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Although there has been a lot of interest in recognizing and 
understanding air traffic control (ATC) speech, none of the 
published works have obtained detailed field data results. We 
have developed a system able to identify the language spoken and 
recognize and understand sentences in both Spanish and English. 
We also present field results for several in-tower controller 
positions. To the best of our knowledge, this is the first time 
that field ATC speech (not simulated) is captured, processed, 
and analyzed. The use of stochastic grammars allows variations 
in the standard phraseology that appear in field data. The 
robust understanding algorithm developed has 95% concept 
accuracy from ATC text input. It also allows changes in the 
presentation order of the concepts and the correction of errors 
created by the speech recognition engine improving it by 17% and 
25%, respectively, absolute in the percentage of fully correctly 
understood sentences for English and Spanish in relation to the 
percentages of fully correctly recognized sentences. The analysis 
of errors due to the spontaneity of the speech and its comparison 
to read speech is also carried out. A 96% word accuracy for read 
speech is reduced to 86% word accuracy for field ATC data for 
Spanish for the "clearances" task confirming that field data is 
needed to estímate the performance of a system. A literature 
review and a critical discussion on the possibilities of speech 
recognition and understanding technology applied to ATC speech 
are also given. 
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Speech technology is the área of science that 
allows the processing of human speech for its 
recognition, understanding, translation, and generation. 
Current speech technology applications can be 
divided into online and offline applications. Online 
applications include the following: 1) dictation, in 
which a person speaks to a computer and the system 
transcribes what is spoken [1-3], 2) telephone-based 
applications, in which the computer interacts with 
the user by recognizing/understanding the question 
and generating a useful answer [4], 3) applications 
in a car or an environment in which the hands of the 
user are busy in which the system helps with user 
needs, for instance at home or a production factory 
or in the case in which there are no keyboards (i.e., 
a mobile phone) [5-7], and 4) Language learning in 
which the system acts as a tutor to the student [8-10]. 
Offline applications include processing recorded audio 
for indexing it and its subsequent rapid recovery or 
extracting information from it.1 Speech technology 
applied to ATC speech can be used in both scenarios, 
online for an ATC training application or offline for 
the analysis of an ATC task load. The sophistication 
of the techniques used depends on the application. 

Several researchers have tried to process ATC 
speech in the past for different purposes. The first 
reference to it that we found in the literature dates 
back to 1975 in which a limited speech understanding 
system was studied for use as a component in a 
military training system [11] mentioned by Beek, 
et al. [12]. In 1990, while discussing the potential of 
speech processing in military computer-based systems, 
Weinstein mentions the application of training air 
traffic controllers as a way of eliminating the need 
for a person to act as pseudopilot thus reducing the 
cost of training personnel [13]. Methods of training 
air traffic controllers include the use of human 
pseudopilots that mimic a working scenario. The 
controller interacts with the pseudopilot in the same 
way as he/she would interact when he/she is on 
duty. One of the problems of this methodology is the 
cost of training and paying the human pseudopilots. 
The idea of the ATC training simulator comprises 
the following: 1) the ATC speech is processed and 
understood by a speech understanding module of 
the pseudopilot system; 2) the central control of the 
automatic pseudopilot system includes a model of 
air traffic procedures (and possibly a model of the 
air traffic controller's behavior and performance 
modeling) which then generates a response that is 
sent back to the air traffic controller for the following 
interaction.2 The use of the proposed automatic 

1 http://www.sail-technology.com/, http://www.quaero.org/. 
2For instance in [4] a model of air traffic controllers conflict 
detection and conflict resolution that can be used in these tasks is 
developed, and in [5] a method to automate ATC within simulation 
environments is presented. 
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pseudopilot instead of a real person would drastically 
reduce the cost of such a system. Several systems are 
mentioned by Weinstein in [13] to justify the early 
military interest in this application [16-19]. More 
recently, other projects have worked on the same 
idea [20-23]. Although the controllers are expected 
to speak in a constrained stylized language, they will 
frequently stray from the constraints so it is essential 
for the recognition system to be able to process any 
deviations from the grammar effectively. In fact, 
according to [20], with years of practice human beings 
change their behavior and only a small percentage of 
their instructions fully conform to the International 
Civil Aviation Organization (ICAO) recommendations. 
The minimum requirement would be the need for the 
recognition of the deviation and request to the trainee 
to rephrase his speech input [13]. 

The system developed in this paper effectively 
copes with variations from the official grammar 
in contrast to previous systems [21, 25, 23]. If 
feedback from the user is allowed, one way to 
recognize the deviation is to use modern confidence 
estimation algorithms [26]. In a more recent ATC 
training simulator development, Adacel was using 
automatic speech recognition in their Adacel MaxSim 
training simulator. Unfortunately we do not have any 
further data on the evaluation of the system [27]. 
Several other commercial producís for ATC training 
using speech recognition and synthesis have also 
recently appeared on the market such as ATVoice 
from UFA.3 The brochures of the product promise 
appealing features such as lowering operating and 
recurring human resource costs, increasing efficiency 
and throughput during high volume exercises, and 
allowing the user to train independently without using 
extraneous resources, but we do not have evaluation 
data or feedback from customers to give educated 
advice to prospective users. The languages available 
are also limited: ATVoice only works for American 
English speech. 

Other authors have proposed alternative potential 
applications for ATC speech recognition such as 
handling electronic flight progress strips [25, 28]. 
In a study carried out by Ragnasdottir, et al. [29], 
a new application for speech recognition and 
understanding in air traffic control (ATC) is proposed. 
This application is intended to support controllers 
in their work by making the system give warnings 
when a discrepancy is found in the Communications 
between the controller and the pilot. A detailed 
analysis of voice communication in ATC shows that 
there is some sort of miscommunication in about 1 % 
of transmissions [30]. The proposed system should 
recognize the read back of the pilot as a response to 

3http://www.ufainc.com/brochures/200803%20UFA%20 
ATVoice%20Brochure.pdf. 

the ATC order and check it with its internal flight data 
processing system to detect errors and warn the ATC 
controller. The difference between this application and 
other applications mentioned in this section is that in 
this case, the speech to be recognized comes from 
the pilot instead of the ATC controller, thus adding 
problems of typical disturbances of the RF channel. 

A completely different use of ATC speech 
recognition was made in [25] in which they worked 
on a project to intégrate speech recognition into 
a C-CAST system (controller communication and 
situation awareness terminal) which was able to 
transmit, display, and receive clearances inside the 
aircraft through a data link channel. The objective of 
the system was the transcription of the speech of the 
ATC controller into text which would then be sent to 
the pilot through the data link channel. 

Other potential applications include the analysis 
and calculation of the objective task workload of 
the controller by analyzing ATC speech. Some 
authors relate the objective task workload to both 
measurements of communication events and that of 
the variations of ATC activity (traffic complexity) 
[31, 32]. Communication events include time spent in 
the ATC-pilot Communications and the content of the 
Communications. The content of the Communications 
can be extracted automatically by using speech 
understanding algorithms. It is important to note 
that a fully correct transcription is not required for 
this application inasmuch as the main keywords 
are detected.4 For this kind of application a speech 
recognition system with a certain amount of errors can 
be used. 

