
Area-Efficient Linear Regression Architecture for Real-Time
Signal Processing on FPGAs

Pablo Royer Miguel Ángel Sánchez Marisa López-Vallejo Carlos A. López Barrio
Dpto. de Ingenierı́a Electrónica, ETSI Telecomunicación, Universidad Politécnica de Madrid

Ciudad Universitaria s/n, 28040 Madrid, Spain
{proyer,masanchez,marisa,barrio}@die.upm.es

Abstract—Linear regression is a technique widely used in digital signal
processing. It consists on finding the linear function that better fits a given
set of samples. This paper proposes different hardware architectures for
the implementation of the linear regression method on FPGAs, specially
targeting area restrictive systems. It saves area at the cost of constraining
the lengths of the input signal to some fixed values. We have implemented
the proposed scheme in an Automatic Modulation Classifier, meeting the
hard real-time constraints this kind of systems have.

I. INTRODUCTION TO LINEAR REGRESSION

Following Moore’s Law, current nanometer technologies have
allowed extraordinary integration densities in digital circuits. This
has specifically favoured Field-Programmable Gate Arrays (FPGAs),
which offer a flexible solution for hardware implementation at a
suitable low cost [2]. The flexibility of FPGAs allows the im-
plementation of different generations of a given application and
provides space to designers to modify implementations until the
very last moment, or even correct mistakes once the product has
been released. Furthermore, even though FPGAs are not as efficient
as ASICs in terms of performance, area or power, it is true that
nowadays they can provide better performance than general purpose
CPUs or digital signal processor (DSP) based systems. This fact,
in conjunction with the enormous logic capacity allowed by today’s
technologies, makes FPGAs an attractive choice for implementation
of complex digital systems. Moreover, due to the inclusion of digital
signal processing capabilities [3], FPGAs are now expanding their
traditional prototyping roles to help offload computationally intensive
digital signal processing functions from standard processors.

In this context, the implementation of complete signal processing
systems in FPGAs has become a reality. FPGAs allow for true
parallel processing by supporting multiple simultaneous threads of
execution. Typically, the system throughput of many signal processing
algorithms can be improved by exploiting concurrency in the form
of parallelism and pipelining [4]. However, the complexity of most
signal processing algorithms makes the design of this kind of systems
complicated and error prone.

In this work we have focused on a linear regression method that
has been widely used in many signal processing applications, such
as [5]–[7]. We have designed an FPGA-oriented architecture that
efficiently implements a general linear regression method. The design
has been conceived targeting Xilinx devices and with very hard area
and performance constraints that other implementations did not meet
[8]. The main goals of the proposed architecture are the following:

• To make the best use of available resources in order to leave as
much free space as possible for other important computations
required by the particular signal processing system.

• To allow real-time processing: working at the highest possible
frequency and with a high degree of parallelism.

This work was funded by the CICYT project DELTA TEC2009-08589 of
the Spanish Ministry of Science and Innovation.

Fig. 1. Example of a linear regression function and the values from which
it is calculated.

The proposed architecture exploits the existence of DSP blocks in
current FPGAs to reduce the required distributed logic and provide
high performance1.

We have validated our linear regression model by including this
module in an Automatic Modulation Classifier (AMC). AMCs iden-
tify the modulation format of transmitted signals by observing the
received data samples, which are corrupted by the noise and fading
channels. AMC plays an important role in civilian and military ap-
plications such as software-defined radio, cognitive radio, intelligent
modem, dynamic spectrum management, interference identification,
electronic surveillance and electronic warfare [9], [10].

The structure of the paper is the following. First, the equations
required to compute a general linear regression are formulated. Next,
we present the proposed scheme in Section III while the implementa-
tion details are provided in Section IV. Finally, experimental results
are presented and some conclusions are drawn.

II. LINEAR REGRESSION EQUATIONS

As explained, we are searching the linear function that better fits
a given set of samples as in figure 1, that is, the coefficients a and b
that minimize the mean squared error (MSE):

MSE =

N−1∑
i=0

(di − a · i− b)2 (1)

where di is the ith input value (i ∈ {1..N}), a is the slope and b
the value at index 0 of the linear regression function.

