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Abstract—Two new features have been proposed and used in the 
Rich Transcription Evaluation 2009 by the Universidad Politécnica 
de Madrid, which outperform the results of the baseline system. 
One of the features is the intensity channel contribution, a feature 
related to the location of the speaker. The second feature is the log-
arithm of the interpolated fundamental frequency. It is the first 
time that both features are applied to the clustering stage of múl­
tiple distant microphone meetings diarization. It is shown that the 
inclusión of both features improves the baseline results by 15.36% 
and 16.71% relative to the development set and the RT 09 set, re-
spectively. If we consider speaker errors only, the relative improve-
ment is 23% and 32.83% on the development set and the RT09 set, 
respectively. 

Index Terms—Features for speaker diarization, speaker diariza­
tion, speaker segmentation, speech processing in meetings. 

I. INTRODUCTION 

S PEAKER diarization is the task of identifying the number 
of participants in a meeting and creating a list of speech 

time intervals for each participant. Speaker diarization is useful 
as a first step in the speech transcription of meetings in which 
each spoken sentence has to be assigned to a defined speaker. It 
can also be used for speaker adaptation in speech recognition. 

An overview of automatic speaker diarization systems is 
given in [1]. 

Common speaker diarization systems consist of three main 
blocks: the voice activity detection module (VAD), the feature 
extraction module and the segmentation and clustering module; 
see Fig. 1. 

VAD algorithms differ, depending on the type of non-speech 
sounds that appear next to the speech or mixed with it, from 
the Gaussian mixture models (GMMs) to Laplacian and gamma 
probability density functions [2]. Voice activity detection is, by 
itself, a large área of research. Voice activity algorithms applied 
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Fig. 1. Simplified diagram of a speaker diarization system. 

to speaker diarization may differ from general algorithms be-
cause the diarization error rate is measured frame by frame in-
stead of other metrics that ponder the error based on the cor-
rectly detected speech/silence segments. 

The feature extraction module usually extracts data related to 
the spectral envelope such as the Mel frequency cepstral coeffi-
cients (MFCCs) [3], [4]. 

Regarding segmentation and clustering of speech regions, 
some methods use bottom-up agglomerative clustering [5], 
[6], while others use a top-down universal background model 
(UBM) as a starting point to apply adaptation techniques iter-
atively to build the speaker models [7]. Clustering algorithms 
need a distance measure to determine whether two speech 
clusters belong to the same speaker. The most common used 
distance is the Bayesian information criterion (BIC) distance 
[8]. Recent studies have also presented great improvements 
using other alternatives based on the t-test distance [9] or the 
information theoretic approach [3]. 

Speaker diarization was first applied to broadcast news 
recordings (BN). One of the best recently published systems 
can be seen in [10]. Subsequently speaker diarization was ap­
plied to the meeting domain using a single distant microphone 
(SDM). The meeting domain differs from BN as the topics are 
highly diverse, the participants have idiosyncratic relationships 
and vocabularies, the meetings are highly interactive, and there 
can be simultaneous speech from múltiple speakers. Further-
more, distant microphones are susceptible to reverberation and 
background noise. Consequently, the problem is much more 
difficult than in the BN domain, although in BN the number 
of speakers may be much higher. In 2002, NIST conducted an 
evaluation of speaker diarization in the meeting domain under 
the SDM condition. Although tests carried out since 2002 
have considered MDM as the primary condition, the methods 
applied to SDM or previously to BN may be considered as a 
first step toward the development of algorithms for MDM. 



In speaker diarization with múltiple distant microphones 
(MDMs) redundant information is available (one signal per 
microphone) in comparison with single distant microphone 
(SDM) diarization. Usually, all speech signáis are combined 
into one [11], from which some acoustic features are extracted. 
The other source of information used in MDM scenarios is the 
information related to speaker localization [12], such as the 
time delay of arrival (TDOA) features [13]. TDOA features 
permit short-term speaker segmentation but do not provide 
any speaker identity information. On the other hand, acoustic 
features provide long-term speaker identity but require min-
imum durations to build reliable acoustic models. In [14], it 
was flrst demonstrated that TDOA between channels could be 
mixed with spectral features to obtain improved performance 
over a base system that used only spectral features. This TDOA 
information combined with the MFCC information has been 
used by all systems in the latest Rich Transcription evaluation 
[15]. 

The shortcomings of TDOA methods are the result of distant 
microphones. There are noises and reverberations in the record-
ings and the results are not free from errors. In speaker diariza­
tion in MDM scenarios, not only the improvement of the VAD 
module or the segmentation and pattern classiflcation modules 
is necessary. It is also important to search for new features that 
convey additional information to improve system performance 
[16]. 

