are no related published works on long-term forecasting 
for this market. Our objective is to compute forecasts for ev­
ery hour in the year 2004 using data from lst January 1998 
through 3lst December 2003, so that the forecasting horizon 
ranges from one day up to one year. 

Moreover, in some previous works (Ángelus 2001) the im­
portance of calculating not only point forecasts but also their 
uncertainty is emphasized. In our work the bootstrap procedure 
is applied to compute forecasting intervals for the prices in the 
period under study, the whole year 2004. In practice, this is cru­
cial for long-term risk management of the Utilities. 

5.1 Estimation of SeaDFA for Electricity Prices 
in the Spanish Market 

A 24-dimensional vector of time series can be built when 
considering the series of prices in the 24 hours of each day. This 
is known as theparallel approach (Grady et al. 1991; Cottet and 
Smifh 2003; Smith and Cottet 2006). 

In this subsection we provide the results obtained when mod-
eling this 24-dimensional vector of prices. The SeaDFA was 
estimated for centered transformed prices in the period 1998-
2003 in the Spanish zone of the Iberian market, and the trans­
formed prices yt are calculated from the original prices pt as 
yt = log(pí + K). The constant K is added to avoid taking logs 
of a zero price. Alfhough it very rarely occurs, the marginal 
prices in the liberalized Iberian power market could be zero. 
This is due to the generation technologies that are in the base of 
the load curve (wind and nuclear power plants in this case). 
In Spain it is regulated by law that all the energy produced 
in the wind farms must be dispatched. Nuclear power plants 
could also offer the energy they produce at zero price since 
they cannot be stopped and restarted quickly due to technical 
and safety reasons. Of course the forecasting errors computed 
in the following subsections were calculated in the original un-
transformed space. 

For the transformed prices, yt, we flrst select the number of 
common factors as well as their multivariate model. Then the 
estimation is carried out and parameters of the SeaDFA are ob­
tained. Inference is done by means of the new bootstrap scheme 
developed. 

Seasonality must be dealt with when using this vector of se­
ries from electricity market data, which in this case is weekly 
(s = 7). Additionally, the yearly seasonality could be consid-
ered, as was done by Sáfadi and Peña (2008), who extracted 
this kind of seasonality by means of a linear combination of 
sines and cosines. All the empirical applications presented in 
this section were also carried out following this procedure, but 
there was no signiflcant improvement in terms of prediction er­
ror. The results obtained were similar or even slightly worse 
than those presented here (without removing the yearly season­
ality). Six years of data are used and the estimation of the co-
efflcients of the sines and cosines may lack sufflcient precisión. 



Electricity prices in the period January 1998 - December 2003. Iberian Market. Electricity prices in the period 1998-2003. Iberian Market. 
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Figure 1. 24 hourly time series of prices in the period 1998-2003 and detail of the months November-December 2003. 

Figure 1 shows the 24 hourly time series considered in the pe­
riod 1998-2003, as well as a detail of the last two months in 
2003. A common dynamics in the conditional mean of hourly 
prices can be observed. 

First, it is important to decide on the number of common fac­
tors, r. For this purpose the test proposed by Peña and Poncela 
(2006) is used. We performed their test sequentially, increas-
ing r at each step, and for lags k = 1 , . . . , 5, for our vector of 24 
time series. For each lag k we rejected a máximum of zero com­
mon factors, and therefore there is at least one common factor 
that is very persistent (probably nonstationary); a second fac­
tor also appears for all the lags, indicating the possibility of a 
second common nonstationary factor (its autocorrelation does 
not die faster than for the flrst factor). Therefore, the number of 
common factors is two. 

Apart from selecting the number of common factors, with the 
decisión based on the results of the Peña and Poncela test, it is 
also necessary to choose the model for fhese common factors. 
We have fltted a VARIMA(1, 0, 0) x (1,1, 0)7. Given the fact 
that the common factors are nonstationary, we flx a seasonal 
unit root, based on the importance of seasonality in electricity 
market data. Moreover, a single AR lag either in the regular or 
seasonal part was not able to capture all the common dynam­
ics, so both are needed. The equation of the VARIMA model 
(1,0,0) x ( l , 1,0)7 is 

[ I - f i 7 ] I _ | J u i JU2)fl7 

^1,21 í'1,22 

Í>1,21 

W2,t 

<P1,12 

01,22 
fu 
f%t 

(11) 

We have estimated this model, and used the bootstrap pro-
cedure previously described to make inference on the parame-
ters involved. We have detected that the constants c\ and c2 are 
not signiflcant, since their 95% confldence intervals are respec-
tively [-0.1254, 0.0683] and [-0.0409, 0.0352]. 