This is achieved using the derivatives:

1In particular, we have focused on the Xilinx Virtex-5 SX FPGAs.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148661212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MSE =

N−1∑
i=0

d2i + a2
N−1∑
i=0

i2 − 2a

N−1∑
i=0

idi

+Nb2 + 2ab

N−1∑
i=0

i− 2b

N−1∑
i=0

di (2)

∂MSE

∂a
= 2a

N−1∑
i=0

i2 − 2

N−1∑
i=0

idi + 2b

N−1∑
i=0

i = 0

a =

(
N−1∑
i=0

idi − b
N−1∑
i=0

i

)
/

(
N−1∑
i=0

i2
)

(3)

∂MSE

∂b
= 2Nb+ 2a

N−1∑
i=0

i− 2

N−1∑
i=0

di = 0

b =

(
N−1∑
i=0

di − a
N−1∑
i=0

i

)
/N (4)

In the end we have:

a =

(
N

N−1∑
i=0

idi −
N−1∑
i=0

di

N−1∑
i=0

i

)

÷

(
N

N−1∑
i=0

i2 −
N−1∑
i=0

i

N−1∑
i=0

i

)
(5)

b =

(
N−1∑
i=0

di

N−1∑
i=0

i2 −
N−1∑
i=0

idi

N−1∑
i=0

i

)

÷

(
N

N−1∑
i=0

i2 −
N−1∑
i=0

i

N−1∑
i=0

i

)
(6)

which will be used as base in our hardware implementation.

III. PROPOSED SCHEME

As seen in equations 5 and 6, the coefficients depend on both
the input data and the number of input values that is considered.
Regarding the input data, two summations are required, one for the
values themselves and another one for the values multiplied by their
indexes. Concerning the number of values, two more summations are
performed, one for the indexes themselves and another one for the
squared indexes. In hardware summations are computed by means of
accumulators.

A fully flexible architecture, that can accept any number of input
data, will require to compute the accumulation of the indexes and
the squared indexes either as an actual accumulation or with the
appropriated formula once we know the final N as in equations 7
and 8, what involves additions or accumulations, and multiplications.

N−1∑
i=0

i =
N2

2
− N

2
(7)

N−1∑
i=0

i2 =
N3

3
− N2

2
+
N

6
(8)

In addition, as the denominator in equations 5 and 6 depends on the
input, a division is required, that supposes a significant area increase.

An example of a basic scheme that performs the linear regression
is shown in figure 2, the first stage uses accumulators (ACC) and
multiply-accumulators (MACC). The following stages multiply the

ACCMACCMACC

PRODUCTS AND SUBTRACTIONS

di

a b

ACC

DIVISION

Fig. 2. Example of basic a and b coefficients computation.

results, subtract them and finally a division is performed. Although
some operations of this scheme can be performed in a more efficient
way, it gives an idea of the workload required to compute a and b
coefficients as a direct application of equations 5 and 6.

The basic scheme can be significantly improved if the sequence
length can be constrained. In order to do that, we can rewrite the
equations for the a and b coefficients to separate the part of the
equation that depends on the input data, and the part that only depends
on the length of the input sequence:

a =

(
N

N
∑
i2 −

∑
i
∑
i

)
·
N−1∑
i=0

idi

−
(∑

i

N
∑
i2 −

∑
i
∑
i

)
·
N−1∑
i=0

di (9)

b =

(∑
i2

N
∑
i2 −

∑
i
∑
i

)
·
N−1∑
i=0

di

−
(∑

i

N
∑
i2 −

∑
i
∑
i

)
·
N−1∑
i=0

idi (10)

Now the computation of a and b is performed by multiplying∑
di and

∑
idi –that needed to be calculated in any case– by four

constants and then subtracted.
The block diagram of the new scheme is now as shown in figure

3, where the number of constants depends on the input sequence
lengths we have to consider, and the rate of three or four2 constants
per length.

IV. IMPLEMENTATION

The main advantage of the scheme in figure 3 is that the constants
can be stored in a ROM. Even if these constants depend on the value
of N we have bypassed the need of computing

∑
i and

∑
i2 and the

division in the hardware, as all these operations are now performed
previously at design time. In addition, more area can be saved if we
only need to take into account some particular sequence lengths.

2Two of the values are equal but may be stored with a different binary
representation.