In [17], a method to improve inaccurate estimates of delays 
and increase speaker separation in delay-space was presented. 

In [18], the logarithm of FO plus its derivative were used 
successfully in a speaker diarization for single distant mi­
crophone meetings (SDMs) using a method to normalize the 
features across all speakers and combine them with Mel fre-
quency coefflcients (MFCC) at the segmentation phase and 
using MFCC features only at the clustering phase. In [16], 
the use of the FO average and the median FO calculated on a 
500-ms Hamming window and several other so-called long 
term features to improve the performance of an MFCC-based 
system applied to SDM meetings were proposed. The authors 
point out the importance of long-term features (longer than a 
frame) in speaker discrimination and speaker diarization task. 
In [19], the authors have used long-term and prosodic features 
for clusters initialization for MDM meetings. 

In previous work [20], we developed a method to combine 
MFCC coefflcients with a time delay of arrival features (TDOA) 
to créate an enhanced system for múltiple distant microphone 
meetings (MDMs). 

In this paper, we present two new features that improve 
speaker diarization for MDM meetings which were included in 
the last submission by the Universidad Politécnica de Madrid 
(UPM) to the National Institute of Standards Rich Transcription 
Evaluation in 2009 (NIST RT 2009). 

The flrst feature is related to the localization of the speakers 
(similar to TDOA features) that we called the intensity channel 
contribution (ICC) and which makes use of the normalized en-
ergy of the signal arriving at the different channels [21]. It is 
the flrst time that such a feature is proposed and used in speaker 
diarization. 

The second feature is based on the use of the fundamental fre-
quency (F0) but instead of using it for SDM meetings as in [18], 
or [16] we have used it for MDM meetings. It is the flrst time 
that it has been used for MDM meetings in the segmentation and 
clustering stage. Instead of using it in the segmentation stage as 
in [18] we have used it bofh in the segmentation and agglomer-
ative stages similar to [20]. In contrast to using it as a long-term 
feature (500-ms span) as in [16] we have used it as a frame-based 
feature (20 ms). We also present in the paper experiments using 
different methods to include F0 and different methods to com­
bine them with MFCC, TDOA, and ICC features. 

By using ICC features, we have been able to improve the 
baseline system DER by 4.6% and 7.9% relative for the devel­
opment set and the RT09 set, respectively. By using F0 we have 
improved the baseline system DER by 7.31% and 10.63% rela­
tive for the development set and the RT09 set, respectively, and 
flnally using both ICC and F0 we have improved DER by 15.3% 
and 16.7% for the aforementioned databases. A large part of the 
DER comes from the speech/non speech errors. If we take into 
account just the speaker errors, the improvement in the proposed 
system is 23.4% and 32.83% relative on the development set and 
the RT09 set, respectively. 

Since the features module is very independent of other mod­
ules we think that the proposed system could contribute to the 
improvement of alternative state of the art systems. 

The paper is organized as follows. In Section II, the baseline 
system is described. In Section III the proposed new features are 
presented. Section IV describes the corpora used both for devel­
opment and test and describes the evaluation metric. Section V 
includes the experiments carried out and the results obtained. 
Section VI is the discussion of the results and flnally Section VII 
ends with the conclusions. 

II. DESCRIPTION OF THE BASELINE SYSTEM 

A. Baseline System Architecture and Baseline Features 

Fig. 2 shows the system architecture. The input coming from 
several different microphones (Dice) is flrst Wiener flltered in 
order to reduce the background noise. 

Then, in order to estimate the TDOA between two segments 
from two microphones, we use a modifled versión of the Gener-
alized Cross Correlation (GCC) called "generalized cross cor-
relation with phase transform" (GCC-PHAT) [22]. First, one 
of the channels is selected as the reference channel (the one 
with highest cross correlation with other channels). Then the 
GCC-PHAT between the reference channel and the other chan­
nels is estimated and the TDOA for these two microphones is 
calculated as 

TDOA = d(i,j) = rm a x(^PHAT(á))- (1) 

-RPHAT(CO is the inverse transform of G P H A T ( / ) (the gener­
alized cross correlation). 

