
A parallel implementation of 3D Zernike moment analysis

Daniel Berjón, Sergio Arnaldo, Francisco Morán

Grupo de Tratamiento de Imágenes, Universidad Politécnica de Madrid, Spain

ABSTRACT

Zernike polynomials are a well known set of functions that find many applications in image or pattern characterization
because they allow to construct shape descriptors that are invariant against translations, rotations or scale changes. The
concepts behind them can be extended to higher dimension spaces, making them also fit to describe volumetric data. They
have been less used than their properties might suggest due to their high computational cost.

We present a parallel implementation of 3D Zernike moments analysis, written in C with CUDA extensions, which
makes it practical to employ Zernike descriptors in interactive applications, yielding a performance of several frames per
second in voxel datasets about 2003 in size.

In our contribution, we describe the challenges of implementing 3D Zernike analysis in a general-purpose GPU. These
include how to deal with numerical inaccuracies, due to the high precision demands of the algorithm, or how to deal with
the high volume of input data so that it does not become a bottleneck for the system.
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1. INTRODUCTION

Classical Zernike two-dimensional polynomials are an orthogonal set of functions in the unit disk. They are formulated in
polar terms as a product of separate angular and radial components. The angular factors are themselves an orthogonal set
of functions in [0, 2π) and the radial factors are whatever family of functions it takes to make the product an orthogonal
set in the unit disk. The usual angular functions of choice to analyse real functions are sines and cosines, which require
the radial modulation factors to be made of complicated gaussian hypergeometric functions. This polar formulation of the
Zernike polynomials is both interesting, because it lends itself to easily build moments which are invariant against rotations
around the origin, and inconvenient, because data for performing numeric computations are usually sampled using square
lattices.

The high cost of computing the hypergeometric functions and resampling data has favoured the use of simpler alter-
natives such as Hu’s moment invariants1 to provide rotation-invariant shape descriptors. However, Zernike polynomials
do provide valuable insight about the structure of the shape to be analysed. Conceptually, they serve the same purpose as
2D Fourier series, each of the functions in the set encoding different spatial frequencies in the radial or angular directions.
Unsurprisingly, these features caught the attention of the image processing community long ago2, 3 and many attempts have
been made at reducing their computational cost in order to make them practical.4–6 However, it has been only very recently
that the availability of commodity parallel hardware and GPGPU (general-purpose GPU) programming tools have made
possible to compute them at interactive frame rates.7

The basic idea and structure of Zernike polynomials is not only valid in two dimensions, but theoretically also in higher-
dimensional spaces. In particular, Canterakis formulated Zernike polynomials for the three-dimensional case,8 in which
the angular factor are spherical harmonics. Spherical harmonics are a well known basis on the sphere and the moments
of a function projected on them can be arranged to form rotation-invariant descriptors of functions defined on the unit
sphere.9 Since the only dependency of 3D Zernike polynomials on angles is indeed the spherical harmonics function set,
this property also applies. However, computation of 3D Zernike moments is even more expensive than that of classical 2D
Zernike moments. The same issues that arise in those (resampling costs, complexity of the radial function) remain, only
worse because there are more samples, and now also the angular functions are complex in more than one sense.

Though there is obvious interest and research activity in shape descriptors for 3D objects,10 not many attempts have
been made at accelerating the computation of these 3D Zernike moments. Notably, Novotni and Klein were able to
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build upon Canterakis’ work and reformulate the 3D Zernike polynomials as linear combinations of geometric moments,
thus bypassing the resampling phase and moving much complexity offline.11 New algorithms to compute both exact and
approximate moments from triangle meshes have been presented very recently.12 The implementation we present in this
paper is an adaptation of Novotni and Klein’s algorithm for GPUs which makes it suitable for interactive applications.

2. 3D ZERNIKE MOMENTS

In this section we will attempt to summarise the results of Novotni and Klein and their formulation of 3D Zernike moments,
since we will use these concepts to build our parallel implementation. Please refer to the original paper for a complete
treatment of the theoretical background.

The orthogonal set of 3D Zernike functions Zm
nl is defined as:

Zm
nl (ρ, θ, φ) = Rnl (ρ) · Y m

l (θ, φ) (1)

for ρ ∈ [0, 1] , θ ∈ [0, π] , φ ∈ [0, 2π). Indices designing each of the member functions of the set follow these rules: n
designates the main order of the function and must be a non-negative integer; l must be a non-negative integer restricted to
l ≤ n and n− l must be an even number; m must be an integer ranging from −l to l.

3D Zernike moments are defined as:

Ωm
nl =

3

4π

˚
‖x‖≤1

f (x)Zm
nl (x)dx (2)

The radial portion of the 3D Zernike polynomials is provided by the spherical harmonics set of functions, which are
defined as:

Y m
l (θ, φ) = Nm

l Pm
l (cos θ) eimφ (3)

where Nm
l is the normalisation factor

Nm
l =

√
2l + 1

4π

(l −m)!