Finally, a very ambitious objective was presented 
in [34], in which a system was developed to embed 
a speech-based interface into an unmanned aircraft 
(UA) or unmanned aerial vehicle (UAV) that could 
understand ATC speech in the same manner as 
does a normal pilot. It controls the vehicle with the 
same commands used by a pilot and responds with 
speech synthesis with the same type of sentences 
that are used in a normal ATC procedure. The 
authors concentrated on the demonstration of only 
one of the en-route tasks: the flight-path-change 
directive. Unfortunately no quantitative data on the 
speech understanding performance of the system was 
reported. 

From the aforementioned experiences, we can 
confirm that there is an increasing interest in learning 
about the capabilities of current speech understanding 
algorithms when processing ATC speech and 
exploring how to improve the ATC process. 

4An important área of research in speech recognition is that of 
keyword spotting [33]. By using keyword spotting systems, many 
understanding tasks can be carried out without the need to make a 
full transcription of the sentence, thus reducing the computational 
cost. 

http://www.ufainc.com/brochures/200803%20UFA%20


TABLE I 
Number of Sentences used to Train Language Models for Each ATC Task, Number of Words in the Dictionaries and their Perplexity 

Task 

Clearances 
Arrivals 
Takeoffs 

North Ground taxiing 
South Ground taxiing 

Spanish 

Language Model 
Training (sentences) 

4535 
2512 
3717 
12326 
12915 

Dictionary (words) 

1001 
452 
753 
1522 
1612 

Perplexity 

15,23 
19,57 
11,50 
23,19 
29,34 

English 

Language Model 
Training (sentences) 

2703 
721 
1090 
2766 
3040 

Dictionary (words) 

656 
267 
351 
479 
535 

Perplexity 

19,91 
16,68 
11,94 
17,92 
43,32 

In a previous work [24] we described a summary 
of the results that we obtained in the INVOCA 
project, a project endorsed by AENA (Aeropuertos 
Españoles y Navegación Aérea—Spanish Airports 
and Air Navigation Authority) to analyze to 
what extent the processing of ATC speech can 
be done automatically with speech recognition 
and speech understanding systems and explore its 
possible applications, reporting results of the project 
concerning only the "clearances" task. 

In this paper we describe in detail the development 
of the system, the five different tasks addressed 
(clearances, arrivals, takeoffs and the control of 
ground surface taxiing, divided into two áreas: 
north and south), together with their vocabularies. 
All of the tasks pertain to air traffic controllers 
distributed between two control towers at Madrid 
Barajas International Airport. The methods used 
to carry out both speech recognition and speech 
understanding and, more importantly, the results 
of different experiments comparing training data, 
evaluation data, simulated task data and field data 
are given. Finally we discuss our results and compare 
them with other previously published results. 

The paper is organized as follows. Section II 
describes the definition of the tasks of the ATC 
considered in the project and the data used to carry 
out the experiments. Section III describes technically 
how the system has been built. Section IV presents 
the experiments carried out and the results obtained. 
Section V analyzes the source of errors in more detail 
presenting a new set of experiments. Section VI 
contains a critical discussion and finally the paper 
ends with the conclusions in Section VII. 

II. DESCRIPTION OF THE TASKS AND DATA USED 

The project comprised the work of air traffic 
controllers located at the two airport control towers in 
five different positions: arrivals, clearances, takeoffs, 
and the control of ground taxiing (divided into two 
different áreas at Madrid airport at the time of the 
experiments presented here). 

Clearances: This position authorizes flight 
plans, engine startup and transition to surface ground 
control. 

Arrivals: This position controls the final approach 
phase of the plañe for landing. It consists of clearance 
for landing, instructions on how to exit the runway, 
and the communication of the next control frequency 
for the controller: ground taxiing. 

Takeoffs: In this position the controller supervises 
the takeoff process from the waiting point, entry to 
the runway, clearance to take off and transition to the 
suitable traffic control frequency. 

North and South Ground Taxiing: These comprise 
the process of ground routing in the North Área or 
South Área of Barajas airport. 

The languages to be processed were Spanish and 
English since the controllers at this international 
airport use sentences mixing both languages. The 
system had to detect and process both languages at 
the same time. 

In order to develop the system we recorded many 
hours of speech distributed between the different 
ATC tasks and languages. However, most of the 
development, and particularly the acoustic training of 
the system, was carried out using only the clearances 
task. 7.1 hr of speech (4,026 sentences) were used 
to train the acoustic models of the recognizer for 
Spanish and 4.7 hr of speech were used for English 
(2,200 sentences). These sentences together with 
1,531 sentences for the testing set for Spanish, 774 
sentences for the testing set for English, and 1,005 
sentences for the field test were the only files which 
our experts fully labeled due to the limited budget of 
the project. These full labels included the intended 
text (the text the expert considered the speaker was 
intending to say) and actual text (including labels for 
spontaneous language artifacts like coughs, repetitions, 
bad or altérnate pronunciations, etc.) along with 
semantic interpretation labels (concepts with their 
attributes and valúes carried by the sentence). More 
text was obtained for language model training by 
simply transcribing recordings into text files (neither 
preparing the full labeling ñor the semantic reference 
interpretations, and not creating the individual 
sentence files needed for acoustic training). 

Two measurements that describe the linguistic 
complexity of the different tasks are given: the 
dictionary size of the task and its perplexity. Table I 



Fig. 1. Block diagram of ATC speech understanding system. 

TABLE II 
Dictionary Overlaps Among Tasks 

English Spanish 

Accumulated dictionary 
Common to all tasks 

Specific to just one of the tasks 

869 words 
18.3% 
39.6% 

2086 words 
10.9% 
24.9% 

presents the number of different words for each 
language and task in the third and sixth column, as 
observed in the training material. Clearances has the 
biggest dictionary for English and the "South Ground 
taxiing" for Spanish. The lighter dictionary is found 
for "Arrivals" for both languages. It is known that the 
number of words for the ATC in the tower control is 
much higher than the number of words for en-route 
controllers, which is around 300 words [21]. 

Table II shows the dictionary overlaps between the 
different tasks. The accumulated dictionary obtained 
by merging the words in all tasks is 2.4 times bigger 
for Spanish indicating the higher proficiency and 
ability of the ATC controller to both use more and 
different words in Spanish (their mother tongue).5 

In English 18.3% of the words are common to all 
tasks while only 10.9% of the words are common 
to all tasks in Spanish. One explanation for this is 
the greater variability of expressions in the mother 
tongue. By measuring the specifity of other parts of 
the vocabulary, we find that 39.6% of the English 
words in the vocabulary and 24.9% of the Spanish 
only appear in one of the tasks and not in the others, 
so in English the controller seems to use more specific 
words than in Spanish for this application. 

For the creation of the stochastic language models 
(stochastic grammars) we have used transcriptions of 
recorded sentences for each task. In Table I we show 
the number of sentences that we have used to train 
the language models for the different tasks together 
with the perplexity for each task.6 The perplexity 
is a measurement of the average number of words 
that may follow a particular word in the language 

5The number of sentences used to train the systems also has some 
influence, but this point has not been researched. 
6The total number of words in the training sentences corresponds 
roughly to 10-15 times the number of sentences. 

domain of the task. The perplexity is calculated from 
a text document. When the perplexity is low, even if 
the number of words in the recognition dictionary 
is high, the task is simpler than when the perplexity 
is high. Thus, perplexity is a measurement of the 
problem complexity. For instance the arrivals task 
has about half the number of words in the dictionary 
compared with the clearances task but its perplexity 
is higher for Spanish. The consequence is that the 
arrivals task will theoretically be more difficult to 
recognize than the clearances task and this fact will 
be confirmed in practice as we see later when we 
compare performances. 