The set of TDOAs from each microphone to the reference 
channel will form what we cali the TDOA vector tdoa which 
has a -Dice - 1 dimensión. Once the tdoa vector is calculated, 
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Fig. 2. Proposed system architecture. 

a weighted delay-and-sum algorithm is applied in the acoustic 
fusión module, where the input signáis are delayed and added 
together to genérate a new composed signal. More details on this 
part can be found in [ 11 ]. The composed signal is then processed 
by the MFCC estimation module, where MFCC vectors of 19 
components, mfcc, are calculated every 10 ms with a window 
of 30 ms. 

The VAD module is a hybrid energy-based detector and 
model-based decoder. In the first stage, an energy-based detector 
finds all segments with low energy, while applying minimum 
segment duration. An energy threshold is set automatically to 
obtain enough non-speech segments. The segmentation is used 
to train speech and non-speech models in the second module 
and then several iterations of Viterbi segmentation and model 
retraining take place, finally outputting the speech/non-speech 
segmentation when the likelihood converges. More information 
on the VAD module can be found in [23]. 

The segmentation and agglomerative clustering process con-
sists of an initialization part and an iterative segmentation and 
merging process [24]. The initialization process segments the 
speech into K blocks (equivalent to an initial hypothesis of K 
speakers or clusters) uniformly distributed. We have set K to 16 
empirically. 

An individual cluster model consists of a set of sub-states, 
where the number of sub-states is determined by the minimum 
duration of each cluster, 2.5 seconds in our case. Every sub-state 
is modeled using a Gaussian mixture model (GMM) initially 
containing a number of components that has to be specified (we 
use 5 for mfcc and 1 for tdoa streams). After the initial seg­
mentation a set of training and re-segmenting steps is carried 
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Fig. 3. Block diagram of the segmentation and clustering method. 

out using Viterbi decoding. Then the merging step takes place. 
When a merging takes place, the GMM for the new cluster is 
retrained with the data now assigned to it and the number of 
parameters (mixtures) of the merged model is the sum of the 
number of mixtures of the component models. The segmenta­
tion and clustering steps are repeated until a stopping criterion 
is reached; see Fig. 3. 

To decide which clusters to merge, and when to stop the 
merging, the BIC criterion has been used. The penalty term A 
in the BIC score is eliminated because we constrain both hy-
potheses to have the same number of parameters [24]. When 
all possible merge pairs give a negative BIC, the merging is 
stopped. 

Some percentage of frames (silences, noises) constitute a dif-
ferent set and are too short to be part of a new cluster but cor-
rupt the cluster models [25]. A frame purification algorithm is 
applied which aims to detect and eliminate non-speech frames 
that do not help in discriminating speakers. 10% of frames with 



the highest likelihood computed on Gaussians with smaller vari-
anee are removed for training models that have more than two 
Gaussians before computing the BIC. 

The baseline features used in the diarization task are the 
MFCC features combined with the TDOA features. In the 
implemented system [20], the flrst 19 MFCC coefflcients are 
extracted and treated as the x stream and the TDOA features 
are treated as the y stream. Each source of information is 
modeled using a statistical model whose individual likelihoods 
are combined using 

logp(x,y|0o) = wx \ogp(x\Oax) + wy \ogp(y\9ay) (2) 

keeping wx + wy = 1.0a is the compound model for any given 
cluster a, 9ax is the model created for cluster a using the stream 
x, and Oax is the model created for cluster a using the stream 
y. This baseline system is similar to the system presented by 
the International Computer Science Institute (ICSI) at the RT06 
evaluation in which the flrst author of this paper was a team 
member, obtaining state of the art performance.1 

III. PROPOSED NEW FEATURES 

A. ICC Features 

The flrst contribution of UPM (Universidad Politécnica de 
Madrid) to the RT09 evaluation was the inclusión of a new set of 
features related to the localization of the speakers. Apart from 
the delay vector made up of the delays between every channel 
and the reference channel we have computed the relative energy 
for each channel and frame compared to the sum of the energies 
for all the channels 

. r.n eneí-il 
iccM = g i c c _ J O) 

Ef=o eneW 
in which ice [i] is the intensity channel contribution per frame, 
i is the channel number, ene[i] is the energy per frame, and 
channel and Dice is the number of channels as we mentioned 
before. The vector of ice [i] for each frame is concatenated to the 
TDOA vector tdoa to form the tdoa + ice vector. Note that 
the tdoa vector has -Dice - 1 components, one less than the 
ICC vector. The energy captured by each channel is related to 
the distance of the speaker to that particular microphone: when 
higher energy is detected, it means that the speaker is closer to 
that microphone. This is related to the localization of the speaker 
similar to the information conveyed by the TDOA features. The 
difference is that the signal delay information used in the es-
timation of the TDOA features is proportional to the distance, 
while the intensity is inversely proportional to it. 