(l +m)!
(4)

and Pm
l is the associated Legendre function.

Canterakis showed that 3D Zernike functions can be rewritten as homogeneous polynomials in cartesian coordinates
using harmonic polynomials for the derivation. Harmonic polynomials eml are defined as:

eml (x) = rlY m
l (θ, φ) (5)

Expanding the associated Legendre functions and converting into cartesian coordinates, this can be rewritten as

eml (x) = cml |x|l
(
ix− y

2

)m

zl−m

� l−m
2 �∑

μ=0

(
l

μ

)(
l − μ

m+ μ

)(
−x2 + y2

4z2

)μ

(6)

where cml is the normalisation factor

cml = c−m
l =

√
(2l + 1) (l +m)! (l −m)!

l!

The above definitions apply to indices m ≥ 0. For m < 0 the following relation applies:

e−m
l (x) = (−1)

m
eml (x) (7)

As for the radial part of the equation, by definition has to be a function that, when multiplied by the spherical harmonics
that we selected as angular factor, satisfies the orthonormality criterion

3

4π

˚
‖x‖≤1

Zm
nl (x)Z

m′
n′l′ (x)dx = δnn′δll′δmm′ (8)
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and can be found to be

Rnl (r) = rl
k∑

ν=0

qνklr
2ν (9)

where k = n−l
2 and the coefficients qνkl are:

qνkl =
(−1)

k

22k

√
2l + 4k + 3

3

(
2k

k

)
(−1)

ν

(
k
ν

)(
2(k+l+ν)+1

2k

)
(
k+l+ν

k

) (10)

Therefore, combining equations 1, 5 and 9 the 3D Zernike polynomials can be written in cartesian coordinates:

Zm
nl (x) =

k∑
ν=0

qνkl |x|2ν eml (x) (11)

which implies, considering that m indices affect only the angular portion of the function and applying equation 7,

Z−m
nl (x) = (−1)

m
Zm
nl (x) (12)

and, consequently, for the 3D Zernike moments of a particular function,

Ω−m
nl = (−1)

m
Ωm

nl (13)

Combining equation 11 with equation 6 and expanding results in:

Zm
nl (x) = cml 2−m

k∑
ν=0

qνkl

ν∑
α=0

(
ν

α

)
(14)

·
ν−α∑
β=0

(
ν − α

β

) m∑
u=0

(−1)
m−u

(
m

u

)
iu

·
� l−m

2 �∑
μ=0

(−1)
μ
2−2μ

(
l

μ

)(
l − μ

m+ μ

) μ∑
v=0

(
μ

v

)

·x2(v+α)+uy2(μ−v+β)+m−uz2(ν−α−β−μ)+l−m

If the substitutions r = 2 (v + α) + u, s = 2 (μ− v + β) +m − u and t = 2 (ν − α− β − μ) + l −m are defined
(note that r + s+ t = 2ν + l ≤ 2k + l = n), it is possible to define

∑
r+s+t≤n

χrst
nlm = cml 2−m

k∑
ν=0

qνkl

ν∑
α=0

(
ν

α

)
(15)

·
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u=0
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m−u

(
m
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)
iu
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(−1)
μ
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(
l

μ

)(
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v=0

(
μ

v

)

where each χrst
nlm is defined as those terms from the right hand sums that satisfy its particular combination of indices (for a

given (n, l,m) tuple, many χrst
nlm will be zero). Then the 3D Zernike polynomials can be written as:

Zm
nl (x) =

∑
r+s+t≤n

χrst
nlm · xryszt (16)
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and the 3D Zernike moments can be rewritten as:

Ωm
nl =

3

4π

∑
r+s+t≤n

χrst
nlm

˚
‖x‖≤1

f (x)xrysztdx (17)

where the integral part of the equation is the definition of 3D geometric moments in continuous space. Note that thanks to
this formulation, only the geometric moments need to be computed for each new function; all the χrst

nlm coefficients may
be very expensive to obtain, but need only be found once, off-line.

3. PARALLEL COMPUTATION OF 3D ZERNIKE MOMENTS

In this section, we will explain how we adapted and implemented the algorithm described in the preceding section to a
GPU using the CUDA extensions for C. Our implementation is designed to work with voxel binary data, this is, each voxel
is either free or occupied, and we assume that the voxel grid is sized N ×N ×N , which is frequently the case.

3.1 Data normalisation

We want to describe data in a way which is invariant to translations and scale changes, so we must first normalise the input
dataset. In order to normalise it against translations, we first need to find a stable reference point in the shape described
by the occupied voxels in the grid to place the origin of coordinates. As we understand the problem, this reference point
should be located in the same position with respect to the shape, regardless of whether it is rotated or scaled, and despite
the noise introduced by the boundary discretization.