ACCMACC

MACC Constants

di

a b

Fig. 3. Proposed scheme for a and b coefficients computation.

In our case, we are using a linear regression model for an
Automatic Modulation Classifier (AMC). In particular, the linear
regression is used in the computation of the key statistics for the
detection of phase modulations. The input data is a two sample (phase
data) per clock cycle signal of which we do not know the length. To
process it, the signal is split into packets of 256 samples that are
input to the linear regression module.

For long signals this scheme is accurate as at most 255 samples
are lost. But for shorter ones, the part of the signal that is lost is
not negligible anymore: in some cases even the full signal could
be discarded. To avoid this problem we introduce a second linear
regression model that takes shorter packets of 128 samples, that
halves the maximum number of samples that can be lost, using the
scheme explained in section III. The double model is implemented
sharing most of the hardware: only new constants have to be stored
in the ROM, the rest of the hardware remains unchanged an is limited
by the longest model.

Our linear regression implementation would be able to deal with
any value of N . Nevertheless, there are other limiting modules in
the system that impose the restriction of sequence lengths that are
powers of two.

A. Xilinx DSP48E-based Operators

The scheme proposed in figure 3 uses mainly ACCs and MACCs,
that makes the Xilinx embedded DSP48E very appropriated for the
implementation.

A simplified representation of the Xilinx DSP48E architecture [3]
is shown in Figure 4 (for instance, internal registers are not drawn).
It consists on a 25x18 signed multiplier (ports A and B) followed
by a 3-input 48-bit ALU that can be set up as an accumulator. The
inputs of the ALU are selected by three multiplexers. If we choose
the output of the multiplier only two inputs are allowed, otherwise,
if the multiplier is not used, the juxtaposition of A and B ports can
be used as a 48-bit input. Other signals that can be input to the ALU
are the 48-bit port C or the registered output of the ALU, P.

For the implementation of the linear regression two basic operators
are required:

0

0

0

X

Y

Z

C

B

A

A:B P

M

Fig. 4. Internal architecture of the Virtex-5 DSP48E Slice [3]

0

0

0

X

Y

Z

C

B

A

A:B P

M

Fig. 5. Implementation of a 2-input accumulator using a DSP48E.

ACC We use a DSP48E configured as a 2-input accumulator to
perform the

∑
di operation (see figure 5). The two inputs

are connected to ports A:B and C, loading the X and Y
multiplexers respectively. The output P is connected to the
multiplexer Z.

MACC 1 For the
∑
idi accumulation shown in Figure 6, three

DSP48E are required, two of them performing the multipli-
cations with the samples in ports A and their corresponding
indexes in ports B, here the ALU is not required so it is set
to add zero. Then, the third DSP48E performs the two-input
accumulation. Depending on the area requirement of the
design, alternative implementations are possible, like using
two DSP48E with one external adder.

MACC 2 The following stage, the computation of a and b, is
also implemented using one DSP48E. The results of the
previous stages (connected to port A) are multiplied by the
corresponding constants stored in the ROM (connected to
port B) and subtracted by using the ALU. As we only use
one DSP48E a and b are calculated one at a time. The
implementation is shown in figure 7.

B. Accumulators Bit-width

Instantaneous phase is the system input (AMC), ranging from −π
to π and represented as an 8-bit signed value. We can deduce the
integer bits required for the variables in the datapath.

The values we are using are unwrapped phases, that can take any
value unlike instantaneous phase. The unwrapped phase is inferred
from the instantaneous phase as shown in figure 8 to remove phase
jumps.

Due to the way it is calculated, the most the unwrapped phase can
change between two consecutive samples is π so the unwrapped phase

0

0

0

X

Y

Z

C

B

A

A:B P

M

0

0

0

X

Y

Z

C

B

A

A:B P

M

0

0

0

X

Y

Z

C

B

A

A:B P

M

Fig. 6. Implementation of a 2-input multiply-accumulator using three
DSP48E.

0

0

0

X

Y

Z

C

B

A

A:B P

M

Fig. 7. How to calculate the a and b coefficients using one DSP48E.

will range from −512π to 512π and will require 9 + 8 = 17 bits.
The reason behind this is that we take 512-sample packets that are
then decimated: we only take even samples resulting in 256-sample
packets.

