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ABSTRACT

Multi-camera 3D tracking systems with overlapping cameras
represent a powerful mean for scene analysis, as they potentially
allow greater robustness than monocular systems and provide useful
3D information about object location and movement. However, their
performance relies on accurately calibrated camera networks, which
is not a realistic assumption in real surveillance environments.

Here, we introduce a multi-camera system for tracking the 3D
position of a varying number of objects and simultaneously refin-
ing the calibration of the network of overlapping cameras. There-
fore, we introduce a Bayesian framework that combines Particle
Filtering for tracking with recursive Bayesian estimation methods
by means of adapted transdimensional MCMC sampling. Addi-
tionally, the system has been designed to work on simple motion
detection masks, making it suitable for camera networks with low
transmission capabilities. Tests show that our approach allows a
successful performance even when starting from clearly inaccurate
camera calibrations, which would ruin conventional approaches.

Index Terms— 3D tracking, Bayesian estimation, camera net-
work, transdimensional MCMC sampling.

1. INTRODUCTION

Most 3D tracking systems assume that an accurate calibration of the
camera network is available. Unfortunately, this assumption does not
match reality. The intrinsic calibration of the cameras (including lens
distortion) can be accurately performed before placing the cameras
(e.g. using calibration patterns), or can even be even provided by the
manufacturer. However, the extrinsic parameters of each camera in
the network depend directly on its specific geometry, and must thus
be obtained once the cameras have been placed. Therefore, it is hard
to achieve an accurate calibration for the camera network, specially
in open scenarios such as streets or public buildings.

In addition, cameras could have been fixed using frail supports,
rendering them susceptible to displacements (e.g. due to torsion or
hits). A change in the camera position and, more importantly, orien-
tation will result in a modification of the extrinsic parameters of the
camera. It would cause a deviation from the calibration information
initially provided, which could possibly ruin the 3D tracking system.

Here, we propose a multi-camera 3D tracking system which
not only estimates people 3D position over time, but also the real
extrinsic camera calibration of the network (assumed static). This
can be performed by combining Bayesian tracking [1] and recursive
Bayes estimation techniques [2] within a joint Bayesian framework.
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We assume an accurate intrinsic calibration for all cameras (a mild
assumption), and an initial approximate estimation for the extrinsic
calibration of the network. The 3D system will refine that approxi-
mate calibration over time, providing satisfying 3D tracking results
even from poor initial extrinsic calibration information. These re-
sults could not be achieved without the calibration refining process.

To make it flexible and suitable for real camera networks (with
moderate processing and transmission capabilities), the proposed 3D
system works on binary motion masks reported independently by
each camera. This simple input presents two advantages:

e All mono-camera processing is performed individually in
each camera, as it does not represent a great computational
cost. In addition, it can be done using unspecific, off-the-shelf
binary motion detectors.

e Input data can be easily transmitted from all the cameras to
the central node even in wireless network with low transmis-
sion capabilities, as binary images (and even more images
with high spatial correlation such as binary motion masks)
can be efficiently compressed.

Unlike in [3], the use of appearance information has been discarded,
because it would be expensive to transmit and it has not been consid-
ered reliable enough for real tracking applications [4], as it changes
dramatically from different points of view, and usual surveillance
cameras tend to ‘desaturate’ colors in real illumination conditions.
Instead, the presented system relies only on purely geometric reason-
ings, enhanced with the sequential refining of the calibration data.