The consideration of both features, TDOA and the proposed 
energy related features, assumes that the speakers do not move 
around the room. Note also that although apparently both abso-
lute energy ene [i] and ICC features ice [i] are obtained from the 
same measure (the energy) if the same speaker, at a certain loca-
tion, augments his intensity level from one turn to another, the 

1-The conditions for the evaluation prevent us from specifying the authors and 
the rank of the systems presented, but they can be consulted in [26]. 

absolute energy features computed at each channel will have a 
bias corrupting the speaker models while the ICC features will 
not have this problem resulting in a more robust set of features. 
An exhaustive analysis of the behavior of energy features and 
ICC features and improvements that can be obtained by using 
them can be seen in [21]. 

B. F0 Features 

At the RT09 evaluation we have successfully used F0 features 
to improve the diarization performance of MDM meetings. In 
order to determine the way of calculating F0, we have experi-
mented with different parameters. 

First, F0 is calculated using the algorithm in [27]. For each 
frame we take a window of about 7.5 ms and calcúlate its nor-
malized cross-correlation with the speech signal in Windows at 
various "lags" in the future. Lags range from less than 2 ms (for 
f0 = 500 Hz) to more than 20 ms (for fO = 50 Hz). 

Then the logarithm of F0 was calculated. For the unvoiced 
part of the signal a constant valué of F0 was used which is the 
average of the last valué of the previous voiced región and the 
flrst valué of the following voiced región. We will cali this fea-
ture lifO from now on. We have also experimented with the plain 
interpolated F0, called ifO from now on. Similarly, a third fea-
ture was the flrst derivative of the logarithm of the interpolated 
F0 and called dlifO from now on. 

Finally, a fourth method of calculating F0 has been re-
searched using a long-term window. F0 is estimated frame by 
frame (10-ms frame shift). Then, a histogram of the F0 valúes 
is calculated using a window of 500 ms (50 frames). 23 bins are 
used: 19 bins (from 60 Hz to 250 Hz, with 10-Hz resolution), 
3 bins (from 250 to 310 Hz, with 20-Hz resolution) and 1 bin 
for F0 valúes higher than 310 Hz. The counts of the histograms 
are normalized by the number of total observations (50 obser-
vations, equal to the number of frames) and used as a feature 
vector. This feature vector will be called hfO from now on. 

C Feature Combination 

It is not trivial how to combine different features in speaker 
diarization since they have diverse origin. In [18], it is men­
tioned that the concatenation of features did not help. They also 
tried the combination of features using what they called the se-
lection method and combination method, both in the segmenta-
tion and in the clustering phase. We mentioned in the baseline 
system how to combine MFCC features plus TDOA features 
combining them at the likelihood stage but without normaliza-
tion as in [18] and both at the segmentation and clustering stage 
[20]. When using the ICC features, the ice vector is appended 
to the tdoa vector to form a joint second vector and follow the 
same combination strategy. When using the F0 features, these 
features make up a third stream with sepárate models for each 
cluster. The combination of all fhree streams is made in the same 
way as in (2) but now the combined likelihood for the x, y and 
z streams is 

logp(x,y,z|0Q) = wxlogp(x\0ax) 

+ wylogp(y\6ay) 

+ wzhgp(z\eaz) (4) 



TABLEI 
LIST OF MEETINGS FOR THE DEVELOPMENT SET USED IN THE EXPERIMENTS 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

devel06 

RT06 

RT07 

Meeting 

AMI 20041210-1052 
AMI 20050204-1206 
CMU 20050228-1615 
CMU 20050301-1415 
ICSI 20000807-1000 
ICSI 20010208-1430 
LDC 20011116-1400 
LDC 20011116-1500 
NIST 20030623-1409 
NIST 20030925-1517 
VT 20050304-1300 
VT 20050318-1430 

CMU 20050912-0900 
CMU 20050914-0900 
EDI 20050216-1051 
EDI 20050218-0900 

NIST 20051024-0930 
NIST 20051102-1323 
VT_20050623-1400 
VT 20051027-1400 

CMU 20061115-1030 
CMU 20061115-1530 
EDI 20061113-1500 
EDI 20061114-1500 
NIST 20051104-1515 
NIST20060216-1347 
VT 20050408-1500 
VT_20050425-1000 

#of 
microphones 

12 
16 
3 
3 
6 
6 
8 
8 
7 
7 
2 
2 
2 
2 
16 
16 
7 
7 
4 
4 
3 
3 
16 
16 
7 
7 
4 
7 

in which similarly to (2) #az is the model created for any given 
cluster a using the stream z. We have also tried the same strategy 
but using four streams mfcc, tdoa, ice and lifO. 