III. DESCRIPTION OF THE SYSTEM 

In Fig. 1 a block diagram of the system is shown. 
In the following subsections of the content of each 
module is briefly explained. 

A. Speech Detection Module 

This module analyzes the activity in the line and 
classifies it into two categories: speech and silence. 
It detects speech based on the energy relationship 
between speech and silence. Only the speech signal 
is delivered to the next module. This module also 
decides whether the pause is long enough to mean that 
the command has ended. 

B. Front end Processing 

The speech is preprocessed to deliver a set of 
parameters every 10 ms. The window width is 25 ms. 
The parameters extracted are LPC-Cepstral (linear 
predictive coding-cepstral) coefficients with CMN 
(cepstral mean normalization) and CVN (cepstral 
variance normalization) [36]. As the channel has 
some background noise, we decided to apply these 
two normalization techniques, which are especially 
designed to compénsate for channel variations. The 
effect of inserting a transmission channel into the 
input speech is to multiply the speech spectrum by the 
channel transfer function. In the log cepstral domain, 
this multiplication becomes a simple addition which 
can be removed by subtracting the cepstral mean 
from all input vectors. This is the objective of CMN: 
subtract the mean of all vectors. Its only drawback 



TABLE III 
Evaluation Results for the Off-Line Test for Spanish 

Task 

Clearances 

Arrivals 

Takeoffs 

North 
Ground 
taxiing 

South 
Ground 
taxiing 

Dictionary 

1001 

452 

753 

1522 

1612 

Múltiple 
Pronunciations 

86 

38 

67 

86 

90 

% Dictionary 
Words without 

Language Model 

5.2% 

6.2% 

8.9% 

5.7% 

5.6% 

Perprlexity of 
the Test Set 

15.2 

19.5 

11.3 

23.9 

29.5 

Test Sentences 

503 

211 

233 

349 

235 

% Test Words 
without Language 

Model 

0.7% 

3.1% 

1.7% 

0.5% 

1.2% 

Word Accuracy 

86.26 (±0.75) 

76.41 (±1.61) 

85.29 (±1.25) 

67.93 (±1.47) 

72.45 (±1.5) 

TABLE IV 
Evaluation Results for the Off-Line Test for English 

Task 

Clearances 

Arrivals 

Takeoffs 

North 
Ground 
taxiing 

South 
Ground 
taxiing 

Dictionary 

656 

267 

351 

479 

535 

Múltiple 
Pronunciations 

122 

52 

66 

86 

92 

% Dictionary 
Words without 

Language Model 

5.5% 

3.4% 

1.1% 

1.3% 

7.9% 

Perprlexity of 
the Test Set 

23.2 

16.7 

12.1 

17.9 

42.4 

Test Sentences 

453 

57 

71 

70 

123 

% Test Words 
without Language 

Model 

1.2% 

0.6% 

1.9% 

0.7% 

2.0% 

Word Accuracy 

73.26 (±1.11) 

77.45 (±3.02) 

80.11 (±2.6) 

75.90 (±3.06) 

64.22 (±2.27) 

is that the mean has to be estimated over a limited 
amount of speech data, so the subtraction will not 
be perfect. Nevertheless, this simple technique is 
very effective in practice where it compensates for 
long-term spectral effects such as those caused by 
different microphones and audio channels. CVN adds 
a new normalization: every parameter is multiplied 
by the quotient of the standard deviation of the 
parameter in the whole datábase and the deviation 
of the parameter in the specific file. This way, the 
variability of the parameters throughout the datábase 
is compensated. 

C. Speech Recognition 

Two speech recognizers work in parallel, one for 
Spanish and the other for English. We have developed 
a continuous speech recognizer, with HMMs (hidden 
Markov models) with context dependent generalized 
triphones with 1,500 states and 8 mixtures per 
state (Spanish) and 900 states, 8 mixtures per state 
(English) [35]. The search is driven by a stochastic 
bigram language model that assigns a score to each 
sequence of two words. These scores are learned 
by processing text transcribed from actual controller 

sentences in the development phase as we mentioned 
abo ve (see Table I). 

Several pruning techniques only allow our system 
to search through about 17% of the hypothetical full 
search space and respond well in real-time.7 One 
pruning technique is used at the state level to avoid 
the computation of hypotheses that have accumulated 
low scores compared with the best one. The other 
pruning method is applied to the last state of a word 
with a stricter threshold. This second pruning is very 
relevant as it controls the number of continuation 
paths that will survive (and which will eventually 
trigger new branches in the recognition search space). 
The speech recognizer may use more than one pattern 
per word to cover several pronunciations for some 
words plus 14 units that we cali extra-lexical units 
because they are models for nonlexical acoustic 
events (like silences, lips noise, speaker noises, 
hesitations like "hum," "eh," "mm," etc.) that do not 
follow grammar rules in their occurrence probability 
[35]. In the third column of Tables III and Table IV 

70.63 times real time for the longest Spanish clearances task on an 
AMD Athlon (tm) XP 1800+ with 1.5 G RAM. 



the number of word models to cope with múltiple 
pronunciations is presented for Spanish and English. 
The 4th column of Table III and Table IV shows the 
percentage of dictionary words that did not appear 
in the training text so there is no stochastic language 
model for them (although their pronunciation is 
included in the dictionary of available words). They 
are given an intermedíate score (the average between 
the largest and the shortest valúes in the language 
model) when they form part of a sentence. 

The output of the Spanish and the English 
recognizers is a set of words corresponding to the 
best hypothesis that the system attributes to the 
pronounced sentence together with an acoustic and 
linguistic model combined log-likelihood score for the 
whole sentence. 

D. Language Identification 

To carry out language identification we considered 
several alternatives. We have to take into account that 
the characteristics of this task make it particularly 
difficult as the controllers are nonnative English 
speakers. Moreover, the domain vocabulary includes 
words which do not provide clear evidence to 
distinguish which language they were pronounced in, 
like: alpha, bravo, charlie, some city ñames, airline 
ñames, types of aircraft and others with a very similar 
pronunciation for both languages. Furthermore, 
controllers often mix both languages in the same 
sentence, most of the times for greetings, for instance 
saying "buenos días" (good morning) in Spanish 
while the rest of the phrase is pronounced in English. 

Our final choice was to base the identification 
on the score given by the full continuous speech 
recognizer for both languages running in parallel. As 
we demonstrated in [37], the results obtained with this 
technique are probably the best that can be obtained, 
as it models both acoustic and phonetic information, 
together with the sequence of allophones and words. 
However there are several disadvantages: a complete 
speech recognition system has to be trained, a lot 
of labeled data is needed and it would be difficult 
to have a real-time system for several languages as 
the full recognizer is more time consuming. In any 
case, for the identification of two languages, as in 
our case, it is the best option with a low error rate 
for both languages and it is extremely important to 
obtain a very good rate because errors in language 
identification cannot be corrected later in the system. 
In [38] a full recognizer is also proposed and the 
recognizer scores are normalized and compared with a 
linear classifier. 