2. BAYESIAN ESTIMATION FRAMEWORK

Let us denote by x; the vector of parameters describing jointly the
positions of the 3D objects present in the scene at time step ¢. Let us
denote by I the joint extrinsic calibration information of all the C'
cameras of the system with respect to a certain real-world coordinate
system. Note that, unlike x;, which represents varying phenom-
ena that we aim to track over time, I' does not depends on ¢, as
it represents static parameters that we intend to iteratively refine.
Let us finally denote by z; the set of binary motion detection masks
reported at time ¢ by the C' cameras of the system, z; = (2{)%1,
and by Z* the whole set of masks reported up to time ¢, Z* =
(2t, z¢—1, - . ., z1). Then, the conditional joint distribution of x; and
I" given all the available observations Z* can be written as

p(xi7F|Zt) O(p(Zt|Xt7F)p(Xt7F|Zt_l)7 (1)

where we have assumed that the distribution of z; is totally deter-
mined by x; and I". The distributions p(x;,I'| Z°) and p(x;,I'| 2"~
are not the usual posterior and predicted distributions of the
Bayesian tracking framework [1], as unlike in common tracking
systems they also include the time-invariant parameter I': this should
be addressed specifically as in recursive Bayes estimation [2].
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To handle this expression over time, we will use MCMC-based
Particle Filtering, which has proved extremely effective for track-
ing multiple interacting objects. Traditional sampling methods for
Particle Filtering (such as SIR [1]) draw samples from a predicted
distribution which could differ drastically from the target distribution
to approximate: whereas, MCMC-based methods (and his varying
dimension version RJ-MCMC) sample directly from the posterior
distribution. In our case, we should adapt the MCMC to our joint
framework for Bayesian tracking and recursive Bayes estimation.

2.1. State-space definition

The state-space of the presented problem can be defined as the carte-
sian product of two spaces, one of them of variable dimensionality
corresponding to object layout in space, x;, and the other of fixed
dimensionality and corresponding to camera calibration, I'.

We will define the object state vector as x: = (Xi,+)icz,, Where
T is the set of indices identifying the | Z| objects present in the scene
and x;,; the state of the object with identifier ¢. Additionally, each
object will be modeled as a vertical cylinder with constant horizontal
velocity: so each object will be encoded as

Xit = (Tiyts Yty Zists Tity Uit Rigt, Tist) )

where x; ¢+, y;,+ and z;,; are the cartesian coordinates of the central
point of the cylinder base with respect to the real-world coordinate
system at time ¢, ©; ; and y;,; represent its horizontal velocity, and
hi,: and r; ; are respectively its height and its radius. That choice for
object representation is clearly oriented towards people tracking, but
is not motivated by any limitation of the presented framework and
could be adapted to other specific practical situations.

Whereas, the camera calibration state vector will be defined as
= (Fc)le, where each I'. encodes both the rotation (3DoF) and
the position (3DoF) of the c-th camera. Rotations will be encoded
using Euler angles expressed in the ZYX convention, as this choice
prevents gimbal lock problems in practical camera settings.

2.2. Continuous prediction equation using kernels

Our extended predicted distribution p(x:, I'| Z*~") can be written as

p (x:,T[Z°7Y) Z/P(Xt|xt—1)p(xt—17 Dz dxi-1,  (3)

where we have assumed that the dynamic model of the system,
p (xefxe—1,T, Z"7"), is simply p (x¢|x¢—1). Additionally, let us
assume that, as in usual MCMC-based systems for tracking, we have
approximated the joint tracking and estimation results at time ¢ as a

set of S equally-weighted samples {xis_)l, re }SS: |- that is,

5
_ - 1 s
B (xe-1,T) 2" l)zgsz:;a((xtfhr)—(xiil,r( D). @
where 0(-) represents the Dirac delta centered at the coordinate ori-
gin (see Fig. 1.a). Applying (4) into (3) we would obtain

B (x, T2 ~ %ip(xdxgl) 5(r _ 1“<S>) .G
s=1

Although the ‘input’ is a set of purely discrete samples, the result is
a mixed probability distribution: continuous on x; but discrete on I'.
This is so because the dynamic model p (x¢|x¢—1) acts as a sort of
interpolating kernel in the x; dimensions [2], while there is no such
an interpolating behavior in the I' dimensions (see Fig. 1.b). How-
ever, to sample from the continuous density function p (x¢, I'|Z*™")
using MCMC we would need to construct an analytical continuous
approximation for it. For that purpose, we will apply kernel density
estimation techniques on the I" dimensions.
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Fig. 1. Effect of the interpolating kernels k%' (I") on the extended

p(x/|x2) d(r-TVY)

predicted distribution p (x¢,I'|Z*~"). a) Particle-approximated
posterior at time ¢ — 1, and corresponding predicted pdf b) without
kernels and c¢) with kernels.

