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Abstrcwt-We have developed a new projector model 
speciflcally tailored for fast list-mode tomographic 
reconstructions in Positrón emission tomography (PET) scanners 
with parallel planar detectors. The model provides an accurate 
estimation of the probability distribution of coincidence events 
defined by pairs of scintillating crystals. This distribution is 
parameterized with 2D elliptical Gaussian functions defined in 
planes perpendicular to the main axis of the tube of response 
(TOR). The parameters of these Gaussian functions have been 
obtained by fitting Monte Cario simulations that include positrón 
range, acolinearity of gamma rays, as well as detector attenuation 
and scatter effects. The proposed model has been applied 
efficiently to list-mode reconstruction algorithms. Evaluation 
with Monte Cario simulations over a rotating high resolution 
PET scanner indicates that this model allows to obtain better 
recovery to noise ratio in OSEM (ordered-subsets, expectation-
maximization) reconstruction, if compared to list-mode 
reconstruction with symmetric circular Gaussian TOR model, 
and histogram-based OSEM with precalculated system matrix 
using Monte Cario simulated models and symmetries. 

I. INTRODUCTION 

System response accuracy has been demonstrated to play a 
crucial factor to improve the image quality in iterative 

statistical reconstruction methods applied to PET. Due to the 
high data dimensionality in 3D-PET, tremendous efforts have 
been done to respect realistic models without incurring in 
excessive computational costs [1]. 

Monte Cario simulation has been widely used to estimate 
accurately the system response for data projection without the 
inherent complexity of analytical models [2-4]. For this 
purpose, validated PET simulations tools like GATE [5] or 
PeneloPET [6] have been used. Another possibility to estimate 
the system matrix is to use real point-source measurements in 
combination with numérica! fitting to analytical models [7, 8]. 

However, both Monte Cario results and analytical 
estimations must be precomputed oíf-line and stored as a 
system matrix, whose size can require enormous storage for 
3D-PET imaging. The size reduction provided by histogram 
compression, symmetries [9], quasi-symmetries [10], axial 
mashing [11] and factorization as a product of sparse matrices 
[12] can greatly reduce the need for memory [8], but if the 
number of histogram bins required to guarantee the intrinsic 
system resolution is greater than the number of events, list-
mode reconstruction becomes a good alternative for fast and 
accurate reconstruction. Moreover, the introduction of 
additional information as time of flight, depth of interaction 
and energy of detected photons can involve compromising the 
data accuracy with the precalculated system matrix approach 
[13]. 

In list-mode reconstruction, the system matrix factorization 
scheme can only be performed in the image space and not in 
the projection space. Thus, factorization imposes accuracy 
limits in modeling projection-dependent blurring effects [14]. 
In this work, we present a projector model for list-mode 
reconstruction, applicable to PET scanners composed of 
parallel planar detectors, that provides a system response with 
accuracy comparable to Monte Cario simulated, with the 
additional advantage of being numerically computable on-the-
fly. 

II. MATERIALS AND METHODS 

A. Monte Cario Simulation 

Several representative TORs were simulated with Monte 
Cario methods and the result was fitted to the proposed 
analytical functions to obtain the kernel models. The simulated 
TORs were chosen to be contained between the minimum and 
máximum crystal difference between a pair of opposed planar 
detectors. 

To improve simulation statistics, both the positrón 
generation región and direction of annihilated gamma rays is 
limited to reduce close-to-zero possibilities of detection in the 
selected pair of crystals. This leads to select a cylinder of 
radius r oriented to the center of the pair of scintillating 
crystals as región of positrón generation, and a máximum 6 for 
the azimuthal angle of emission, as is showninFig. 1. 
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Fig. 1. Up: Scheme of a cylindrical región centered in the LOR where the 
positrons are generated during the Monte Cario simulation; down: Two 
Examples of 2D Elliptical Gaussians histograms of probability distributions of 
a TOR between pairs of scintillating crystals C1-C2: Ci=(3,3) with C2=(26,31) 
and Ci=(26,12) with c2=(14,24), where the two indexes indicates the 
associated column and row of the scintillating crystal. 

Monte Cario code models the gamma ray acollinearity, 
positrón range, as well as scintillating crystal attenuation and 
scatter effects. All physical effects are simulated with respect 
to a water médium, which approximates the majority of 
biological tissues, and 18F sources. Geometrical and detector 
characteristics of the small animal rPET scanner [15] were 
used in the Monte Cario modeling. 

Fig. 2.(a) Isosurface of Monte Cario simulation of an oblique TOR; (b) 
Elliptical Gaussian model (red) with superimposed simulation (line grid); (c) 
Circular Gaussian model (cyan) with superimposed simulation (line grid). 

Monte Cario simulation is also used to determine the most 
probable points of detection for every pair of scintillating 
crystals, which define the ideal LOR. These points were 
selected to be 5 mm off the detector surface. 

