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ABSTRACT

The effect of three different aging methods (immersion in hot water, freeze-thaw cycles and wet-dry
cycles) on the mechanical properties of GRC were studied and compared.

Test results showed that immersion in hot water may be an unreliable method for modified GRC for-
mulations, with it being in probability a very harmful procedure.

A new aging method, mixing freeze-thaw cycles and wet-dry cycles, seems to be the most accurate

Keywords:
Glass fibers
Concrete
Durability
Aging
Silica fume
Pozzolan
GRC
Metakaolin

1. Introduction

Glass fiber reinforced cement (GRC) is a cement mortar based
composite material that has been widely used during the last five
decades. Its main application has been as cladding panels due to its
good mechanical properties, good fire resistance, easy moldability
and inhibition to corrosion processes.

On the other hand, GRC has been also used as permanent form-
work, for building restoration, in sewer liners, in tunnel cladding,
as river bank protection walls and as acoustic barriers [1-6]. In
all these uses GRC has a non-structural function. Recently, GRC
has been considered a suitable material for structural applications
such as industrial floors, precast rooves and telecommunication
towers (where GRC has been used together with reinforcing steel
bars and carbon tendons) [7-9].

However, glass fiber durability when placed in an alkaline envi-
ronment has been a main concern [10-15]. Even though alkaline
resistant {AR) glass fibers have been broadly used in GRC industry,
GRC durability problems have not yet been fully solved. Aged GRC
have lower tensile strength and ductility than young GRC. Both
reductions have been a major drawback when considering GRC a

simulation of weather conditions that produce a noticeable change in GRC mechanical properties. Future
work should be carried out to find a correlation between real weather and the proposed aging method.

material for load bearing structural elements. More recently, the
embrittlement of GRC has been termed a static fatigue process
[16].

Much research has been performed to find a solution for this
problem. Some have tried to cover E glass fibers with a protection
layer [17] with no substantial changes of aged GRC mechanical
properties. However, the most common strategy has been to in-
clude chemical products, commonly known as additions or cement
additives, to cement mortar compositions in order to reduce alka-
linity [18,19]. Among the additions used, an artificial pozzolan
called metakaolin, and certain acrylic resins, have provided the
most promising results.

In almost all studies analysis of the properties of aged GRC has
been carried out through accelerating aging by immersing samples
in hot water tanks during a given period of time. Equivalences be-
tween immersion times and real aging periods have been estab-
lished for different temperatures and climates and widely
accepted for GRC formulations without objections. However, more
recent studies have been carried out by dealing with a relationship
between natural exposure and accelerated aging methods [20].
Some of them have examined accelerated aging processes, using
immersion in hot water. These studies have pointed out that the
equivalences established earlier were not valid for GRC made with
modified cement matrices. Acceleration factors have been
inaccurate in GRC modified with additions, as different chemical



reactions might happen during the aging process. In addition, anal-
ysis of samples cut from panels after more than 15 years of natural
exposure have shown much lower embrittlement than that pre-
dicted by the accelerated aging method [21]. Other aging methods,
such as wet and dry cycles and freeze-thaw cycles, have been used
by other authors [22], with different results.

Therefore, though accelerated aging of GRC by immersion in hot
water continues to be a widely used method of aging GRC and the
results obtained are considered valid, there are some examples
[21,23] of natural exposure of GRC to natural weather conditions
that question whether GRC fragilization occurs at the rates pre-
dicted by accelerated tests.

To study the influence of the accelerated aging process in the
mechanical behavior of artificially aged GRC, results obtained in
tensile and bending tests performed with four different formula-
tions using different aging methods (immersion in hot water tanks
at 50 °C, freeze-thaw cycles and wet-dry cycles) will be compared.

2. Test campaign
2.1. Material manufacturing

A test campaign was carried out on GRC with four different for-
mulations, using two different chemical products, to characterize
aged GRC behavior. The additions used in cement mortar produc-
tion were: silica fume and metakaolin. Components and contents
used in GRC production can be seen in Table 1. A series of 10 test
boards were made in collaboration with PREINCO S.A. Test boards
were 1.2 m long by 1.2 m wide and 10 mm thick approximately. A
frame of 5 cm, near the test board borders, was cut and discarded
to avoid testing GRC with bent fibers.