The easiest and computationally cheapest choice for a central tendency is the centroid, which can be defined by its
geometric properties as:

arg min
y∈R3

∑
i

‖xi − y‖2 (18)

Discrepancies between different scaled and/or rotated versions of the same shape are expected to be located on the
boundaries of the object, this is, away from the centre. Since the centroid position is more influenced by far samples than it
is by near samples, we thought that it could be not stable enough and evaluated the geometric median, which is defined as:

arg min
y∈R3

∑
i

‖xi − y‖ (19)

However, whereas the centroid is very easy to calculate, just by averaging the projections of the samples onto the
directions of each axis independently, there is no known closed form to calculate the geometric median, and costly iterative
procedures must be used.13

In the end, our tests indicated that, at least for the kind of shapes we cared about and tried both methods on (mostly
human figures in different poses), there is no significant difference between them, yielding points within very few voxels
from each other at the most. Therefore, we chose the centroid as reference point for the rest of the calculations, with an
initial implementation on CPU, since the bulk of the cost of the Zernike moments is the computation of the geometric
moments and the expected speed-up is not very big because the computation must yield a single result, which means
concurrent data access.

Once the location of the new origin of coordinates is determined, some scale factor must be found to relate the integer
coordinates of the voxel grid to coordinates in R

3, so that the shape under study fits into the unit ball, which is the domain
under the Zernike polynomials are well defined. For reasons that will be apparent when studying the computation of
the geometric moments, we will interpret each voxel as a solid cube with edge size one, its center sitting on the integer
coordinates that correspond to its indices in the array that represents the voxel grid.

Statistical measures of the radius of the object are not good enough because, depending on the general shape of the
object, some portions of it could lie beyond ‖x‖ ≤ 1, so we just assume the dataset to be free of outliers and measure its
real radius from the centroid c:

R = max

∥∥∥∥∥∥
⎛
⎝ ‖i− cx‖+ 1

2‖j − cy‖+ 1
2‖k − cz‖+ 1
2

⎞
⎠
∥∥∥∥∥∥ (i, j, k) ∈ V (20)
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where V is the set of all occupied voxels. Thus, we can establish a correspondence between integer indices and real
coordinates of the centres of the voxels:⎛

⎝ x
y
z

⎞
⎠ = norm (i, j, k) =

1

R

⎛
⎝ i− cx

j − cy
k − cz

⎞
⎠ (21)

Again, the measurement of the radius of the object is carried out on the CPU because its computation time is negligible
compared to that of the geometric moments and the expected speed-up is small: the comparisons between the maximum
value at some point and any candidate to replace it must be atomic if implemented concurrently to avoid race conditions.

3.2 Geometric moments

On equation 17, Zernike moments are redefined as linear combination of geometric moments. If we combine that definition
with the interpretation of voxel data we have made in the previous subsection, f (x) is a piecewise-constant function and
we can write:

˚
‖x‖≤1

f (x)xrysztdx =
∑
v∈V

˚
v

xrysztdx (22)

We can easily solve the integral for each voxel:

˚
v

xrysztdx =

ˆ i−cx+1
2

R

i−cx− 1
2

R

xrdx ·
ˆ j−cy+1

2
R

j−cy− 1
2

R

ysdy ·
ˆ k−cz+1

2
R

k−cz− 1
2

R

ztdz (23)

but we need not perform one integral per voxel: all voxels with the same i, j or k share the same sub-integrals on x, y and
z respectively, so we can build a lookup table of dimensions 3 × nmax ×N , where nmax is the maximum n up to which
we want to compute the Zernike moments. Ultimately this is limited by the availability of precomputed χrst

nlm coefficients
(in our case, we computed them up to order 20 using Maple). Again, we compute the lookup table in CPU because this
effort is still negligible compared to the actual computation of the moments, since for each occupied voxel we will have to
compute

nmax∑
n=0

n∑
r=0

n−r∑
s=0

1 =
1

6
n3
max + n2

max +
11

6
nmax + 1 (24)

integrals and aggregate the results across all the voxel grid. Therefore, we will implement this next part of the computation
on the GPU.

Conceptually, finding each geometric moment Mrst is as simple as looking up the result of each of the 1D integrals
for every occupied voxel, multiplying them together, then sum the results from all voxels. However, some care must be
exercised when aggregating the results from the voxels. Floating-point addition is not associative, especially when very
dissimilar terms are to be summed, and it is obvious that the results of equation 23 can be many orders of magnitude apart
if evaluated on a voxel close to the origin or if on a voxel close to ‖x‖ = 1, especially for moments of high order.