The model is re-estimated including the previous result on 
signiflcance of the constant, that is, imposing (ci, c2)' = (0, 0)', 
and the coefflcient 01,21 that relates the flrst common factor/i^ 

to the flrst lag of the second factor is not signiflcant, as is shown 
in Figure 2. Once again the test for signiflcance is percentile-
based, using the bootstrap distribution function. 

When the SeaDFA is again re-estimated including the con-
straint(ci,c2)' = (0, 0)'and 01,21 = 0 , all the other coefflcients 
remain signiflcant. We present the loading matrix, ñ, obtained 
in Figure 3(a). There is a clear relationship between hourly 
loads and the boxplot of hourly prices as shown in Figure 3(b) 
as well. 

In Figure 4(a), the common factors are provided for the pe­
riod October-December 2003, and the grid has been placed to 
indicate when a week starts (Monday), to be able to interpret 
in terms of the day of the week. The flrst common factor is 
seasonal (of course, one seasonal root is present), but the differ-
ences between weekdays and weekends are much more impor­
tant in the second one. 

The part of the /th hourly time series explained by the flrst 
common factor is obtained by multiplying con b y / u , and the 
same holds for the part explained by the second common factor, 
which is obtained as coaf^t- According to Figure 3(b) we have 

[ 
-3.8 -3.6 

H^ 
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Figure 2. Histogram for bootstrap replicates of the parameters of 
the models. 
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Figure 3. (a) Loads of the unobserved common factors, and (b) boxplot of the hourly prices. 

selected hours 4, 11, and 20 because of their representativeness 
and we provide in Figure 4(b) the prices for these hours dur­
ing the period October-December 2003 (the final period con-
sidered in estimating SeaDFA), as well as the part explained 
by the first common factor and the part of these hourly series 
explained by the two common factors. The difference between 
each series and the common part explained by the unobserved 
common factors is the specific component. 

The loads corresponding to the first factor are all positive 
[Figure 3(a)], larger in those hours in which both the level and 
variance of the prices are higher. The absolute valué of loads 
corresponding to the first factor are much larger than those for 
the second one, so the first one explains much more of the vari-
ability of each time series of hourly prices. Thus, for each se­
ries, the commonality of the second factor only implies a small 
"correction" (addition or subtraction) over the commonality of 

fhis hour considering only/^. This addition or subtraction de-
pends on the day of the week (weekday or weekend) and night-
time or daytime. The loads corresponding to this second factor 
are positive during the night and negative for daytime hours [in 
Figure 3(a) coa and —coa, / = 1 , . . . , 24, are plotted]. 

According to Figures 3(a) and 4(a): 

• For hour 4 (nighttime), in weekdays (first part of the week, 
the dates that appear in the graph correspond to Mondays) 
we observe that a negative term is added, and a positive 
one for weekends (end of weeks). 

• For hour 11 or 20 (daytime, morning and early evening), 
in weekdays (first part of the week, the dates that appear 
in the graph correspond to Mondays) we observe that a 
positive amount is added, and a negative one for weekends 
(end of weeks). 

These patterns can be observed in Figure 4(b). 

Boct 13oct 20oct 27oct 3nov 10nov 17nov 24nov 1d¡c 8d¡c 15d¡c 22d¡c 29d¡c 6oct 13oct 20oct 27oct 3nov 10nov 17nov 24nov 1dec 8dec 15dec 22dec 29dec 

Figure 4. October-December 2003. (a) Common factors. (b) Hourly series and commonalities. 



Finally, it is worth explicitly mentioning that, given the com-
plexity of the data analyzed, as a second stage we have fltted 
univariate autoregressive processes for the estimated speciflc 
factors, ei = (e\t,... ,%itY, just to capture any remaining struc-
ture that might affect fhem. This idea was flrst applied by Peña 
and Poncela (2004) and Ortega and Poncela (2005). From a 
theoretical point of view this is feasible; Bai (2003) stated that 
even if some correlation is present in the speciflc factors, con-
sistent estimates can be obtained for the parameters involved 
in the model. However, since the main objective of this work 
is long-term forecasting, the effect of speciflc factors on long-
term forecasts is not relevant. Even in the short run, and given 
that the variance of the speciflc factors is very small, the influ-
ence of this modeling on our short-term prediction errors was 
not signiflcant. 