All test boards were stored in a climatic chamber at 20 °C and
98% of humidity for 28 days. Rectangular 300 x 50 mm samples
were cut from each test board to perform tensile tests. Rectangular
225 x 50 mm samples were cut from each test board to perform
bending tests.

2.2. The aging processes

Three different aging processes were used during the tests
immersion in hot water, freeze-thaw cycles and wet-dry cycles.
Immersion in hot water is the most common accelerated aging
process. This method consists of immersing GRC samples in tanks
filled with hot water at a certain temperature and maintaining this
temperature during a period of time. Equivalences between
immersion periods and ordinary Portland cement mortar GRC
age can be seen in Table 2 for United Kingdom climate and differ-
ent temperatures [24].

Aging factors for OPC GRC shown in Table 2 were based on the
Arrhenius type relation. Some authors have pointed out that these
equivalences could not be valid for GRC manufactured with cement
mortar with additions such as metakaolin or acrylic resins [25].
New equivalences for different matrices compositions were estab-
lished. In Table 3 the modified equivalences between 1 day of
immersion in water at 50°C and the natural exposure time in
the United Kingdom can be seen. However, the values found in this

Table 1
GRC formulations.

Table 2
Accelerated aging equivalences for OPC.

1day at (°C) Days of natural

exposure in UK

80 1672
70 693
60 272
50 101

Table 3
Acceleration factors for 1 day of immersion in water at 50 °C.

Days of natural exposure in UK

Ordinary Portland cement GRC 101
OPC + 20% metakaolin 18
OPC+ 5% acrylic polymer 18

research were only valid for the formulations used and no predic-
tions were made for GRC manufactured with different additions or
different proportions of the same additions. Therefore, no predic-
tions could be made for OPC with silica fume.

In this study GRC samples were immersed in hot water during
40, 80 and 120 days. Freeze-thaw cycles were performed in sam-
ples stored in a climatic chamber. The temperature ranged from
20 °C to —20 °C. The temperature profile of the cycle used in the
climatic chamber can be seen in Fig. 1. GRC samples were sub-
jected to 25 and 50 freeze-thaw cycles.

Finally, GRC samples were subjected to wet-dry cycles. GRC
samples were stored immersed in water at 20 °C for 24 h and after-
wards dried in a climatic chamber at 70 °C during 24 h. This pro-
cess was carried out in GRC samples 50, 100 and 200 times.

As part of wider research, different test boards are at present
being subjected to the Madrid climate in order to compare acceler-
ated aging methods and natural weathering when they reached the
adequate age.

2.3. Tensile tests

Tests were performed on 300 x 50 mm samples both of young
GRC and aged GRC after immersion in water at 50 °C for 40, 80
and 120 days. This temperature was chosen in accordance with
the results obtained by previous authors [25] and to avoid possible
damage of chemical reactions between glass fibers and the cement
mortar matrix during the accelerated aging process.

Tensile tests were carried out in a universal testing machine,
equipped with a 25 kN load cell, with samples being held by using
a pair of mechanical jaws. The strain of the samples while testing
was obtained by using two extensometers, facing one another,
placed in the center of the sides of the samples. The distance be-
tween the blades of the extensometers was modified using exten-
sions, in order to increase the possibility of recording the strain of
the fracture area during the tensile tests. When the fracture was lo-
cated in this zone, strain data that describes how the fracture
developed was then recorded. Tests were performed using position

Cement (kg) Sand (kg) Water (kg) Plasticizer (kg) Addition (kg)
Control 50 50 20 0.5 -
Metakaolin 50 50 22 0.5 5
Silica fume 10% 50 50 23 0.5 5
Silica fume 20% 50 50 27 0.5 10
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Fig. 1. Freeze-thaw cycle.

control and the displacement of the jaws limited at a speed of
1 mm/min. Tensile tests were carried out up to the point of full
fracture of the sample. Detailed test results can be found in Ref.
[26]. Figs. 2 and 3 summarize the evolution with aging time of
maximum tensile stress and strain respectively. Each point in Figs.
2 and 3 is the mean value of at least five test results where com-
plete fracture occurred in the middle third of the sample. Ductility
has been defined as the strain of the peak load previous of the total
fracture process both in tensile and bending tests.