As the unwrapped and decimated phases di cannot reach the
maximum value until the end of the packet, according to figure 9, the
maximum and minimum values that the

∑
di and

∑
idi intermediate

 -π

d
i

 π

Fig. 8. Unwrapped phase, and instantaneous phase (dashed) from which it
is inferred.

0 1 2 3

 π

3π

5π

i

d
i

d
i,max

 = π + 2π × i

Fig. 9. Maximum unwrapped decimated phase achievable.

TABLE I
ROM CONTENTS

coeff. factor 128 model 256 model

a
∑

idi 5.7224 · 10−6 · 234 7.1527 · 10−7 · 237∑
di

3.6337 · 10−4 · 228 9.1196 · 10−5 · 230

b 3.0887 · 10−2 · 222 1.5534 · 10−2 · 223∑
idi 3.6337 · 10−4 · 228 9.1196 · 10−5 · 230

variables can reach are computed as:

∑
di = ±

255∑
i=0

(2i+ 1)π

= ±65536π (11)∑
idi = ±

255∑
i=0

i(2i+ 1)π

= ±11152000π (12)

so we need p8 + log2 65536q = 24 integer bits to represent
∑
di

and p8+log2 11152000q = 32 integer bits to represent
∑
idi. Since

the instantaneous phase only has integer bits, neither the unwrapped
phase nor the summations have fractional bits.

Those results correspond to the 256-sample model, the same
procedure is used to obtain the results for the 128-sample model.

C. ROM Constants

The
∑
idi and

∑
di accumulations have to be multiplied by one of

the constants stored in the ROM. Then the results are subtracted two
by two to obtain the a and b coefficients. As we are using the DSP48E
multiplier to perform this operation we have to choose between the
18-bit or the 25-bit input. The best selection is to use the 18-bit
input for the constants stored in the ROM and the 25-bit input for
the results of the accumulations. The reason behind this is that since
the constants do not depend on the input and are calculated during
the implementation, we can make sure that the 18 bits that we are
using are significant. On the other hand, the number of significant
bits of the results of the accumulations depend on the input data, and
some of the bits may not be meaningful. So it is better to use the
multiplier largest input for these values.

Table I shows the values of these constants as well as the number
of bits they have to be shifted to be represented as an 18-bit integer
with all the bits being significant.

D. Aligning the products

The
∑
idi accumulation is represented with more than 25 bits,

that is the maximum input the multiplier we are using can manage.
So the lowest bits have to be discarded, that is 7 bits for the 256
model. The error produced by this truncation will be calculated later.

We have to make sure that the two results of the multiplication
of one of the constants on table I by one of the accumulations are
aligned so that they can be subtracted.

We discard the 7 lowest bits of
∑
idi and leave

∑
di as it is:

7.1527 · 10−7 · 237 ×
∑

idi · 2−7

−9.1196 · 10−5 · 230 ×
∑

di

= a256 · 230 (13)

1.5534 · 10−2 · 223 ×
∑

di

−9.1196 · 10−5 · 230 ×
∑

idi · 2−7

= b256 · 223 (14)

If we share the hardware for more than one model, there are two
alternative architectures at this point:

1) For the first option, the accumulations are switched by a
different amount of bits depending on the model. With this
scheme we obtain the highest precision, as least bits as possible
are discarded, at the cost of a larger area.

2) For the second option, the results of the accumulations are input
directly to the multiplier without taking into account the model
they come from. With this scheme we obtain the smallest area
since the number of discarded bits does not depend on the
model, avoiding the need of a multiplexer. On the other hand
we obtain a lower precision since we discard more bits than
necessary. This gets worse if we use models shorter than 128.

Another minor cause why we loose precision is by the constants
stored in the ROM that use less significant bits than they could to
keep the results aligned.

E. Results Bit-width

The a and b coefficients depend on several factors that are also
dependent on one another. Therefore it would be difficult to deduce
their range from the equations used to calculate them. But knowing
that a represents the slope of the interpolated linear equation and that
the most the unwrapped phase can grow on a single step is π, after
the decimation –we keep only one sample out of two so the maximum
growth is doubled– we can say the a will range from −2π to 2π and
therefore will have 9 integer bits.
a has 30 fractional bits, as can be deduced from the equation 13.