Before calling the actual computation kernel, we transfer to the device memory the lookup table and the voxel data, then
allocate and initialize to zero an array sized N × nmax × nmax × nmax to hold partial results of the geometric moments.
We configure a block size nmax × nmax × 1 and a grid size N × 1. Inside the computation kernel, threadIdx maps
to constant s and t per thread and blockIdx maps to a constant j per block. We will call this kernel once per k, so that
index is also constant for every thread in every block.

Using this configuration, all the threads in one block will work on the same whole single line of voxels, each of them
iterating on every possible values for r, and all of them will also need the 1D integrals on x for those values of r, so it makes
sense to load these data into shared memory, which greatly improves performance. To do this we employ the cooperative
reading technique, which consists in each of the k threads in each block reading the positions mod (k) of the data source
corresponding to their index number.
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N = 200 N = 180 N = 80
CPU GPU Speed-up CPU GPU Speed-up CPU GPU Speed-up

nmax = 20 1809ms 58ms 31× 1293ms 43ms 30× 313ms 11ms 28×
nmax = 15 1188ms 45ms 26× 897ms 34ms 26× 117ms 8ms 15×
nmax = 10 857ms 36ms 24× 718ms 27ms 27× 70ms 6ms 12×
nmax = 5 764ms 30ms 25× 661ms 23ms 29× 59ms 5ms 12×

Table 1. Comparison of computation times of the Zernike moments between sequential (CPU) and parallel (GPU) implementations of
the algorithm.

In order to contain the numerical error, the threads iterate on the voxels of the line, that correspond to variations on
the x coordinate, from the voxel that corresponds most closely to x = 0 outwards. Since all other parameters are fixed,
this guarantees that the terms we add to the sum are in increasing order. Finally, each thread writes on the positions
j × (0 . . . nmax)× s× t of the results array, so there are no two threads either in the same or in different blocks writing on
the same position.

As we told before, this kernel is called once per k, and again the iteration on k is done from the position that corresponds
most closely to z = 0 outwards. After the iteration is completed, each of the j × . . . × . . . × . . . subarrays of the results
contains the contributions of planes of constant j, and a new kernel adds them down, one thread per (r, s, t) tuple, from the
centre outwards.

Interestingly, we learned that the cost of accessing global memory, albeit to load data on shared memory, impacts the
performance of the algorithm severely, so we modified the data representation to use just one bit per voxel, packing them
on the x dimension into unsigned short cells of 16 voxels each. Obviously this packing operation only makes sense
on the CPU. Since we have to iterate on the whole dataset to pack it, the computation of the centroid comes essentially for
free, so we stuck to the CPU implementation for that.

3.3 Zernike moments

Once the geometric moments are computed, we only need to make linear combinations of them as indicated in equation 17.
For that purpose we use another kernel on the GPU, each thread being responsible for a particular (n, l,m) combination. At
the start of the execution of the program we load into the global memory of the GPU the whole table of χrst

nlm coefficients,
and now we cannot share them between different threads, but the volume of data to read is very small, so it does not impact
performance.

Again, we need to exercise caution to add each of the terms of the sum: the χrst
nlm coefficients range from 100 to 109

for nmax = 20 and the geometric moments also have a great dynamic range. Double precision floating-point numbers can
only hold a mantissa of ∼ 16 decimal digits and now we have no means to order the terms of the sum beforehand, so we
use the Kahan summation algorithm14 to double the precision of the mantissa, obtaining results within 8 decimal places of
the true value, computed symbollically with Maple.

4. RESULTS

We have performed tests both using a sequential implementation of the algorithm, all in the CPU, and the parallel imple-
mentation on GPU we have described. The test rig is a Core i7 960 clocked at 3.2 GHz, equipped with 12 GB DDR3
RAM and a nVidia GTX 465. All three datasets represent one person in different poses in a cubic space measuring
2m× 2m× 2m, discretized at different resolutions.

The measurements of computation time can be seen on table 1. The biggest gains are found on high orders and big grid
sizes because some costs are expected to be constant, for example runtime overhead, and some other are more dependent
on the size of the grid than on the maximum order.

5. CONCLUSIONS

We have shown a parallelisation of a known algorithm for computing 3D Zernike moments that makes them practical
for use in real-time interactive applications. Just by carefully arranging the operations and without making drammatical
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changes to the original algorithm, computation time is reduced well over one order of magnitude while retaining numerical
accuracy and stability.

The main limitation of this implementation is the same than in the original sequential algorithm: we can only compute
moments up to the order we have precalculated the complex coefficients which are necessary to combine geometrical
moments. In order to compute them online if unavailable for the required order, very high precision integer arithmetic is
required, but some efforts are being made to develop multiprecision libraries on the GPU, which would open a future way
to improve the implementation.
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