While performing tensile tests a large amount of samples were
fractured either out of the middle third of the sample or inside the
contact area between the mechanical jaws and the tested sample.
Test results were discarded when the facture zone was not in the
middle third of the sample. Due to this fact it was decided to carry
out four point bending tests because it is a more stable test and less
material was spoiled.
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Fig. 3. Ductility vs. aging period.

2.4. Four point bending tests

Four point bending tests were carried out on 225 x 50 GRC
samples, both on young GRC samples and subjected to 25 and 50
freeze-thaw cycles. These tests were performed following the rec-
ommendations of the European test method EN 1170 [27]. All four
GRC formulations (OPC GRC, OPC GRC+ 10% silica fume, OPC
GRC + 20% silica fume, OPC GRC + 10% metakaolin), were used in
four point bending tests. Such four point bending tests were also
carried out in OPC GRC, subjected to 50, 100 and 200 wet and
dry cycles. Tests were performed in at least eight samples of each
combination of formulation, number of cycles and aging method.

Bending tests were carried out in a universal testing machine,
equipped with a 25 kN load cell. Samples were supported by two
10 mm diameter steel rollers placed at 12.5 mm from the samples’
edges. These rollers were placed at the top of a rigid frame sup-
ported by the load cell.

Samples were loaded using a specially designed steel loading
head fixed to the testing machine crosshead. This loading head al-
lowed rotations in the vertical and horizontal axis. Using this ele-
ment no damage localization occurred during the tests, even
though significant differences in sample thickness were observed.
Crosshead movement was transferred to the sample by two
10 mm diameter steel rollers placed at 66.67 mm from the sup-
porting rollers.

To record the deflection data, a linear variable differential trans-
former (LVDT) was used. Its working distance range was +5 mm
and it was able to detect up to 1 um displacements. Load, deflec-
tion and time were recorded using a data acquisition system that
registered 10 pairs per second. Tests were performed using posi-
tion control and crosshead speed of 1.8 mm/min. A sketch of the
four point bending tests can be seen in Fig. 4.

Tests were carried out up to specimen complete failure or until
LVDT maximum displacement was reached. In any case, when this
happened the maximum load of the sample had been previously
reached and therefore the specimen was already unloading.

An image of the four point bending tests where a failure crack
can be clearly distinguished can be seen in Fig. 5. LVDT was already
removed and rollers were held by using rubber bands when taking
the photograph. To consider the test valid, the failure crack must
appear in the middle third of the sample as can be seen in Fig. 5.
The loading head can also be seen in this figure.
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Fig. 4. Four point bending test sketch.

Fig. 5. Four point bending test.

To derive stress—strain curves from test data, the European test
method EN 1170 was followed. Stress and strain were obtained
using these relationships:
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where F is load, L stands for the distance between the support-
ing rollers, b is the sample width, d is the sample thickness and A is
the deflection at midspan.