Another typical approach seen in the literature is 
the so-called "phonotactic approach," which classifies 
languages based on the statistical characteristics 
of the allophone sequences [39]. The technique is 
called PPRLM (parallel phone recognition language 

modeling) and its main objective is to model the 
frequency of occurrence of different allophone 
sequences in each language. The system has two 
stages: in the first stage, a phone recognizer takes 
the speech utterance and outputs the sequence of 
allophones corresponding to it, this sequence is then 
used as input to a language model module; in the 
second stage, the language model module scores 
the probability that the sequence of allophones 
corresponds to the language. The performance of 
PPRLM is lower than the method of using full 
recognizers. 

We could also have tested other approaches based 
on acoustic features which are derived from the 
speech signal itself, such as mel-frequency cepstral 
coefficients (MFCC) or shifted delta cepstral (SDC) 
features produced by applying a 7-1-3-7 SDC scheme 
[40]. The reason is that the distribution of acoustic 
features reflects the statistics of the sound distributions 
in a particular language. They have been applied 
using modeling techniques such as Gaussian mixture 
models (GMMs) [40] and support vector machines 
(SVMs) [41]. Although acoustic features can be easily 
obtained from the speech signal, the useful language 
information is often corrupted by the distortion caused 
by the transmission channel or speakers. So, many 
studies have focused on improving the expressiveness 
of acoustic features for language characterization 
and to compénsate noise and distortion [40, 42]. 
The results are comparable to the PPRLM technique, 
as we can see in [40]: the system using GMM plus 
SDC features obtained worse results than PPRLM, 
and only the fusión of both systems provided small 
improvements. 

E. Understanding 

The understanding module processes the output 
words of the recognizer and obtains its conceptual 
content, taking into account the key concepts of 
the task. The algorithm builds the meaning in an 
island-driven bottom-up approach making use 
of context-dependent rules. It differs from more 
traditional approaches in two main points: first, 
we do not use formal grammars like the recursive 
transition networks of Carnegie Mellon University's 
Phoenix [43] used in several successful applications 
or finite state machines of the system used by Duke, 
et al. for the Pinocchio UA control system [34] that 
both need the expansión of the concepts into word 
constituents. In our case, it is the conceptual tagging 
of the words processed by the proper set of rules that 
elabórate the meaning of the sentences. These rules 
are similar to a parsing grammar, but the power of 
our system is the possibility of using rules that are 
dependent on the context and that this context can 
be expressed in various ways including far-reaching 
context. The other point different from the traditional 
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understanding methods is the use of ambiguity in 
the semantic tagging (each word can be associated 
with several tags) and the use of the "trash" tag as 
another tag possibility as further explained below. 
Like other laboratories (including [34] and [43]), 
our understanding module does not try to understand 
every single word in the sentence but tries to extract 
as many islands of correctly understood segments 
as possible. A task-specific and language-specific 
dictionary is needed, while the interpretation rules for 
each task are quite language independent. In very few 
cases we have used language-dependent knowledge 
in the elaboration of the sequence of understanding 
rules because our design operates on a very high 
(conceptual) level of information. 

In Fig. 2 we show our understanding 
architecture. The process for each sentence begins 
with the labelling of each word using a set of 
semantic-pragmatic categories (semantic tagging). 
Several tags can be associated with the same word. 
The selection of the tags is task dependent. All the 
words that do not provide information are tagged as 
trash. The system also assigns an on-line trash tag to 
the new words found in the recognition evaluation 
experiments. This feature is also kept for final 
evaluation sessions of the whole system. 

The algorithm proceeds by processing sequences 
of numbers and translating them into figures. This 
step has special characteristics, dependent on the 
specific phraseology used. The following step tries to 
minimize the level of ambiguity in the tagging of the 
words. Context-dependent rules are especially suitable 

for this task because the reason for selecting some 
tags and rejecting others for a particular word is found 
by looking at the presence or absence of other tags in 
the sentence that matches or contradicts a particular 
interpretation or function of the word. Following 
the disambiguation step, we genérate the initial 
interpretation. Making use of context-dependent rules 
again we try to form islands of interpretation. These 
islands are often tagged with brand-new tags that do 
not exist in the original labelled dictionary. These 
new tags help the system recognize the formation of 
these islands of interpretation (reliably understood 
parts). Interpretation islands can be combined together 
or with single words to build larger islands of 
interpretation. When no more work can be done, we 
remove all words that are uniquely labelled as trash. 
The reason for removing them at this time and not 
earlier is that although we cannot extract any meaning 
from a "trash word," it sometimes helps us to define 
frontiers between blocks whose constituents should be 
jointly interpreted but separately from others. This is 
only true for the kind of rule that works with "near 
context" and that do not cross these borders. We 
also use another kind of rule that looks for context 
anywhere in the sentence. 

After "trash removal" we run the definitive 
interpretation stage in which another group of 
context-dependent rules carry out their work. This 
part of the interpretation module is written taking into 
account that the trash words have being removed and 
special care must be taken in order not to mix things 
up that were previously separated by trash. The final 
product is a frame containing a variable number of 
slots, each made up of an attribute and a valué that 
represents the interpretation of the sentence. 

In Fig. 3 we show an example of a context-
dependent rule and its application in the context of the 
ATC clearances task. We have a set of 12 "primitive 
rules or functions" that make up a specific language in 
which we write our understanding modules. 

The clearances task (the most complex 
conceptually) is dealt with by using an initial 
interpretation module made up of 56 rules and a 
definitive interpretation module, after trash removal, 
with another 32 rules. In the example detailed in 
Fig. 3 we show a rule that relies on the consecutive 
appearance of two segments labelled LABEL1 and 
LABEL2. If this condition is satisfied, the rule 
selects just one of the two items as specified in the 
N parameter (the other item is removed from the 
working space) and labels it with the label specified 
in NEWXABEL. Thus, this rule (function) has four 
parameters that have to be specified. For this rule 
the context is a near context (indeed a consecutive 
context), but we use also rules able to analyze far 
contexts. In Fig. 3 we show two applications of this 
rule. 



Generic rule 

lf_found_sequence ( LABEL1 , LABEL2 
Then select ( N ) and label ¡t ( NEWJ.ABEL ) 

• 

Examples of application of this rule 
(Clearance task assumed) 

r lf_found_sequence ( "digit_string" , "leveIJD" ) 
Then select (1 ) and label it ( SLOTjnitialJevel) 

Example ¡nput: "... 130 [digit_str¡ng] initial [level_ID] ..." 
After rule's execution: "... 130 [SLOTJnitialJevel] ..." 

lf_found_sequence ( "level_ID" , "digit_string" ) 
Then select ( 2 ) and label it ( SLOTjnitialJevel) 

Exarnple ¡nput: "... initiallevel [leveIJD] 130 [d¡git_str¡ng] ..." 
After rule's execution : "... 130 [SLOTJnitialJevel] ..." 

Fig. 3. Understanding rule example. 

In the first example, if the sentence elements 
present at the moment of the execution of the rule 
include "... 130 initial...," the rule selects the first 
element ("130") and labels it as "SLOTJnitialJevel." 
Something quite similar occurs for the second 
example. The difference is that in this case a change 
in the ordering of the elements produces the same 
result. The element "initiallevel" is obtained by 
previous rules that group the two words together into 
just one merged element labelled as leveIJD. 