Fig. 2 shows the architecture of the proposed system. Blocks 
in the dashed line in the picture represent the modules of the 
proposed new system. 

IV. CORPORA AND EVALUATION MEASURES 

In this paper, a subset of the NIST Rich Transcription of 
2002-2005 sets, the RT06 set and the RT-07 set has been used 
as the development set. For the evaluation set we have used 
RT-90 set [15]. A subset of 12 meetings from RT02, RT04 and 
RT05 (called develOó in [20]) together with RT06 and RT07 
(called—DEVELSET—from now on) is made up of more than 
eighteen hours of audio data divided into twenty eight different 
meetings (see Table I), and RT-09 comprises more than five 
hours of audio data divided into seven different meetings. 

The segments (UEM parts) defined by NIST for the official 
evaluations have been used to measure the performance of the 
systems described in this work. These parts consist of 27 612.64 
seconds (2 761264 frames) for the—DEVELSET—set and 
10 858.49 seconds (1085 849 frames) for RT-09 set that are 
taken into account to calcúlate the statistical significance of the 
results. 

The speaker diarization performance is evaluated by com-
paring the hypothesis segmentation, given by the system, with 
the reference segmentation provided by NIST [15]. This refer-
ence segmentation was generated by hand according to a set of 
rules also defined by NIST and the exact speaker change points 

are calculated by forcé aligning the head mounted microphone 
audio to the reference transcripts using tools facilitated by the 
Laboratoire d'Informatique pour la Mécanique et les Sciences 
de l'Ingénieur (LIMSI). In the evaluation plan the evaluation 
metric and a program to calcúlate it from both transcriptions is 
also defined. The error obtained is called the diarization error 
rate (DER) and it takes three errors into account (miss, false 
alarm, and speaker error). The error is time-based. A miss error 
oceurs when a speech segment is classified as non-speech or an 
overlapping speaker is missing in the hypothesis. A false alarm 
(FA) error oceurs when the system produces a speaker hypoth­
esis when there is no speech in the reference. To calcúlate the 
speaker error, the program maps the hypothesis speakers to the 
reference speakers (only one reference speaker to one hypoth­
esis speaker) in an optimal way so the overlap in duration be-
tween all pairs of reference and hypothesis speakers is maxi-
mized. A speaker error oceurs for any región in the hypothesis 
that is mapped to a wrong speaker in the reference. 

V EXPERIMENTS 

A. Preliminary Experimentation With ICC Features 

Experiments and discussion of results with ICC features have 
been presented in another paper [21], so in this paper we will 
only give a summary for completeness. For these experiments 
the all06 set has been used. 

In Fig. 4, DER is shown versus the weight applied to the 
MFCC stream for the all06 (devel06 + RT06) set for three sys­
tems, the baseline system (mfcc in a first stream and tdoa in a 
second stream) the proposed improvement mfcc plus tdoa + 
ice in a second stream and an alternative system using three 
streams, mfcc, tdoa and ice for which the tdoa vector and 
the ice vector are given the same weight. The baseline system 
has a DER for this set of 13.4% which has been outperformed by 
joining TDOA and ICC in the same vector thus obtaining a DER 
of 12.7%. A significant 5.2% relative reduction in DER was 
obtained. This experiment demonstrated that ICC features can 
be successfully incorporated in an improved speaker diariza­
tion system. The alternative system obtains an error of 12.97% 
and also improves the baseline but not as much as the proposed 
system. Further research is needed to determine the reasons of 
this behavior, one of them being that there is a strong correla-
tion between TDOA features and ICC features, both of them 
related to the location of the speaker. As we will see later in 
Section V-C when using four sets of features, best results are 
obtained by concatenating TDOA features and ICC features in-
stead of using them separately. 

Experiments with the DEVELSET including the ICC fea­
tures render a 4.6% relative DER improvement (13.04% versus 
13.67%) over the baseline system that does not use ICC features 
(see Table II Unes 2 and 4). For the RT09 set, the ICC features 
render a significant relative DER improvement of 7.9%. 