The GRC stress—strain curve has two parts with regions clearly
differenced. The first zone is a straight line that finishes in what
is known as the limit of proportionality (LOP). In this region, no
damage is made in the sample and the behavior of the material
can be considered as linear elastic. No visible damage can be ascer-
tained in the sample. Following the linear part, there is a change in
the slope of the stress—strain curve. The slope decreases and there-
fore GRC stiffness reduces. This second region of the stress—strain
curve is a serrated line with local instabilities. These instabilities
are created due to the formation of microcracks in the mid-third
of the lower part of the sample. As bending is being induced in
the sample, the upper half of the sample is being compressed
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and the lower half is being subjected to tensile stresses. GRC tensile
strength is considerably lower than GRC compressive strength [4]
and therefore damage and microcracks appear in the lower half
of the samples, with it being more precise in the lower side of
the sample. Microcracks are created in the weakest zone of cement
mortar matrix, within the mid-third where stresses are higher, be-
cause cement mortar has lower tensile strength than glass fibers.
Microcracks grow and this growing process stops when the tip of
the crack reaches a glass fiber and the fiber bridges both sides of
the crack. During the microcrack growing process, GRC is not able
to withstand higher loads, shown as a drop in the stress—strain
curve. However, when a glass fiber is bridging the two sides of
the crack the microcrack growing process stops and the stress that
were bore by the matrix are transferred to the glass fibers. Due to
its higher mechanical strength, GRC is capable of bearing higher
loads without total failure of the material. This effect is reflected
in the stress—strain curve as a rise. This increase in the load with-
stood by the GRC samples finishes when the tensile strength of the
cement mortar matrix is reached elsewhere in the sample, and the
process described previously begins. In the bridged microcracks
the fibers are pulled out while the load increases and the growing
and creation of new microcracks continues.

This course carries on until the stress in some part of the GRC
sample is high enough to produce a visible macrocrack, propagated
from the weakest microcrack previously created in the specimen.
The point where the GRC begins to collapse and the load starts to
decrease is called the moment of rupture point (MOR). During this
process no damage was observed in the part of the sample being
compressed.

Fig. 6 shows the behavior of OPC three samples of GRC with 10%
of metakaolin addition both young and aged after 25 and 50
freeze—thaw cycles. Results shown in Fig. 9 are the mean values
of the eight samples tested. In these stress-strain curves, all the
characteristics previously described can be clearly observed.
Stress—strain curves for all GRC formulations were similar to the
ones showed in Fig. 6 and can be easily found in literature [4,18)].
Similar results were obtained in OPC GRC after wet and dry cycles.

3. Discussion

Tensile test results have been previously summarized in Figs. 2
and 3. Each point in Figs. 2 and 3 is the mean value of at least five

Table 4
Real age after immersion in hot water.

Immersion time  Real age after immersion in hot water at 50 °C (years)

(days) OPC  OPCGRC+10% OPC OPC
GRC  MITK GRC+10% SF  GRC+20% SF
40 132 20 20 20
80 263 39 39 39
120 395 59 59 59

test results where complete fracture occurred in the middle third
of the sample. In these figures different GRC formulations behavior
have been compared and its evolution with time has been plotted.
If acceleration factors obtained in previous studies [25] are applied
to the immersion periods previously cited (40, 80 and 120 days)
the “real” GRC age is obtained. Due to the lack of data about the
acceleration factors concerning OPC GRC with silica fume addition,
and in order to remain within a reasonable safety margin, the
accelerations factor of GRC with 20% of metakaolin addition has
been applied. Those results can be seen in Table 4.

According to the data showed in Table 4, Figs. 2 and 3 have been
replotted in Figs. 7 and 8, taking into account GRC “real” age. Fig. 7
shows how GRC tensile strength evolves with time. Curves in Fig. 7
show that, according to the acceleration factors used, tensile
strength of OPC GRC with additions should deteriorate consider-
ably faster than normal OPC matrix. Moreover, this tendency is also
confirmed when comparing strain at MOR. The evolution of maxi-
mum strain values of modified formulations of ordinary GRC are
notoriously lower than those of OPC GRC at the same age.

Not all these results agree with those found in the literature,
where OPC GRC with metakaolin addition always retained higher
tensile strength and ductility [18,28]. Test results performed in
GRC + 10% metakaolin samples are considerably different than
those found in the literature [29]. In such other studies, the behav-
ior of artificially aged (immersion in hot water at 50°) GRC with at
least 20% of metakaolin addition proved to retain a higher amount
of ductility when the total failure of the sample took place. In addi-
tion, the failure stress of the samples was similar to those obtained
in samples that were not artificially aged. As can be seen in Figs. 2
and 3 both the ductility and flexural strength of the samples de-
creased drastically after the aging period. The difference in
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behavior between these two studies can be explained because dif-
ferent amounts of metakaolin were used in these test campaigns.
In the tests carried out by Brandt and Glinicki [29] at least 20% of
cement was substituted by metakaolin or other pozzolanic com-
pounds. However, in this study the amounts of pozzolanic products
used were referred to the total amount of cement. Therefore GRC
manufactured with an addition of metakaolin equal to 10% of the
total cement weight is equal to having a substitution of 9.1% of
the cement weight for metakaolin. There is a clear difference be-
tween the quantities of pozzolanic products used in both studies
and this could be the reason for the behavior differences found.