One advantage of using context-dependent rules 
instead of finite state machines (FSMs) such as the 
ones used in [34] is, that with a proper sequence 
of rules, the system is able to understand some 
expression variants (that although not canonical with 
respect to the official phraseology, they do occur 
in real spoken examples since ATC speech strays 
from the canonical model). Another property of our 
system is its robustness against recognition errors 
as long as the system tries to solve all the islands of 
possible interpretations and does so by relying only 
on content words. The designer of the understanding 
module has to bear this in mind and should not use 
rules dependent on words with a high probability 
of generating a recognition error. These are, for 

example, short words without a crucial meaning in the 
application considered (like articles or other function 
words). 

The design of the understanding module is quite 
easy for experts in the domain once they get a 
feeling for the set of rules (or functions) available 
(the "primitive" functions) and they follow some 
guidelines that we have learned from the experience 
obtained after applying this procedure to different 
domains. One guideline is to think thoroughly 
about the tags for the words. The system allows the 
processing of múltiple tags for each word and this 
is relevant when designing the labelled dictionary 
mentioned in Fig. 2. The different tags that the 
designer writes down for each word should consider 
the different meanings of the word in the particular 
domain. One interesting possibility for a word is 
to express different tags corresponding to different 
meanings including the "trash" tag for words that may 
or may not have a meaning in a particular sentence. 
The context-dependent rules, mainly those present 
in the disambiguation module, will try to refine the 
múltiple tagging by selecting the one (or the ones) 
most suitable for a particular sentence. Another key 
design guideline is to apply specific rules before 
general ones. This is necessary because specific 
rules try to match a context with more conditions. 
If a general rule is applied beforehand, it will be 
used because its general condition will also be met, 
often causing the later specific rule to be unable to 
find its specific context conditions. This will lead 
to a more general, less precise interpretation of the 
sentence, leaving elements out of the interpretation 
and eventually producing conceptual errors. 

Fig. 4 presents an example of the output of the 
speech understanding module. In the first part of the 
figure, the result of the speech recognition system is 
shown. The set of words delivered by the recognizer 
is processed by the understanding module providing a 
set of slots with attribute-valué pairs. 

IV EVALUATION EXPERIMENTS 

A. Off-Line Evaluation 

The first tests carried out on the system were the 
off-line evaluation tests. This is the kind of evaluation 

OUTPUT OF THE RECOGNIZER: 
Airportuyal five seven one one clearance is correctfor pushback contact on one Iwo one decimal seven goodbye 

OUTPUT OF THE SPEECH UNDERSTANDING MODULE: 
Identifier = [airportugal5711] 
Clearance = [CLEARANCE IS C0RRECT| 
Frequency change = [121.7] 

Fig. 4. Example of output of speech understanding module. 
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that the experts apply regularly in the laboratory to 
predict the performance of any system. For this test, 
a set of sentences that were not used in training the 
recognizer, neither for the acoustic models ñor for 
the language models, was fed to the system and the 
results were computed. The effect of the language 
identification algorithm was eliminated in these tests 
and will be evaluated in a different test. 

1) Speech Recognition: A usual measure of 
the performance of a system is given by the word 
accuracy rate that accounts for all types of errors 
(substitutions, insertions and deletions) compared with 
reference data. The formula used to calcúlate the error 
rate is as follows: 

% word_error_rate 

# substitutions+# insertions+# deletions 

# referencewords 

% word_accuracy 

= 1 — % word_error_rate. ( i) 

The number of substitutions, insertions and deletions 
is calculated with a program that finds the best 
alignment between the hypothesis sentence and the 
reference sentence by considering a unity cost for 
each of the three kinds of error. The last column in 
Table III and Table IV gives the word accuracy of 
the system for the different tasks and for Spanish and 
English. Data is given with 95% confidence intervals 
(in parentheses), as in expression (2). 

p±\.96 Pd-P) (2) 

where p = % word accuracy and n = the number of 
reference words. 

These tables also show the perplexity of the test 
set, the number of test sentences and the percentage of 
test words that do not have a language model because 
they did not appear in the training text. It can be seen 
that there are significant differences in performance in 
the different tasks. These differences are mainly due 
to the perplexity of the tasks. 

In Fig. 5 word accuracy performance is plotted 
against perplexities for different tasks. It can be seen 
that in general the performance decreases as the 
perplexities increase. 

In Spanish, slight variations in this general trend 
are obtained for perplexity 15.2 and perplexity 29.5 
which are higher than the trend. One factor for this 
improvement is that acoustic models were only 
created with sentences that come from the clearances 
task which is the task with a 15.2 perplexity valué and 
the percentage of test words without language model 
is small. In the second case (perplexity 29.5, South 
Ground taxiing) one reason for the improvement is 
that the language model in this case is better trained 
because it has the greatest number of sentences to 
train it (12,915 sentences). 

A source of high perplexity is either a very 
variable grammar or a not so variable grammar but 
in which some elements have high variability. This 
second example is the case for taxiing tasks in which 
the number of different expressions is not as high 
as in a clearances task (for instance), but where the 
number of different paths, specified as a sequence 
of fixed points and routes, is high. For English, 
the effect of perplexity is also clearly observed. 
A conclusión is that, as was expected, for ATC 
speech the performance of the speech recognition 
system depends on the perplexity of the task, thus, 
its perplexity is a good prediction variable. 

Fig. 6 plots a comparison of results for Spanish 
and English task by task and for all tasks and the 
weighted average which is calculated giving a weight 
proportional to the number of test sentences for each 
language. The plot also shows confidence margins for 
each data. 

The comparison between English and Spanish 
for each task shows, in general, a significant better 
performance for Spanish. There are múltiple causes to 
justify this fact: we had more Spanish data recorded 
both for training acoustic models and for training 
language models; we have more experience building 
Spanish systems and more knowledge of the language, 
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which influences our ability to describe optimal phone 
inventories, múltiple pronunciations, etc.; and last but 
not least, English examples are uttered by nonnative 
speakers with a very high pronunciation variability. 
One reason for the differences from Spanish to 
English for the North Ground taxiing task (better 
performance for English) is the fewer number of 
words in the dictionary for the English task and the 
lower perplexity of the language model compared with 
Spanish. 