5.2 Point Forecasts 

We provide the results obtained when calculating forecasts 
for electricity prices in 2004, using the data from lst January 
1998 through 3lst December 2003. Thus, the forecasting hori-
zon varies from one day up to one year, since the last datum 
we used was the last day in 2003, no matter for which day of 
2004 we are computing the forecast. The data were selected to 
be able to compare results with models developed for short-run 
forecasting. 

The accuracy metrics we consider have been selected be-
cause they have been previously used in the literature to 
evalúate the performance of the models developed for fore­
casting in electricity markets (Conejo et al. 2005). Let pn,a 
be the price in day d in the H\h hour, and ^pH,d its com-
puted forecast; then the error measurement eu,a (for each 
hour of each day) is deflned as eH,a = \pH,a -pn,d\/PH,d-
Using eH,d, the subsequent accuracy metrics can be deflned 
for each day: emeana = (^/^)2~l2H=ien,d and emediana = 
median{e\^, e%d, • • •, &u,d)- Finally, using the expressions of 
emeana and emediana, the MAPE and MAPE2 are obtained for 
a period of D' days as 

1 D' 
MAPE = — y ^ emeana and 

D' ¿—1 

d=\ 

1 °' 
MAPE2 = — y^emediang. 

d=l 

5.2.1 Long-Run Forecasting. The period selected (com­
puting forecasts for the year 2004 using the data for years 1998 
to 2003) was chosen to be able to compare the results with pre-
vious ones. Since there is no published work on long-run fore­
casting of electricity prices, we will compare our results with 
those obtained by methods speciflcally developed for short-
term forecasting in the Spanish market. 

With respect to benchmarking models, in a different appli-
cation context, Taylor (2008) carried out a comparison of six 
different forecasting methods for seasonal data. He drew two 
main conclusions: flrst, that there is a strong potential for the 
use of seasonal ARIMA modeling and the extensión of Holt-
Winters for predicting up to about two or three days, and sec­
ond, for longer lead times, a simplistic historical average called 
"Seasonal Mean" is difflcult to beat. 

In this article we use as benchmarking models the following: 

1. The Mixed Model approach proposed by García-Martos, 
Rodríguez, and Sánchez (2007), which uses a combina-
tion of several univariate seasonal ARIMA models for 
different lengths of time series. We have selected this 
model because, with respect to prediction errors in the 
short term, it obtains the best results among models pub­
lished for the Spanish market, and it computes forecasts 
for every hour in a very large span of hours (all in the 
period 1998-2003). 

2. The nonstationary Dynamic Factor Analysis (DEA) de-
rived by Peña and Poncela (2004,2006) could be an alter-
native when only the regular part of the dynamics can be 
modeled. In this case a VARIMA(9,1, 0), has been fltted 
for the r = 2 unobserved common factors extracted. 

3. The "Seasonal Mean" model by Taylor (2008). For each 
lead time, this would be the mean of the prices for the 
same hour of the week as the period to be predicted. He 
set the moving window to be equal to 24 weeks in length. 

The numerical results obtained for the year 2004, MAPE for 
each month, are shown in Figure 5 and Table 2. 

In Figure 5 and Table 2 the monthly MAPEs are provided, as 
well as the MAPE calculated for the whole year 2004, so after 
computing year-ahead forecasts for the whole year 2004, we 
have obtained hourly forecasting errors, eu,a, H = 1, . . . ,24, 
d=í,..., 366. MAPE for the whole year is 21.56% and the 
MAPE2 is 20.39%. Although the Mixed Model provided by 
García-Martos, Rodríguez, and Sánchez (2007) is very good 
at short-term forecasting, the errors obtained for the long run 
are very large, since MAPE for the whole year is 45.62% and 
MAPE2 is 47.76%. Although this Mixed Model is a sophisti-
cated ARIMA specially designed for the Spanish market and 
selected for the best global performance over a period of six 
years, it does not perform well over the long run. Taylor (2008) 
pointed out this handicap of ARIMA models. 

On the other hand, when using the DEA provided by Peña 
and Poncela, extracting r = 2 common factors and fltting for 
them a VARIMA(9, 1,0), MAPE and MAPE2 are respectively 
28.17% and 25.52%, which illustrates both: (1) the great re-
duction in the error when using dimensionality reduction tech-
niques compared to the Mixed Model and (2) the importance of 
including seasonality in DEA, allowing for extracting seasonal 
common factors, since SeaDFA reduces the MAPE to 21.56% 
and the MAPE2 to 20.39%. 

Taylor's (2008) "Seasonal Mean," which has the beneflt of 
simplicity, performs much better than the Mixed Model, but 
slightly worse than the DEA, with a MAPE of 29.60% and 
MAPE2of 27.40%. 