However due to the bits that are discarded from
∑
idi not all these

bits are meaningful. After discarding bits, the maximum error that the
resulting value may have is one unit, from how the a coefficient is
calculated, this error at the input becomes an error of 7.1527 ·10−7 ·
237 = 9.8306·104 at the output, that is 16.6 bits. We can say that the
coefficient a can be represented with 9 integer bits with at least 13
fractional bits, this corresponds to a resolution of 7.2275 · 10−7 · π.

The range of b depends on the indexes we take since b is the value
that the interpolated function takes for i = 0. In our case, with i
ranging from 0 to 255 it seems that the highest value that b can take
is ±128π that corresponds to a pyramid-shaped input function as
shown in figure 10. This corresponds to 15 integer bits for the 256
model.

From equation 14, b will have 23 fractional bits. But again not all
these bits are meaningful. As for a we can calculate the highest error

0
128 255

 π

128π

255π

i

d
i

Fig. 10. The input data (dashed) and the corresponding interpolated function
(continuous) y = b with the highest possible value for b.

as 9.1196 · 10−5 · 230 = 9.7921 · 104 or 16.6 bits for the 256 model.
The coefficient b can be represented with 15 integer bits and at least
6 fractional bits, with a resolution of 9.2512 · 10−5 · π.

Although from the number of fractional bits, it seems that coef-
ficient b is less accurate than a, the fact that a is a slope that will
be multiplied by an index makes the error to increase while b is
a constant that is always added without any scaling and the error
remains constant.

The constants stored in the ROM also lead to an error due to the
rounding that is made to make them fit in an 18-bit representation.
This results in a random error as it depends on the input. This error
should be calculated with simulations.

F. Control

The input interface consists on two ports to receive the samples at
the rate of two per clock cycle as explained before, and two control
signals, one in charge of indicating when a new sequence starts,
and the other indicating the length of the sequence and therefore the
model —256 or 128 samples— that has to be applied.

The control resets the accumulators when a new sequence starts
and counts the number of samples received, when the expected
number of samples have been processed it loads the results of the
accumulators. With those results a second state machine is started
that uses the appropriated constants depending on the model to infer
the coefficients of the linear regression.

As soon as a sequence has been input a new one can start,
achieving a continuous flow of input blocks. This way the first stage
is computing the accumulation while the next stage computes the
coefficients of the previous sequence. The latency of the first stage
depends on the number of samples, while the second stage has a
fixed latency that depends on the implementation, in our case five
cycles. The latency of the second stage is the one that would limit
the minimum number of samples of a sequence.

V. RESULTS

Three schemes proposed in previous sections have been imple-
mented in a Xilinx Virtex5 XC5VSX95T-2 FPGA obtaining the
results presented in table II. All the results presented in this section
include both the area of the data-path as well as the control logic in
charge of counting the number of samples, loading the results when
the the expected length of the input signal has been received and
starting the computation of the coefficients.

The implemented schemes have consisted on:
• A linear regression using only the 256-sample model.

TABLE II
RESULTS

Model Discarded bits Area Freq.
256 - 66 sl. & 5 dsp 458 MHz

256 & 128 depend on the model 89 sl. & 5 dsp 385 MHz
same for both models 70 sl. & 5 dsp 439 MHz

• A linear regression using both 128 and 256-sample models,
discarding different amounts of bits from the initial summations
depending on the model as explained in section IV-D-1.

• A linear regression using both 128 and 256-sample models, dis-
carding the same bits from the initial summations as explained
in section IV-D-2.

The number of samples could have been any other and would have
only meant a change in the constants stored in the ROM and in the
sample counter. There is no restriction in the hardware that implies
a power of two number of samples.

The base of the three implementations is the one that only has
the 256-sample model. All the arithmetic computation is carried
out by the 5 DSP48E, the 66 slices are due to the ROM and the
control: mainly an index counter and a multiplexer to choose which
summation (

∑
di or

∑
idi) is input the the DSP48E that calculates

the a and b coefficients. The estimated frequency this implementation
can achieve is 458 MHz.