Let us suppose now that we apply on (4) the kernel function
kﬁjl(f‘), which, for simplicity, will be common for all the the S
samples. Then, we could approximate the posterior distribution at
time ¢ — 1 using the mixed distribution

f)(xt_l, r |ZH) - %ié(xt_l - x,Ei’l) k};l(r— r<s>) . (6)
s=1

Then, applying this into the prediction equation (3), we obtain

p(x0,T)207Y) ~ % ip(xt|x§?1) k};l(r - 1“<S>) G
s=1

which is a purely continuous approximation for the predicted distri-
bution (see Fig. 1.c). Along with the observation model p (z¢|x+, 1),
this will allow us to use MCMC to approximate the posterior distri-
bution: we will obtain again a set of S equally-weighted samples
{xg*“), re }Ssil, on which we will apply again kernel density esti-
mation to perform the operation of the algorithm at time ¢ + 1.

2.2.1. Automatic selection of kernel scale

As kernel function ;' (T") for the camera-related dimensions, we
will use a Gaussian kernel function with diagonal scale matrix H;_;
which will be estimated automatically from p (xt_l, F\Zt_l), or

more specifically, from the samples {xi‘?l, NG

Automatic scale selection is extremely important for recursive
Bayes estimation. The use of a kernel yields a continuous function
from discrete samples drawn from a certain pdf p(z). However, the
resulting function does not approximate p(x), but its convolution
with the (reflected) kernel function instead [2]. As we expect the
estimation for I' to be more and more precise as more evidence is
gathered, that is, its posterior distribution will present lower and
lower variance, H;_1 should be related to p (x;,I'|Z*~") to provide
an acceptable continuous approximation for it.

For the automatic calculation of the diagonal scale matrix H, let
us assume that the marginal posterior distribution of I' is approxi-
mately Gaussian, and that the different camera components compos-
ing I' are independent. Then we can estimate the variance increase
caused by the kernel kg (I') independently for each component. Let
us focus only on the r-th component, and let us assume that its true
standard deviation is o,-, whereas the scale of the kernel for the same
component is h,. Then, the deviation o, of that component after
applying the kernel would be o) = /o2 + h2. So, if we aim to
limit the increase in the standard deviation to a certain low ratio &
(such that o} < o-(1 + &)), we should set

hr < or/E(E+2). (8)
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In our experiments we set £ to 0.05, obtaining h, ~ 0.320,.. How-
ever, we have observed that moderate deviations from that value do
not have visible consequences on the performance of the system.
The value o, will be estimated as the marginal standard deviation of
the r-th component of the corresponding samples, computed using
the basic unbiased estimator [2].

2.2.2. Dynamic model for multiple object interaction

The definition of an object state vector x; encoding jointly all the
3D tracked targets allows us to use a dynamic model taking into
account possible interactions between objects. The 3D dynamic
model designed for our system draws on the one defined in [5] for 2D
tracking, and can be factorized into simple terms so as to facilitate
consecutive iterations of the MCMC algorithm.

First, although for clarity we have been denoting only by x;
the state vector for objects, it is convenient in practice to explicitly
express as well the set Z; of object identifiers at time t. Obviously,
|Z:| represents the number of currently objects tracked. Additionally,
Z; C I, where Z = {1,..., N} is the set of possible identifiers
considered, and [V is the maximum number of objects. Including
indices explicitly, the object dynamic model will be written as

P(Zt xe| L1, %¢—1) = P(Ze|Te -1, x¢ 1) p(Xe|Zt, Tt 1, Xt 1) - (9)