B. Preliminary Experimentation With F0 Features 

We made preliminary experimentation using plain interpo­
lated F0 features ifO and the logarithm of the interpolated F0 



TABLE II 
DER FOR EXPERIMENTS FOR THE BASELINE, AND FOR THE EXPERIMENTS INCLUDING T D O A + I C C FEATURES AND 

FOR EXPERIMENTS INCLUDING T D O A + I C C FEATURES AND FO FEATURES IN THREE STREAMS 

System 

Baseline 

Baseline plus lifO (3 streams) 

Baseline plus ice (2 streams) 

Baseline plus ice plus lifO 
(UPM RT09 official system) 

DEVELSET (28 
meetings) 

13.67% ±0.05% 

12.67% ±0.05% 

13.04% ±0.05% 

11.57%±0.05% 

Relative DER 
improvement 
from the 
baseline 

7.31% 

4.6% 

15.36% 

RT 09 (7 meetings) 

25.67%±0.11% 

22.94%±0.11% 

23.64%±0.11% 

21.38%±0.10% 

Relative DER 
improvement 
from the 
baseline 

10.63% 

7.9% 

16.71% 
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Fig. 4. DER for the all06 meetings set as a function of the weight associated to 
the first stream used by the system (always the stream with the MFCC features). 
The dashed line establishes the DER baseline to be improved (DER obtained 
using mfee and tdoa streams). The t d o a + i c c graph uses as a second stream 
the concatenation of the toda and ice vectors. The mfee toda ice graph 
uses three streams for which the weights for toda and ice streams are the 
same. 

features lifO, the differential logarithm F0 features dlifO and the 
histogram F0 features hfO starting with 1 GMM (Gaussian mix­
ture model) per cluster. These features have been combined with 
MFCC features to créate an experimental system mfee plus ei-
ther one of the other features. The DERs for the all06 set across 
the weights for the mfee stream using either lifO ifO, dlifO or 
hfO are presented in Fig. 5. 

In Fig. 5, it can be seen that there are several weighting points 
in which the F0 features improve the MFCC features, thus con-
firming that the F0 adds information to the MFCC features. 
The absolute minimum is obtained by using the F0 histogram 
hfO but for the neighboring weighting points the DER increases 
quite abruptly. The next minimums are obtained using either the 
interpolated logarithm of F0 or the plain interpolated F0. The 
question is whether this F0 information in any of its forms can be 
used in an MDM system which also combines information from 
localization features. This will be shown in the experiments in 
the next section. In Fig. 5, the DER obtained is also represented 
when the MFCC features are concatenated with the lifO features 
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mfcconly 
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Fig. 5. DER for a system that mixes mfee with either lifO, ifO, dlifO or hfO 
as a function of the weight applied to the mfee vector for the all06 set. In the 
picture DER for mfee only features and mfee and lifO features concatenated 
in the same vector are also presented. 

in a single vector. The results degrade, thus confirming the ex­
periments in [18]. The nature of F0 is quite different from the 
MFCC coefficients and the concatenation of both features does 
not help. The fact that we use a diagonal covariance matrix may 
have an influence on this result. 

C. Experiments With the Combination ofAll Features 

We made experiments using the DEVELSET combining dif­
ferent F0 methods and the baseline system. The results can be 
consulted in Table III. 

It can be seen that the use of the lifO stream delivers the best 
performance. The absolute minimum obtained in the previous 
experiment using hfO has not been maintained in the new ex­
periments, possibly due to the fact that the minimum obtained 
with these features is very unstable because the neighbors of the 
minimum in Fig. 5 have a much greater DER. 

Finally, in Table II we present the results of the baseline 
system (mfee plus tdoa, second row), and the improvements 
obtained from the baseline by including the lifO stream (third 
row). By including the lifO we have been able to improve the 



TABLE III 
DER FOR THE DEVELSET USING DlFFERENT WAYS OF CALCULATING 

FO. THE BASELINE IS THE BEST PREVIOUS SYSTEM THAT 

COMBINES TDOA AND ICC FEATURES 

System 
Baseline plus ice 
Baseline plus ice plus lifO 
Baseline plus ice plus ifO 
Baseline plus ice plus dlifO 
Baseline plus ice plus hfO 

DEVELSET | 
13.04%±0.05% 
11.57%±0.05% 
13.39%±0.05% 
14.01%±0.05% 
16.98%±0.06% 

Weigth analysis for three streams of data 
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Fig. 6. DER for the all06 set for the three stream system versus different weight 
valúes for the lifO stream. The remaining weight (up to 1) is divided between 
the other two streams keeping a ratio between mfee weights and tdoa + ice 
weights of 9. 

DER of the baseline by 7.31% and 10.63% relative for the 
DEVELSET and RT09 set, respectively. 