2) Speech Understanding: Table V presents the 
number of semantic slots evaluated for Spanish and 
English. The number of slots is important to establish 
the confidence intervals of the results. Fig. 7 presents 
the percent concept accuracy, across different tasks 
for Spanish. Percent concept accuracy is calculated in 
a similar way as percent word accuracy calculated in 
the previous section. The only difference is that when 
we calcúlate the match between our system output 

TABLE V 
Speech Understanding Slots Evaluated for Spanish and English 

Task 

Clearances 
Arrivals 
Takeoffs 

North Ground taxiing 
South Ground taxiing 

Slots Evaluated 
(Spanish) 

1545 
621 
655 
439 
297 

Slots Evaluated 
(English) 

1032 
165 
207 
86 
149 

and the reference, we require the coincidence of both 
the attribute and the valué for each concept to count 
it as a positive match. The top line represents the 
results of the understanding module on the reference 
sentences (the transcription of the test sentences 
made by hand). This line shows the power of the 
understanding rules by themselves which, in general, 
cover the domain of the application quite well (with 
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Fig. 9. Comparison of off line speech understanding results for Spanish and English for different tasks and all of them together. 
Weighted average is dependent on number of slots evaluated. 

a slightly lower performance for the North Ground 
taxiing task, 84.05%, due to a different sharing 
distribution of the errors across the dictionary. In 
fact, for these cases, word accuracy is a misleading 
predictor of understanding performance, as the 
accuracy on the "carrier phrase" words is less relevant 
than the accuracy on the particular paths mentioned in 
each case, which have to be correctly understood.). 
The average performance of the understanding 
module is 95%. The lowest line in Fig. 7 shows the 
understanding performance after the recognition 
stage. The middle line in the figure plots the word 
accuracy from the recognition stage. We notice that 
the recognition errors made by the recognition module 
have an effect on the final results, thus increasing the 
concept error rate. The general performance for each 
task follows the performance trend obtained from 
the speech recognition results, showing the expected 
correlation between recognition (text transcription) 
and understanding (semantic content extraction) 
capabilities. In Fig. 8 the concept accuracy from the 
text (upper line) from speech (lower line) together 
with the word accuracy (center line) are plotted for 
English. The recognition errors coming from the 

recognition stage are augmented in the understanding 
stage as it is in Spanish. However, as we see later 
in Fig. 10, if we consider the number of correct 
sentences the understanding module improves the 
performance of the recognition module. 

In Fig. 9, a comparison of speech understanding 
results for English and Spanish is given across tasks 
and for all the tasks together with their weighted 
average. The general trend observed in speech 
recognition results is also observed here. Spanish 
delivers better results in general than English although 
in two cases (Arrivals and North Ground taxiing) 
there are no statistical differences. Notice that the 
speech recognition results for Arrivals were also 
similar for Spanish and English (see Fig. 6). 

Another way of analyzing the results of the speech 
understanding system is by calculating the number of 
sentences with no errors (perfect sentences). While in 
speech recognition, a single word error in a sentence 
causes a sentence error. In speech understanding a 
single word error may not cause a concept error. 
This happens because some of the words that might 
be erroneous in the recognition result are not used 
for understanding (Le., a function word like an 
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10. Comparison between percentage of correctly recognized sentences and correctly understood sentences for Spanish and English 
across tasks and all of them together. 

article or preposition) and other crucial words give 
the necessary conceptual imprint to form a correct 
interpretation. Thus, the speech understanding module 
"corrects" the output of the speech recognition module 
to a certain extent. This is an important robustness 
characteristic of our understanding solution. In Fig. 10 
the percentage of correctly recognized sentences 
for English and Spanish is presented together with 
the percentage of correctly understood sentences 
across tasks and all together. All the tasks exhibit 
the same trend: the percentage of correct sentences 
is improved. For Spanish this improvement is on 
average 25% in absolute points and for English it 
is a little lower (17% on average) but it is also true 
that the base performance of the English recognizer 
is lower than the Spanish one and a sentence full of 
recognition errors is very difficult to "correct" by the 
understanding module. Depending on the use of the 
system, the average 50% fully correctly understood 
sentences may be enough for some applications (for 
example, if one wants to detect the workload of the 
controller).8 

3) Language Identification Module: The language 
identification module was evaluated offline using a 
small set of 60 sentences. The percentage of correct 
sentences was 96.67% and 3.33% of error. 

B. Field Evaluation 

After testing the system in the laboratory with 
original recordings (field recordings) made at the 
beginning of the project we carried out a live test 
(i.e., a test carried out with the system connected to 
the microphone of ATCs on duty). This test is the one 

TABLE VI 
Evaluation Results for the Field Evaluation Test for Live 

Conversations (Languages Mixed) 

Task 

Clearances 

Arrivals 

Takeoffs 

North 
Ground 
taxiing 

South 
Ground 
taxiing 

# of 
Sentences 

385 

158 

167 

206 

89 

% OOV in 
Dictionary 

2.72% 

1.95% 

2.17% 

0.9% 

0.14% 

% OOV in 
Test Words 

1.15% 

1.07% 

1.29% 

0.99% 

0.67% 

Word 
Accuracy 

77.99 
(±1.05) 

79.85 
(±1.63) 

76.16 
(±1.79) 

66.24 
(±1.89) 

62.95 
(±2.94) 

8The only way to know if it is enough for the application is to build 
the application and carry out usability tests. 

that gives the real performance of the system. With 
this test, we check the performance of all the modules 
working together in real time, the Spanish recognizer, 
the English recognizer, the language identifier, and 
the understanding modules. In this evaluation both 
languages are mixed. The results that we present are 
the overall results for each of the tasks. Table VI 
summarizes these results for the speech recognition 
part. In the live test, new words appear that are not 
included in the dictionary of the system, these words 
are called "out of vocabulary words" (OOVs) and are 
presented in Table VI in the third column (the OOVs 
as a percentage of words in the dictionary) and fourth 
column (the OOVs as a percentage of words in the 
test). New words cannot be understood by the system 
because they are not known to the speech recognition 
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Fig. 11. Comparison between weighted average results and field evaluation results. 

module ñor to the understanding module in advance 
and they reduce the performance. The percentage 
of OOV words is never zero even for these tasks in 
which the phraseology of the communication has been 
designed to be standard. On the one hand, human 
communication eventually produces a relaxation of 
the norm that alters the expected grammar and, on the 
other hand, there are other parts of the message (the 
variable part dependent on the particularities of each 
airport) that are not specified in the regulation ñor 
are they kept constant because of the natural dynamic 
changes in time (new runways with their new taxiing 
routes, their new identifiers, etc.). Even after several 
thousand training sentences, we find OOV in test 
sentences. 

In Fig. 11 we compare the results obtained in 
this section with the results obtained in the weighted 
average evaluation made in previous sections that we 
have called offline. The use of the weighted average is 
needed since in the field evaluation both languages are 
mixed. If we analyze the results presented in Fig. 11 
we can see that field results are lower on average 
than the offline results in four of the tasks. The lower 
performance for the 4 cases is on average 5% which is 
influenced by errors due to the language identification 
module (see Table VII), OOVs, and the speech end 
point detector. If the language identification module 
has an error, the full sentence is wrong since all the 
words recognized are wrong (they are in a different 
language). 

To further analyze the performance of the system, 
we calculated the percentage of errors of the language 
identification module in the live test. The results 
are presented in Table VIL Although the errors 
for English identification are greater than those 
for Spanish identification, the weighted average 
performance is 95% (or 5% error rate), not far from 
3.3% in offline tests. 

The performance of the speech recognizers both in 
Spanish and English follow the expectations obtained 
in the offline evaluations. The reason for a higher 
performance for the "arrivals" task is still to be 

TABLE VII 
Performance of the Language Identification Module in the Field 

Identified Language 
(# sentences) 

Spanish 

English 

Percent correct 

Language 

Spanish 

757 

17 

97.8% 

Spoken (sentences) 

English 

36 

253 

87.54% 

Weighted 
Average 

95.0% 

researched. On average, the results of the field test 
are only lower than the offline tests in 3.3%, but if 
we exelude language identification errors the field 
tests outperform the offline tests in 1.7% absolute 
points due mainly to the results of the arrivals task. 
This result is not strange, since the offline data 
are also field data recordings. The main difference 
is that offline data is processed in the laboratory 
and the field data is processed in real time, with 
the computer connected to the microphone of the 
controller. 