At this point, we state the following partition for Z, which will be
very useful for subsequent definitions:

e Tg =7, () Zi—1: objects that stay

e Ip = Ti_1\Z:: objects that disappear at time ¢

e T4 = Z;\Z;—1: objects that appear

e Tr =1\ (Zs UZp UZya): restof potential identifiers

As for the distribution of the identifiers, we assume that the pres-
ence of object 7 € 7 in the scene does not depend on their position at
time ¢ and is also conditionally independent of the presence of other
objects. Then, defining the probabilities Ps and P4, we will write
P (It|It71) = HiGI P (Z S It|It71), where

Pg, ifi1 € Zg; (1—P5), ifi € ZIp

Py, ifi€Za; (1-Ps), ifi €Zr ° (10)

P (i eL\Zt,l):{

Whereas, we will define the distribution of the positions of ob-
jects at time ¢ (conditioned to the present indices Z;) as

P(Xt|zt,l—t71, thl) X

o< [Joxueix) []p(xi

Vi,jE€Lt VieZg
i#j

xii-1) | ] paxs) . (D)

V€L A

Object interaction is defined pairwise by means of a function in-
volving only the current static positions of objects, and is defined
as p(x; y) = di /(1 +d ), where dy, is the horizontal distance
between the axes of cylinders x and y normalized by the mean of
their radii, and 8 > 2 to correctly discourage overlapping cylinders.

The other two last factors of (11) represent the a priori distribu-
tion for the position of objects present at time ¢, that is, ¢ € Z;:

e Objects already present at t—1 (i € Zs) will depend on their
previous state, and thus p(x;,¢|x;,t—1). In that case, the com-
ponents have been considered independent and Gaussian, all
of them centered at their value at t—1 except for the horizon-
tal coordinates x; ; and y; 1 of the cylinder, which will be
centered respectively at (2 +-1+24,41) and (Y +1+ i e-1)-

1875

e Whereas, the distribution p a(x;,+) for appearing objects (j €
T ) will be common for all objects. As we do not assume any
previous information about entry areas in the scene, pa(x;,)
will be defined as a uniform distribution for z, y and z. Veloc-
ity, radius and height distributions have been assumed Gaus-
sian, centered respectively at 0, 70 =0.35m and ho =1.70m.

2.3. Multi-camera motion detection observation model

Our multi-camera observation model draws on that in [6], adapted
to multi-camera input and suppressing its training phase. Assuming
that the observations performed by the C' cameras, z; = (2§ )cczl,
are conditionally independent given the true state of the system (x;
and I"), we simply write p (z¢|x¢, ') = Hlep (2f]x¢,T'c), where
I’ is the calibration of the c-th camera.

The factor corresponding to each camera will be a function of
the precision v and recall pf of two binary masks, the observed
one, zf, and the expected one, ef = ef(x¢,I'c), which will be
calculated as the projection of the objects/cylinders onto the image
plane of the corresponding camera. The proposed distribution is
p(zf|xe,Tc) = s(vi, kv)s(pf, kp), where s(z, ko) is a sigmoid-
like function (specifically, a raised-cosine function) defined over the
range [0, 1] and with transition from 0 to 1 centered at the value k.

3. RJ-MCMC MOVES AND PRACTICAL OPERATION

Combining all the partial distributions previously discussed, the ex-
tended posterior distribution can be written as

C
p(xe,T12") o< [ [p Gilxe, Te) [ o(xit5%50) X

c=1 Vi, jETy

i#£]
( H p(xi7t|x§i)_1) H pa(xj) x  (12)

viez§) viez$)
x Hp(z' €T, |I,Ei)1) kgl(rr<s>)>
1€l

where the interaction has been extracted outside the summation as
it does not depend on the distribution at t—1. We will approximate
this p(x¢,I'|Z"), defined over a space of variable dimensionality, by
drawing discrete samples from it using RI-MCMC techniques [5, 6].
More specifically, we will use the Metropolis-Hastings algorithm,
which requires the definition of different reversible moves to itera-
tively draw candidate samples that will be accepted or not according
to their acceptance ratio o [5]. An accurate representation of the
posterior requires numerous iterations and consequently numerous
evaluations of p(xt, Nz t). To minimize the operations required by
each possible move, we will store individually the projected mask of
each of the (potentially |Z|) objects for each camera, and maintain
intermediate calculations in specific matrix and vector structures.