We also present the improved baseline system mfee plus 
tdoa + ice and the improvements obtained by including the 
lifO stream as a third stream. From this new baseline the rel­
ative improvements obtained by including F0 are 11.27% and 
9.56% for the DEVELSET and RT09 set, respectively. 

In Fig. 6, we show DER for the all06 set for the three 
streams system (best system) across different weights for the 
lifO stream. For the other two streams we use the strategy to 
divide the remaining weight (up to 1) between them keeping 
a weight ratio between mfee and tdoa + ice of 9 (as it has 
been concluded from the experiments in Fig. 4). The minimum 
has been obtained for a lifO stream weight of 0.21 that corre-
sponds to 0.711 and 0.079 weights for mfee and tdoa + ice, 
respectively. 

The final system with all the improvements together was pre-
sented at the RT09 evaluation in April 2009 obtaining a 21.38% 
DER on the RT 09 set. The relative improvements from the base­
line are 15.36% and 16.71% for the DEVELSET and the RT09 
set, respectively. 

We also tried using four different streams, separating the 
TDOA features and the ICC features into two different vectors. 
The experiments using the same set of features but in sepárate 
streams, Le., mfee, tdoa, ice, and lifO are shown in Table IV. 
The weights used in this case are 0.659, 0.073, 0.073, and 0.194 
for mfee, tdoa, ice, and lifO, respectively, which corresponds to 
aratioofweightmfcc/weighttdoa = weightmfcc/weighticc = 9, 
and weightmfcc/weightlif0 = the same that the optimum 
that was obtained for the three streams case = 0.339. Other 
valúes for weightmfcc/weightlif0 keeping the other two ratios 

TABLE IV 
DER RESULTS INCLUDING ICC AND F0 FEATURES 

USING FOUR SEPÁRATE STREAMS 

System 

Baseline 
Baseline plus ice plus lifO-
(UPM-RT09 contrastive 
system) 
Relative improvement 

DEVELSET 
(28 meetings) 
13.67% ±0.05% 

12.12%±0.05% 

11.33% 

RT 09 (7 
meetings) | 

25.67%±0.11% 

22.43%±0.11% 

12.62% 

Weight analysis for four streams of data 
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Fig. 7. DER for the all06 set for the four stream system versus different weight 
valúes for the quotient mfcc/lifü stream. The remaining weight (up to 1) is 
divided between the other two streams keeping a ratio between mfee weight 
and t d o a weight of 9 and mfee weight and ice weight of 9. 

constant = 9 were tested with a subset of the datábase obtaining 
lower performance (see Fig. 7). This system was presented as a 
contrastive system in RT09 evaluation obtaining 22.43% DER. 
It can be seen that although they improve also the results of the 
baseline, the improvement is not as big as the improvement in 
the previous (official) system (see the discussion section for an 
explanation). 

VI. DISCUSSION 

We have proved that both ICC features and F0 features im­
prove system performance. The ICC features do improve the 
baseline system. 

Using the baseline and using the baseline plus the ICC fea­
tures it is demonstrated that the F0 features can be combined 
with other features for speaker diarization. Instead of testing F0 
with SDM meetings as in previous experiments [18] we have 
successfully integrated it into an MDM system including both 
ICC features and F0 features and obtained a significant relative 
improvement of 15.36% and 16.71% for the development set 
and the evaluation set, respectively. Since the features are quite 
independent of other modules of the system, we think that these 
new features could be incorporated into other state of the art 
systems. 

In Table V, we present overall results for RT-09 meeting by 
meeting. By comparing the third and sixth columns it can be 
seen that with all of the contributions included there are signif­
icant improvements for six of the meetings and no changes for 
one of them (which is also the meeting with lowest DER and 
lowest speaker error). In the last column the speech/non-speech 
errors are presented for all the meetings and systems. It can 



TABLE V 
DETAILED %DER RESULTS COMPARING BASELINE SYSTEMS AND THE IMPROVEMENTS FOR RT09. 