B. Projector Kernel 

Monte Cario simulations show that the system response is 
approximately shaped as an elliptical tube with a 2D Gaussian 
distributed section: 

P (x> y) = A exp r 2ol 2(72y 

The projector kernel, i.e. the scalar field that describes the 
TOR, has been derived with respect to a reference system in 
which the z axis is aligned with the ideal line of response, 
(LOR) while x and y axes are aligned with detectors. For any 
LOR, a 3D transformation converts the coordinates of every 
voxel center p = xi + yj + zk on the new reference frame p' = 
x'i'+y'j'+z'k'. The transformation can be expressed in 
homogeneous coordinates as a rotation matrix R and a 
translation vector t: 

R t 
0 r 1 

Vectors of R are normal to the plañe perpendicular to the 
LOR (denoted as r3), the plañe that contains the LOR and the 
principal axis of the pixelated crystals (denoted as r2) and the 
plañe perpendicular to r2 and r3 (denoted as r t); p t and p2 are 
the vértices of the LOR and n is the unit vector normal to the 
detector; p0 Is a generic point belonging to the LOR: 
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Fig. 1 shows two examples of the simulated elliptical 
Gaussian sections corresponding to TORs between two 
selected pairs of scintillating crystals Ci-c2: Ci=(3,3) with 
c2=(26,31) and Ci=(26,12) with c2=(14,24), where the two 
indexes indicates the column and row of the scintillating 
crystal, respectively. The complete isosurface of a simulated 
TOR is sketched in Fig. 2, along with the fitted 2D elliptical 
Gaussian model and a standard circular Gaussian model. 

The complete set of simulated TORs projected over the 
plañe z'=0 were fitted to elliptical Gaussian functions. In 
Fig.3, valúes of ox and oy are plotted against the distance 
between main crystals axes. It can be observed that ox valúes 
increases with the total difference of crystals associated to the 
modeled LOR, while oy remain constant. A polynomial fit was 
used to approximate the crystal differences not modeled with 
the Monte Cario method. 
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Fig.3. Fitted valúes of standard deviations of elliptical Gaussians for 
representative TORs in Monte Cario simulations. TOR skewness is expressed 
as distance between associated pixelated crystals in the x-y detector plañe. 

C. Reconstruction algorithm 

The list-mode 3D-OSEM reconstruction algorithm used to 
test the proposed kernel model is based on the algorithm 
described in [16]. It can be summarized as: 

x)- ieLn X airX
ky 

All observed coincidence events, or LORs, are divided into 
N subsets Ln; index k is equal to k = NI + n, being n the subset 
number and / the total passes through the whole dataset (i.e., 
the number of iterations); X) is the intensity estimation for the 

2 mm rod, unregularized 

List-mode, elliptical kernel 

List-mode, circular kernel 

Histogram-mode 

voxel j at sub-iteration k, s is the sensitivity image, and ay is 
the likelihood of an observed event i for a given voxel j . 
Scatter and random estimates have been neglected. In order to 
prevent reconstruction biases, list-mode subsets have been 
composed by sampling uniformly the whole acquired dataset 
with offsets n belonging to [0, N - 1]. 

III. RESULTS 

The proposed kernel has been integrated in an efficient list-
mode OSEM algorithm [17]. Reconstructed data have been 
compared with histogram-mode 3D-OSEM [18] with pre-
calculated system-matrix using Monte Cario methods and list-
mode OSEM with symmetric Gaussian model [17]. Direct 
(i.e., unregularized), and Median Root Prior (MRP) 
regularized versions [19] of the reconstruction algorithms 
were used. The simulation package GATE has been used to 
describe the rPET scanner [15] and simúlate projection data 
for the NEMA phantom. Ten subsets were used in all cases. 

Contrast recovery coefficient (CRC) to noise/signal ratios 
until 120 iterations have been reported in Fig. 4. The 
measurements were done with an Image Quality Phantom 
defined according to the NEMA NU4-2008 standard for small 
animal PET (reconstructed in Fig. 5) over lmm and 2mm hot 
rods. Results show that the proposed formulation outperforms 
both histogram-mode 3D-OSEM with precalculated system 
matrix and list-mode 3D-OSEM with symmetrical Gaussian 
TOR model. 
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Fig. 4. Recovery contrast coefficient (CRC) vs. noise to signal ratio measurements over lmm and 2mm rods of the NEMA quality phantom. 
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Fig. 5. Transaxial and axial sections of the NEMA quality phantom reconstructed with the elliptical Gaussian model and list-mode OSEM. 

I. CONCLUSIONS 

We have simulated and developed a new method for LOR 
projection suitable for fast list-mode reconstructions. The 
method provides a methodology to construct a look-up table of 
parameter and a numerical formulation for the a posteriori 
probability distribution over the field of view (i.e., standard 
deviations of ID oriented Gaussian kernels). Numerical valúes 
are obtained by fitting Monte Cario simulations which include 
crystal attenuation and scatter effects. It has been shown that 
with the given formulation it is possible to improve 
reconstruction quality figures with respect to system matrix 
based histogram mode and list-mode 3D-OSEM 
reconstructions based on symmetrical Gaussian tubes of 
response. 
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