In Fig. 12, the understanding results in the field 
are compared with the weighted offline understanding 
results. Again the performance of the field results 
is lower than the performance of the offline tests 
for three of the tasks and not significantly different 
for two other tasks. In this case, the relatively low 
performance of the speech understanding for the 
North Ground taxiing task, coming from the relatively 
low Spanish speech recognition results for this 
task and the relatively lower performance of the 
understanding rules is not degraded any more in the 
field test, possibly indicating that the errors in the 
language identification have their origin mostly in 
the takeoffs task and the South Ground taxiing task. 
The percentage of OOVs here also has an important 
impact in the degrading of the results particularly 
for clearances and takeoffs. A single OOV causes a 
concept error while in the offline tests there were no 
OOVs in the understanding dictionary. 
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V PERFORMANCE ANALYSIS 

We have further looked into the possible source 
of errors by analyzing the clearances task [24]. A 
detailed analysis of the training data and the test 
data showed that there are two situations at Barajas 
airport. One appears when the wind comes from the 
north (called the north configuration) and the other 
is when the wind comes from the south (called the 
south configuration). While our original recordings 
all contained data for the north configuration (the 
most common one), the field experiments were 
carried out by chance with the south configuration. 
This is a reason for a degraded performance in the 
field tests. We made new recordings using the north 
configuration and the speech recognition results 
improved by up to 88.96% word accuracy and 
76.87% concept accuracy (see Fig. 13, "field adapted" 
results compared with "field nonadapted" both for 
recognition and understanding). Fig. 13 also shows 
offline results for completeness. The conclusión 
is that the data capture is especially important for 

ATC as a change in configuration of the airport 
or the loss of a particular circumstance will cause 
relevant degradations in the system's capabilities since 
the stochastic grammars that we use need training 
sentences. The help from ATC experts is needed in 
order to maximize the suitability of the data capture 
and repeat the capture several times in different 
conditions to ensure a reasonable sampling of the 
variability in a real system development. 

The next experiment was carried out in a simulated 
task experiment in which 7 ATC students freely 
generated a set of sentences based on a given 
operating scenario. The experiments were carried out 
separately for English and Spanish so no language 
identification was used. The weighted results are 
presented in Fig. 13 (called "simulated free (ATC 
student)"). For speech recognition the results are 
significantly lower than the field adapted case. A 
more detailed analysis comparing results for Spanish 
and English showed that the performance of Spanish 
recognition was not significantly different from 
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the field adapted case while for English the results 
were significantly lower and this fact weighted the 
combined results downwards. 

However, for speech understanding there are 
no significant differences between simulated free 
experiments and field adapted experiments. A closer 
look at the English and Spanish results showed 
an improvement in the Spanish results compared 
with the field adapted case but a significant lower 
performance for English that compensated both 
effects. The understanding results of the simulated 
free experiments for Spanish demónstrate that a 
less spontaneous pronunciation (such as was heard 
in the experiments) improves the understanding 
results (81.77% concept accuracy versus 76.87%, 
although not significantly). One reason for the lower 
performance of English both in recognition and 
understanding is due to the lower English language 
skills of the ATC students. We should also remember 
that the field adapted case experiment includes the 
language identification module so the comparison 
between these results and simulated task results is not 
direct. 

The results of the simulated free experiments 
constitute the best prediction of what one could expect 
in an ATC training simulator application since there 
is a free framework in which the ATC student has to 
perform a defined task. 

A third experiment was carried out by giving the 
speakers several sentences to read (simulated read 
ATC student in Fig. 13). The performance both for 
speech recognition and understanding is better than 
the field adapted case, however, read speech has a 
much les ser spontaneous style. Our conclusión is that 
spontaneity in the live speech is difficult to understand 
compared with speech obtained in a "more controlled" 
experiment (Le., simulated read) as is well known in 

other speech applications. The results obtained from 
read speech can be used as an indicator of máximum 
performance expected under the best circumstances. 

Finally the same sentences given to the ATC 
students were read by 16 speakers not familiar with 
ATC phraseology chosen from among people working 
in our laboratory. The reason for carrying out this 
experiment is to highlight that when designing a 
system for ATC, it is crucial to work with ATC 
professionals and field data and not to rely on 
informal tests with nonprofessionals. This concept 
is very well known in the speech community but we 
have the experience that it is not observed in other 
disciplines in which speech technology is applied 
without taking these design details into account. 

The results for speech recognition and 
understanding for both languages are presented in 
Fig. 14 called simulated read nonexpert compared 
with the simulated read (ATC student) of the previous 
paragraph. The results for the more experienced users 
(ATC students) yield significantly better results both 
for English and Spanish. This is due to the different 
style of pronunciation obtained from people who are 
not familiar with the task (nonexperts) compared with 
the style of ATC controllers present in the training 
material. The ATC students present a style closer to 
the professional speech in the training material. 

The experiment highlights two issues: that 
professional speech is quite different from 
nonprofessional speech and that our design procedure 
ends up obtaining a system well adapted to 
professional speech, giving worse performance for 
nonexperts inasmuch as they are unable to reproduce 
all the characteristics of the professional speech. 

In conclusión we confirm for the ATC domain that 
in order to determine the performance of the system, 
the best approach is to use experiments from the field 



and that special care has to be taken in order to cover 
all different conditions when capturing the training 
and testing data. A good estimation of performance 
can be made by creating a simulated scenario in 
which the user has to perform a task and is free to use 
whatever sentences he wants. Experiments using read 
sentences demónstrate the máximum capabilities of 
the recognizer or understanding module in the domain 
but are not a good estimator of the final expected 
performance. 

VI. DISCUSSION 

Commercial off-the-shelf (COTS) systems as 
used in previous experiences [20, 44] need a specific 
grammar that has to be developed with a great deal 
of effort and is never complete. Out-of-grammar 
sentences lead to big errors. With a design customized 
to the task, as is done in this work, results can 
be better and more robust if automatic learning 
techniques are used. For these stochastic schemes, 
the quantity and completeness of data available 
for training is relevant to determine the resulting 
performance. 

Our speech understanding architecture, based 
on a bottom-up island-driven approach using 
context-dependent rules, exhibits robustness against 
recognition errors and at the same time easily 
accommodates different orderings for the sentences 
like those present in real ATC conversations. Its 
design is easy for the experts once they follow a few 
sensible guidelines in the process. 

If we compare results for different tasks, they 
are diverse as a result of several factors, the main 
one being the different perplexities of the tasks. The 
different number of sentences used to train each 
task (for both language and acoustic models) can 
also be a source of lower performance for some 
tasks although this has not been researched. Results 
obtained by comparing offline data with online 
data are not significantly different when taking into 
account the errors made by the language identification 
module and the set of new words that appear in 
the experiments. From the analysis of fully correct 
recognized sentences and fully correct understood 
sentences it is important to point out that while the 
speech recognition module makes errors, some of 
them can be corrected by the understanding module. 
Results comparing online data with simulated task 
data (read) demónstrate that the style used by ATC 
controllers in live speech is much more difficult to 
recognize than the same sentences read in a controlled 
simulated task experiment. The familiarity of the 
user with the task is also a positive factor in terms of 
recognition performance compared with users that are 
not familiar with the tasks and sentences. 