Adding the 128-model to the previous implementation does not in-
crease the number of required DSP48E as the arithmetic computation
is the same, the difference is made in the state machine –that has to
be aware of the model we are using– and in the ROM –that has to
store more coefficients.

The implementation with a double model (128 and 256 samples)
and discarding the same amount of bits from the summations results
on an increase of the area of only 4 slices (6.1%). The estimated
maximum frequency remains almost the same: 439 MHz.

The implementation of the double model but discarding the least
significant bits as possible from the summations leads to a larger
area: 89 slices, an increase of 27% relative to the other double-
model implementation. This increase is due to the multiplexers that
choose which summation is input to the DSP48E that computes the
coefficients, from two inputs (one for

∑
idi and one for

∑
di) in

the previous implementation to four inputs (two for
∑
idi and two

for
∑
di) as each summation has to be input with a different shifting

depending on the model. The maximum frequency achievable by
this implementation is also decreased when compared with the other
implementations: 385 MHz, as the critical path is in the new four
input multiplexer. This can be solved, if necessary, by introducing
new registers.

Only one DSP48E is used to compute coefficients a and b from the
different summations, this is done as a subtraction of two products
for each of the coefficients. As a consequence, the minimum input

signal length would be one that lasts 4 clock cycles. In our case,
at the rate of two sample per cycle this corresponds to an 8-sample
length signal.

VI. CONCLUSION

The coefficients obtained by a linear regression are widely used in
many signal processing applications. For instance, linear regression
is the base of the calculation of the statistics an AMC computes to
infer the modulation that a signal has, as well as to determine some
of the parameters of this modulation.

The linear regression hardware does not represent a large area when
compared to the vast resources current FPGAs provide. However, as
the number of these modules a digital signal processing system can
be made of, decreasing their area can and improving their working
frequency results in a great enhancement of the whole system.

In this work we have proposed FPGA-oriented architectures for the
implementation of different linear regressions, showing that large area
savings can be achieved if we reduce the possible input signal lengths
to some unconstrained predefined values. Furthermore, experimental
results show that hard real time constraints can be met when using
these modules in a complex AMC system.

REFERENCES

[1] R. Tessier and W. Burleson, “Reconfigurable computing for digital signal
processing: A survey,” The Journal of VLSI Signal Processing, vol. 28,
no. 1, pp. 7–27, 2001.

[2] T. Todman, G. Constantinides, S. W. O. Mencer, and W. L. P. Cheung,
“Reconfigurable computing: architectures and design methods,” IEE
Proc. Computers and Digital Techniques, vol. 152, no. 3, pp. 193–207,
March 2005.

[3] Xilinx Corporation, “Virtex-5 FPGA XtremeDSP Design Con-
siderations,” http://www.xilinx.com/support/documentation/user guides/
ug193.pdf, September 2008.

[4] K. Parhi, Digital Signal Processing Systems-Design and Implementation.
John Wiley & Sons, 1999.

[5] S. Tretter, “Estimating the frequency of a noisy sinusoid by linear re-
gression (Corresp.),” Information Theory, IEEE Transactions on, vol. 31,
no. 6, pp. 832–835, 1985.

[6] J. Grajal, O. Yeste-Ojeda, M. Sánchez, M. Garrido, and M. López-
Vallejo, “Real Time FPGA Implementation of an Automatic Modulation
Classifier for Electronic Warfare Applications,” in 19th European Signal
Processing Conference, 2011.

[7] D. Yang, H. Li, G. Peterson, and A. Fathy, “Compressed sensing
based UWB receiver: Hardware compressing and FPGA reconstruction,”
in Information Sciences and Systems, 2009. CISS 2009. 43rd Annual
Conference on. IEEE, pp. 198–201.

[8] D. Yang, G. Peterson, H. Li, and J. Sun, “An FPGA implementation
for solving least square problem,” in 2009 17th IEEE Symposium on
Field Programmable Custom Computing Machines. IEEE, 2009, pp.
303–306.

[9] E. Azzouz and A. Nandi, “Automatic modulation recognition–I,” Journal
of the Franklin Institute, vol. 334, no. 2, pp. 241–273, 1997.

[10] O. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic mod-
ulation classification techniques: classical approaches and new trends,”
Communications, IET, vol. 1, no. 2, pp. 137–156, 2007.