S
X
s=1

Diffusion moves

Diffusion moves does not involve dimensionality changes. We de-
fine two moves: modification of one single camera, and modification
of one single object (the rest of objects and cameras unchanged).

The modification of the c-th camera will be performed by draw-
ing a new I'} from a Gaussian distribution centered at the I'., the
value of the previous iteration of Metropolis-Hastings. Reevaluating
the posterior at the new hypothesis means reprojecting all objects on
that specific camera only.

Analogously, the modification of the i-th object will be per-
formed by drawing a new x; , from a Gaussian distribution centered
at x; ;. In that case, we will need to reproject that specific object in
all the cameras to calculate the resulting posterior density.
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Fig. 2. Sequential refining of the calibration for a single camera, showed by projecting five 3D reference points using each calibration
hypothesis. Black crosses: projection using the actual calibration data. White dots: projection using samples drawn with MCMC to
approximate the distribution at time ¢. Red crosses: projection using the calibration estimation (mean of samples) at time ¢.

Transdimensional jumps

Jumps represent a dimensionality change of the state space. We
define two jumps, birth and death, both related to appearance and
disappearance of objects, and one the reverse of the other.

Death will be simply performed by randomly choosing an index
i € ' and removing the corresponding object. Whereas, birth will
be performed by choosing randomly an identifier i* € Z\Z; and
then following a data-driven proposal distribution [5] for xj ;. That
distribution will be a sum of Gaussians centered at the 3D positions
reported by an auxiliary 3D object detector, performed by processing
pairwise those motion mask 2D blobs that cannot be justified by
currently considered objects.

4. RESULTS

The proposed system has been tested on different scenarios moni-
tored with several semi-overlapped cameras, modifying the extrinsic
parameters of some of them. In the observation model, we have set
the k, =k, =0.6 to take into account that cylinders cannot perfectly
approximate real objects. As for RI-MCMC parameters, we draw
1000 total samples, out of which 25% will be considered part of the
burn-in stage and thus discarded [5]. All the rest of particles will
be used for kernel scale estimation, but only 50 of them, randomly
chosen, are used to approximate the posterior distribution, reducing
so the computational cost of each Metropolis-Hastings iteration.
The experiment displayed here corresponds to the SCEPTRE
football database [7], where a match is monitored using 8 semi-
overlapped cameras. Extrinsic parameters of cameras 2, 3 and 7
were deliberately deviated from their actual values: cartesian coordi-
nates in 2m, and Euler angles in 2° (each). Fig. 2.a shows the uncer-
tainty and the offset of the calibration estimation for camera 2 during
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Fig. 3. Bird’s eye view with tracked object trajectories (last 3
seconds). True camera positions have been schematically indicated.
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the initial time steps of the algorithm by displaying the projection
of several reference 3D points for the 50 selected particles ng).
Fig. 2b-d show how the estimated camera calibration approaches
its actual value over time, reducing also the uncertainty on the es-
timation. Fig. 3 displays a virtual bird’s-eye view of the trajectories
(during the last 3 seconds for clarity) of 22 detected players, showing
the tracking performance of the system in situations with several
objects and close interactions between them.

5. CONCLUSIONS

‘We have presented a multi-camera system for jointly tracking a vary-
ing number of 3D objects and recursively refining the camera net-
work calibration initially provided. So, it eases the need for accurate
camera calibrations of most 3D tracking algorithms, which is often
difficult to satisfy in real scenarios. This is achieved by combin-
ing Bayesian tracking and sequential Bayesian estimation through
kernel-based techniques and transdimensional MCMC sampling.

Conducted tests show the capability of the presented approach
to satisfactorily track the 3D positions of several interacting objects
even when the initial calibration of certain cameras is not correct,
yielding also an improved calibration estimation for them.
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