To summarize the results in Figure 5 and Table 2: the es-
timation of SeaDFA is worth the effort since a MAPE of 
21.56% is obtained, in comparison with a MAPE of 28.17% 
for DEA, 29.60% for the "Seasonal Mean," and 45.62% for 
the Mixed Model by García-Martos, Rodríguez, and Sánchez 
(2007). Moreover, as observed in the histograms depicted in 
Figure 5, the errors obtained with the SeaDFA are not only the 
smallest in mean but also those that present the lowest variabil-
ity. 

Moreover, to emphasize the nice performance of SeaDFA, 
it is interesting to compare the year-ahead forecasting error of 
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Figure 5. Monthly prediction errors (MAPE and MAPE2). SeaDFA, DFA (Peña and Poncela 2004), Seasonal Mean (Taylor 2008), and Mixed 
Model (García-Martos, Rodríguez, and Sánchez 2007). The complete table corresponding to these data is included in the online Supplementary 
Materials. The online versión of this figure is in color. 

21.56% obtained with SeaDFA to the one-day-ahead forecast­
ing error of 12.61% obtained with the Mixed Model. 

After presenting global results of SeaDFA for the entire year 
of 2004, we will focus on some particular weeks, speciflcally 
the third week in each month (often this week is used to check 
accuracy of forecasting models: Conejo et al. 2005; Contreras et 
al. 2003). Calculating the MAPE with SeaDFA, for these twelve 
weeks we get a MAPE equal to 19.75%, which again reflects 
the good performance of SeaDFA. Notice that for the flrst of 
these twelve weeks selected (the third week in January 2004) 
the forecasting horizon ranges from two to three weeks, while 
for the third week in February the forecasting horizon ranges 
from seven to eight weeks and so on. In the last of the twelve 
weeks considered the forecasting horizon ranges from 51 to 52 
weeks. 

In Table 3 the results for the third week in February (16th-
22nd February 2004) are provided. These results have again 

been obtained using the SeaDFA estimated for the prices in 
1998-2003, so the forecasting horizon varies from seven to 
eight weeks. The MAPE for this week is 16.38%. Using 
the Mixed Model of García-Martos, Rodríguez, and Sánchez 
(2007), the MAPE is 34.78%. 

Finally, and despite the fact that fhey incorporated the infor-
mation from the futures market, Conejo et al. (2010) computed 
year-ahead forecasts in the EEX, obtaining MAPEs that vary 
from 13% up to 44%. 

5.2.2 Short-Term Forecasting. In addition, although it is 
not the main goal of this article, we will also check the short-
term forecasting performance of SeaDFA. Although SeaDFA 
was not developed for this purpose, we get good forecasts in 
terms of prediction errors, even when comparing them with 
other forecasts obtained by methods speciflcally designed for 
the short-term time horizons. 

To illustrate that the SeaDFA is valid not only for medium-
and long-term forecasting but also for the short run, we provide 

Table 2. Average MAPE and MAPE2 for year-ahead forecasts for 2004. Monthly forecasting errors are plotted in Figure 5, and detailed 
in the online Supplementary Materials 

SeaDFA DFA Seasonal Mean Mixed Model 

(%) MAPE MAPE2 MAPE MAPE2 MAPE MAPE2 MAPE MAPE2 

Year 2004 21.56 20.39 28.17 25.52 29.06 27.46 45.62 47.76 



Table 3. Prediction errors, long-term forecasting, and one-step-ahead, for the week 16-22 February 2004 

Day 1 Day 2 D 

Long-term SeaDFA 37.17% 13.00% 12 
Mixed Model 27.04% 29.30% 29 

One-step-ahead SeaDFA 12.44% 3.53% 4 
Mixed Model 19.78% 6.34% 5 

in Table 3 the forecasts and errors computed for the same week 
in February 2004, but obtained by estimating the model using 
data up to the 15th of February and then re-estimating the model 
six more times while subsequently updating the data, which 
means that for each day in this week we are computing one-
day-ahead forecasts. The results are compared with those ob­
tained with the Mixed Model by García-Martos, Rodríguez, and 
Sánchez (2007), which was speciflcally designed for one-day-
ahead forecasting. Since this Mixed Model is based on seasonal 
ARIMA modeling, it falls into the class of models provided by 
Taylor (2008) as performing best in the short term. The daily 
prediction errors obtained by SeaDFA are of the same magni-
tude or even lower in comparison with these best-performing 
short-term models. 

