InN/GaN heterojunction electrical behavior

<u>Tommaso Brazzini</u>¹,S. Albert¹, A. Das², Z. Gacevic¹, E. Monroy², M.A. Sánchez-García¹, F. Calle¹

¹ISOM, Universidad Politecnica de Madrid, Madrid, Spain ²CEA-Grenoble, INAC / SP2M / NPSC, 17 rue des Martyrs, 38054 Grenoble cedex 9, France

Outline

- Introduction and motivation
- n-type unintentional conductivity
- InN/GaN interface

 Effect in electrical behaviour
- Sample characterization
 - AFM , XRD (on- and off- axis)
 - Dislocation calculations
- Electrical measurements
- Conduction model
- Conclusions

RAINBO

Introduction and motivation

- InN is the less known III-N semiconductor
 - Very small band gap (~0.7 eV)
 - Low effective mass
 - High electron mobility
- Potential applications
 - Solar cells
 - Photodetectors
 - High frequency transistors

T.Brazzini "InN/GaN heterojunction electrical behaviour"

3

n-type unintentional conductivity The most accepted model: 3 region

RAINBOW

P.D.C. King, T.D. Veal, C.F. McConville, J. Phys.: Condens. Matter 21, 174201 2009

- 1. Strong surface accumulation due to surface states
- 2. Degenerate n-type nature of the bulk for donor type defect inclusions
- 3. Large density of threading dislocations at the interface acting as donors

INITIAL TRAINING NETWOR

RAINBOV

Rectifying problem

 Surface accumulation layer No Schottky contact MIS can overcome this problem¹ Surface accumulation mask bulk behaviour - No overall p-type character \rightarrow no p-n fabricated so far High interface electron accumulation

− Heterojunction behaviour → OBJECTIVE OF THE PRESENT WORK

¹T.Brazzini et al. "InN MIS rectification device" E-MRS Spring meeting 2011 **4**

INITIAL TRAINING NETWOR

InN/GaN interface

HRXPS measurements P.D.C.King et al. PRB 78, 033308 (2008)

IPE spectroscopy Z.H. Mahmood et al. APL 91, 152108 (2007) RAINBO

InN/GaN interface: contributions to electrical behaviour

- Heterojunction band offset
- Dislocations (edge and screw)
- High polarization field in III-N nitrides
 - Strain-induced piezoelectric field screened by high carrier densities¹

T.Brazzini "InN/GaN heterojunction electrical behaviour"

Samples

- InN-GaN 9.6% lattice mismatch¹
 → Volmer-Weber growth mode –

 3D islands coalescence
- T_{sub} 400°C for InN on template
- T_{sub} 450°C for InN on GaN buffer

¹"InN and related alloys" T.D.Veal, C.F.McConville, W.J.Schaff

RAINBOW

Samples: AFM roughness

InN/GaN_{template}/Al₂O₃:
7.2 nm (RMS)

InN/GaN_{buffer}/GaN_{template}/Al₂O₃: 0.7 nm (RMS)

Samples: XRD measurements

• Absolute scan $\omega/2\theta$ reveals relaxed InN

INITIAL TRAINING NETWORE

Samples: XRD measurements • Rocking of on-axis (0002) and off-axis (10-12)(20-21)

InN / GaN buffer / GaN / Al₂O₃

INITIAL TRAINING NETWOR

RAINBO

Samples: Dislocation calculations ^{a)}

 $\rho_{\rm s} = \Gamma_{\rm y}^{2} / 1.88 c^{2}$

 $\rho_{\rm e}$ = $\Gamma_{\rm z}^{2}$ / 1.88a²

InN/GaN buffer $\rho_s = 1.1 \times 10^9 \text{ cm}^{-2}$ $\rho_e = 72 \times 10^9 \text{ cm}^{-2b}$

InN/template ρ_s = 4.4x10⁹ cm⁻² ρ_e = 260x10⁹ cm⁻²

a) T.D.Veal "InN and related alloys" CRC Press

b) In agreement with Vilalta-Clemente A. et al Physica Status Solidi A 207, 5 (2010) 1079-1082.

RAINBOV

Contact processing

- **1. Standard cleaning process**
- 2. Acid treatments for oxide and surface metal (In) removal
- 3. MESA etching (plasma RIE SiCl₄ + Ar, RF power 125 W)
- 4. GaN ohmic contact metallization (Ti/Al) (no thermal annealing required for rough n-GaN)¹
- 5. InN ohmic contact metallization (Ti/Al)

(no thermal annealing required)

¹S. Ruvimov et al. Appl. Phys. Lett. **69**, 1556 (1996)

RAINBOW

Electrical measurements

- I-V show high leakage current
- Better non-linear behaviour for buffer-layered samples

Electrical measurements

- Temperature dependence I-V characteristic
- Temperature activation behaviour
- Still high leakage at low temperature

On template

Conduction mechanism

- Dislocations act as a leakage path (ohmic behaviour)
- Thermionic emission for InN/GaN buffer
- Both mechanism for the overall current-voltage behaviour

RAINBO

Conclusions

- High density of dislocations in InN/GaN
 - In nitrides¹ they act as leakage paths
 - In InN every dislocation is a source of donor type defect
- Rectifying behaviour

 Not observed in InN/template grown at 400°C
 Achievable with InN/buffer grown at higher T

 Acknowledgments
- The EU Rainbow-ITN project for funding
- All the highly efficient technicians in ISOM

¹B.S.Simpkins et al. Jour. Appl. Phys. Lett., **94**, No.3, 1448, (2003)

Thanks for your attention Question?