It is difficult to compare our results with 
previously published results since the conditions are 

different. For instance in [21], in the context of an 
ATC training simulator development in English and 
French, it is reported that 95% of the sentences were 
correctly recognized and understood but it was done 
with a task covering only 250 words and a finite state 
grammar. The results presumably were also laboratory 
results since they mention that evaluations by ATC 
people were on their way. The problem with finite 
state grammars is that the contents of the grammar 
cannot vary online in the final system, which implies 
that grammatical variants that were not considered 
during the development of the grammar will not 
be allowed by the recognizer. Instead, if stochastic 
grammars are used, although a particular grammatical 
variant was not considered (observed in the training 
material), the recognizer is nevertheless able to 
recognize the new variant because the stochastic 
grammar will give a score (although most of the times 
lower than when the utterance grammar matches 
the observed data) that is not zero (thanks to the 
smoothing techniques). Thus the recognizer gives 
the right answer if the acoustic evidence is enough. 
In this sense, the stochastic grammar exhibits a 
robustness behavior allowing unforeseen grammatical 
structures not allowed with finite state grammars. 
This characteristic adds up to the fact that although 
we are dealing with professional speech that should 
keep specific grammatical constrains, humans are 
unable to strictly keep to this normative language 
and always stray from the official phraseology. The 
result is that this robustness characteristic of our 
system is crucial for speech technology use in ATC. A 
similar conclusión holds for the specific understanding 
technology that we decided to use for this work as 
far as it is powerful enough to admit changes in the 
ordering of appearance of the elements that build up 
the final meaning of each sentence and is even able 
to jump on some irrelevant words when building the 
interpretation islands. 

A closer comparison with our experiments was 
carried out by Hering [20] because he carried out 
experiments with live recordings during a simulation 
exercise including hesitations, insertions in a different 
language and recordings that do not strictly respect 
the phraseology. He tested three COTS systems 
and reported the valué of the percentage correct of 
between 26% and 39% in the recognition task—there 
was no understanding module—and he used a 
different way of measuring the error rate (he did not 
count insertions). The tested task was an en-route 
task with a 300-word vocabulary which had 11.2% 
of OOV words. These results were obtained from a 
simulation exercise and not from live recordings. 

There is still room to improve the current 
performance of the presented ATC speech 
understanding system. We could get a significant 
improvement just by applying pragmatic constraints 
as is done in [20]. These data could be incorporated 



into our system as a set of restrictions which, in 
short, would mean a lower recognition uncertainty 
and therefore better recognition and understanding 
accuracy. We are referring to, for example, the 
knowledge on the set of available communication 
frequencies and runways, the list of possible 
call-signs, flight levéis, etc., constraints that have 
not been applied to our system (i.e., all possible 
combinations of numbers are recognized, but not all 
numbers are possible when speaking about frequency 
changes). 

The application of speech recognition and 
understanding methods to ATC speech has shown a 
varied range of results across tasks and languages. 
The use of these algorithms in a real environment 
depends on the requirements of the application. While 
a very demanding application (i.e., fully automating 
the process of ATC) requires a better performance, 
many other practical applications do not, particularly 
if a confirmation mechanism is used. Although it 
has not been implemented here, the confirmation 
mechanism—usually a confirmation question asked 
by the system—is generated automatically by the 
system when it perceives that the confidence of 
the results is low and the user has to repeat the 
command (this is a credible situation in the context 
of ATC-student training). In this last case, even 
a certain level of error is useful in order to better 
simúlate an understanding problem with a pilot or 
with the communication channel. Another example 
of a possible application is scoring ATC student 
speech for his or her training. Finally an ATC task 
workload analysis, ATC controller's performance 
measurement, or detecting possible miscommunication 
errors between the controller and the pilot are several 
feasible applications using today's state of the art 
systems. 

The only way to be sure about the level of speech 
recognition and understanding performance needed 
for a particular application is to implement it and 
involve users giving feedback on the usability of the 
product. But again this is very dependent on how the 
application is built and not only on the recognition or 
understanding results. This objective was out of the 
scope of our project. 

The fact that there are producís for training 
ATC using speech recognition (with no or very 
limited understanding) lead us to conclude that the 
performance of current systems is enough for this 
kind of application. But the question "is it enough?" 
has to be asked to the users. Unfortunately no data is 
published on the usability of these applications. 

Vil. CONCLUSIÓN 

In this paper we have drawn up a revisión of 
experiments and experiences carried out in the 
literature to process ATC speech automatically. 

We have also described in detail the results of 
the INVOCA project, a project whose objective was 
to analyze to what extent the processing of ATC 
speech can be done automatically with current speech 
recognition and speech understanding systems. The 
system is able to process sentences whose content 
is mixed in Spanish and English. We have presented 
our methodology used to do both. In comparison to 
previous systems, by using stochastic grammars our 
speech recognition algorithms allow the processing 
of sentences that stray from the ICAO standards as 
is often observed in real ATC speech and does not 
need a lot of effort in writing always incomplete 
specific grammars. However, the recording of data 
from the field is needed. The analysis of captured 
vocabularies renders 2,086 different words for 
Spanish compared with 869 different words in English 
indicating a higher proficiency of the ATC controllers 
in Spanish. We have also developed a robust algorithm 
for speech understanding that allows the flexibility 
of working with sentences with no restrictions on 
concept ordering. The average performance of the 
understanding algorithm from text sentences is 
95% both for English and Spanish demonstrating 
that the understanding module is robust. We have 
also demonstrated that the understanding module is 
capable of improving the recognition performance 
when we compare the number of fully correct 
sentences obtained after the recognition module to the 
number of fully correct sentences obtained after the 
understanding module. 

To the best of our knowledge, this is the first 
published work that reports results obtained from 
field data. We have reported results for different 
experiments, comparing offline data, simulated 
task data, and field data for the five different tasks 
addressed. Our results show lower performance for 
English compared with Spanish due to the lesser 
amount of training data used for English and the less 
experience we have with this language. As regards 
the influence of the task in the recognition error rate, 
we confirm that for our experiments on ATC speech, 
perplexity is a good prediction variable. 

The comparison of field data results with simulated 
data results recorded in the laboratory for one of the 
tasks (read data or free speech) demonstrates that 
the spontaneity found in field data decreases the 
performance of our original system mainly due to 
the naturalness and style of the interactions. From a 
96% word accuracy for read speech it goes down to 
86% for real recordings (offline) for the clearances 
task for Spanish. Consequently, it is not possible to 
know the performance of a system without testing 
it with field data. However we have demonstrated 
that a good estimation of performance can be made 
by processing the sentences obtained in a simulated 
scenario in which a professional user performs 



a task and is free to use whatever sentences he 
wants. 

Finally a discussion on application perspectives 
in this área has also been given. Some commercial 
systems are already on the market for training ATC 
controllers based on speech recognition, although 
they are only operative in constrained fields and we 
have no evaluation surveys from customers. With the 
availability of more field data we think that there is 
a great potential for the future development and use 
of speech recognition and understanding algorithms 
applied to ATC speech, some of which are presented 
in the paper. 
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