Figs. 9 and 10 were obtained by summarizing the results ob-
tained in the four point bending tests. According to Fig. 9, OPC
GRC shows a continuous decrease of its bending strength due to
the freeze-thaw cycles. In addition, Fig. 10 shows that this de-
crease of bending strength is directly related to a loss of ductility
at MOR. Ductility decreasing rates in OPC GRC are higher in the
first 25 freeze-thaw cycles where GRC loses around 65% of its
strain capacity. Not only does this loss stop in the next 25 cycles,
it also continues until losing 80% of GRC strain capacity after 50 cy-
cles. Both Figs. 9 and 10 show how OPC GRC deteriorates with
freeze-thaw cycles becoming a more brittle material with less
bending strength.

However, GRC formulations with silica fume have slight
changes in bending strength. Freeze-thaw cycles seem to affect
lightly GRC modified with silica fume. This lack of damage is con-
firmed when comparing maximum strain as illustrated in Fig. 10.
The reduction of ductility after the 50 cycles is limited for the
two formulations with silica fume studied. OPC with 20% of silica
fume preserves almost all its ductility and only a minor loss of
10% was recorded during the tests. OPC with 10% silica fume lost
25% of its strain capacity after 50 freeze-thaw cycles.

Similarly, OPC GRC produced with 10% of metakaolin addition
show after 50 cycles that its bending strength has remained in
the similar values than those showed before artificial aging. Even
after 25 cycles there is a rise in bending strength of 30% that is sub-
sequently reduced to the original values after the next 25 cycles. In
addition, ductility values for OPC GRC with 10% of metakaolin addi-
tion remain nearly constant during the aging process. The evolu-
tion of bending strength and ductility with freeze-thaw cycles
demonstrate that OPC GRC produced with 10% of metakaolin
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addition is capable of withstanding severe weather conditions
without suffering any damage.

Therefore, four point bending tests after freeze-thaw cycles
showed results that were consistent with those found in the liter-
ature [18,27], even though they were obtained through a different
aging method. Similarly, as can be observed in Fig. 11, wet-dry cy-
cles also have a harmful effect in plain GRC behavior. Bending
strength and ductility decrease continuously with wet-dry cycles.
Values obtained after 200 cycles were similar to those obtained
after 50 freeze-thaw cycles.

4. Conclusions

The usual method of accelerated aging of GRC by immersion in
hot water was revealed as an unreliable method for modern for-
mulations including additives such as silica fume or metakaolin,
due to the lack of repetitive results, especially in GRC manufac-
tured with small amounts of metakaolin (around 10% of cement
substitution). Immersion in hot water seems to deteriorate GRC
formulations with additions that have proved to preserve its
mechanical properties over the long term. Acceleration factors
found in the literature should be questioned when dealing when
GRC manufactured with modified matrices.

Even though freeze-thaw cycles do not reproduce the real
environmental conditions to which GRC is subjected, freeze-thaw
cycles were capable of causing damage on OPC GRC. Modified OPC
GRC showed very little sensitivity to freeze-thaw cycles. This data
was consistent with the literature. Wet-dry cycles have a harmful
effect in OPC GRC and also simulate actual weather conditions.

An alternative aging method, combining freeze-thaw cycles and
wet-dry cycles or a simpler aging method consisting only in wet-
dry cycles seem to be the most accurate simulation of weather
conditions that produce a noticeable change on GRC mechanical
properties. Future work should be carried out following this ratio-
nale to find a correlation between real weather and the proposed
aging method.
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