5.3 Forecasting Intervals 

Once numerical results for long- and short-run point fore­
casts have been provided, it is of interest to report those ob­
tained when forecasting intervals are computed by means of 
the bootstrap scheme proposed. Computation of forecasting in­
tervals is relevant for decisión making of agents involved in 
power markets. In Figure 6 the percentile-based forecasting in­
tervals for the point prediction, which include uncertainty due 
to parameter estimation, are provided for the week of the 24fh-
30th of May 2004. This week in May has been used in previous 
works to check the performance of forecasting methods because 
its behavior in terms of load is special (Contreras et al. 2003). 

24th-30th May 2004 

5 1 1 1 1 1 1 L_ 
24 25 26 27 28 29 30 

Days in May 2004 

Figure 6. Percentile-based confldence intervals including uncer­
tainty due to parameter estimation (24-30 May 2004). 

Day 4 

9.83% 
29.21% 

8.60% 
5.39% 

Day 5 

18.99% 
34.50% 

6.54% 
10.70% 

Day 6 

9.94% 
44.54% 

11.02% 
8.07% 

Day 7 

14.70% 
49.22% 

20.3% 
11.0% 

MWE 

16.38% 
34.78% 

9.54% 
9.49% 

The forecasting horizon is almost flve months, since the last 
data used to estímate the model are from the 31st of December 
2003 (as in all the forecasts computed) which means medium-
term forecasting. Figure 6 illustrates the coverage of the pre­
diction intervals obtained using bootstrap techniques. For the 
week shown in this figure the percentage of real prices which 
are inside the 95% intervals is 89.88%, since 17 real prices lie 
outside them, and there are 168 hourly prices in a week. The 
coverages shown in Section 4 for simulated data are closer to 
the nominal valué (95%), but it should be considered that we 
are now dealing with real data, and outliers can be encountered, 
which make the task more difflcult. Anyway, the valué obtained 
is almost 90%, and can be considered acceptable under the de-
scribed circumstances. 

6. CONCLUSIONS 

In this work we have provided a seasonal extensión to Non-
stationary Dynamic Factor Analysis, which is a powerful tool 
for dealing with the important problem of long-term forecast­
ing of electricity prices. This problem has remained unsolved 
until now. In addition, the dimensionality reduction technique 
proposed here can be applied for modeling and forecasting 
any dataset consisting of a high-dimensional vector of time se­
ries with a seasonal pattern. Seasonal Dynamic Factor Analysis 
(SeaDFA) avoids previous seasonal differencing (which can re-
move the seasonality only in the mean and variance, but the 
seasonality in serial dependence structure remains), and allows 
not only for regular unit roots and dynamics but also seasonal 
ones. Seasonal Dynamic Factor Analysis (SeaDFA) is able to 
estímate common factors that follow a multiplicative seasonal 
VARIMA model with a constant. 

SeaDFA requires a modiflcation in the estimation procedure 
of the existing Dynamic Factor Analysis, due to seasonality and 
to the inclusión of the constant presented. The inclusión of the 
constant allows us to improve long-run forecasts in the case of 
nonstationary processes. 

Also, we have proposed a bootstrap procedure for making 
inference on all the parameters involved in the model. Further-
more, the bootstrap scheme introduced in this work can be ap­
plied to all models that can be expressed under state-space for-
mulation and needs neither a backward representation of the 
model ñor the innovations form representation. 

We apply our ideas to an interesting dataset that is difflcult 
to forecast, electricity prices in the Spanish market. Our fore­
casts are accurate, with a typical error of around 20% for year-
ahead, which compares well with one-day-ahead prediction er­
rors of about 13% found using some recent and accurate pub-



lished models (García-Martos, Rodríguez, and Sánchez 2007). 
Apart from very accurate forecasts for the médium and long 
run, the SeaDFA is also competitive in the short term. The cal-
culation of prediction intervals is done by the bootstrap scheme 
here proposed. 

The results obtained are precise enough to be able to use them 
for long-term risk management of Utilities. 

SUPPLEMENTARY MATERIALS 

Example, table, and appendices: Illustration Example T. Ex-
ample on how to build the transition matrix in the partic­
ular case of observed data that present seasonality. Table 
of monthly forecasting errors: Includes monthly forecast­
ing errors obtained with SeaDFA and other benchmarking 
models (this information is plotted in Figure 5 of the ar-
ticle). Appendix A: Kalman fllter and smoother recursions. 
Appendix B: EM derivations for the SeaDFA. Appendix C: 
Derivation of the correction term for the bootstrap procedure. 
(A_GM_R_S_supplemTEX.pdf) 
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