THE LAST COLUMN SHOWS THE SPEECH/NON-SPEECH ERRORS FOR ALL OF THEM 

MEETING 

EDI 20071128-1000 
EDI 20071128-1500 
IDI 20090128-1600 
IDI 20090129-1000 
NIST 20080201-1405 
NIST 20080227-1501 
NIST 20080307-0955 
All 
DER improvement over 

the baseline 
Speaker error improvement 

# mic. 

24 
24 
8 
8 
7 
7 
7 

baseline 

7.79 
55.85 
11.39 
18.6 

61.85 
11.87 
32.83 

25.67±0.05 

baseline + lifO 

7.81 
33.89 
11.01 
15.38 
54.25 
18.00 
38.65 

22.94±0.11 

10.63 

20.88 

baseline + ice 

7.70 
55.85 
11.39 
18.6 

61.02 
11.94 
19.45 

23.64±0.05 

7,9 

15.51 

baseline + ice 
+ lif0 

7.71 
33.91 
11.01 
15.38 
55.06 
11.38 
32.21 

21.38±0.10 

16.71 

32.83 

SPNSP 
ERROR 

(all systems) 
7.3 
12.2 
4.8 
9.6 
19.3 
8.8 
4.8 
12.6 

TABLE VI 
NUMBER OF IDENTIFIED SPEAKERS, MlSS SPEAKERS, AND FALSE ALARM SPEAKERS FOR RT09 AND ALL THE SYSTEMS TESTED 

MEETING 

EDI_20071128-1000 

EDI_20071128-1500 

IDI20090128-1600 

IDI20090129-1000 

NIST_20080201-1405 

NIST_20080227-1501 

NIST_20080307-0955 

ALL 

baseline 

IDSPK 

4 

3 

4 

4 

4 

6 

5 

30 

MISS 

1 

1 

6 

8 

FA 

1 

2 

3 

baseline + ice 

IDSPK MISS 

4 

3 1 

4 

4 

4 1 

6 

6 5 

31 7 

FA 

1 

1 

2 

baseline + lifO 

IDSPK MISS 

4 

4 

4 

4 

5 

6 

5 6 

32 6 

FA 

1 

2 

3 

baseline + ice + lifO 

IDSPK MISS FA 

4 1 

3 1 1 

4 2 

4 

5 

6 

6 5 

32 6 4 

be noticed that a big part of the remaining errors are due to 
the speech/non-speech errors (both Miss and False alarms). If 
we do not take those errors into account the proposed system 
with the new features improves the speaker error (SPKR) by 
20.88% and 32.83% relative for the DEVELSET and the RT09 
set, respectively. 

In Table VI, a detailed analysis of the number of identified 
speakers (ID_SPK), missed speakers (MISS), and false alarm 
speakers (FA) is presented meeting per meeting. It can be seen 
that compared to the original baseline, in the proposed final 
system the number of identified speakers augments by two (30 
to 32) while the number of miss speakers decreases by two (8 
to 6) although one false alarm speaker is added (3 to 4). 

It is not easy to determine the method to mix both features, 
ICC and F0 to improve a system, apriori, since ICC features are 
related to the localization of the speakers thus becoming more 
independent of MFCC and F0 but not as much from TDOA, the 
joint modeling of ICC and TDOA makes more sense than mod-
eling them separately. A canonical correlation analysis between 
TDOA features and ICC features for all the meetings in the all06 
set renders an average valué of 0.37, which is significant. A sim­
ilar average correlation valué of 0.35 between MFCC and F0 
was obtained that would justify the joint modeling of these two 
features. However, this was not supported by the experimental 
results as can be seen from Fig. 5 (corroborating other published 
experiments [18]). 

Experiments using four streams instead of three streams re-
sulted in a lower relative improvement. However, no exhaustive 
search has been done with the four streams system mainly due 
to computation costs. 

The number of initial Gaussians used in the model may have 
also some influence. We have used five Gaussians for the MFCC 
features and one Gaussian for the other features but thorough 
investigation on it has not been done. Further research will be 
needed to créate algorithms that automatically determine the 
best way to combine all the features. For instance in [28], the 
authors combine MFCC features and TDOA features using an 
information theoretic combination that is based in a different di-
arization methodology [3]. 

VIL CONCLUSIÓN 

In this paper, we present the contributions from the UPM to 
the RT09 evaluation. We have proposed a new energy-related 
feature, named ICC which represents an improvement of a pre-
viously used localization vector (the TDOA vector). We also 
present an innovative method to use F0 successfully for the first 
time at the clustering stage of MDM meetings. Instead of nor-
malizing the features across clusters and using only them in the 
segmentation phase [18], or using a long-term window [16], we 
have used a short term window and have applied them both to 
the segmentation and to the clustering stage obtaining improved 
results from two different baseline systems. The accumulated 



relative improvements using both ICC and FO rise up to 15.36% 
and 16.71% for the development and testing set, respectively. 
If we consider only the speaker errors, the improvements of the 
proposed features are of 23.4% and 32.83% relative for the men-
tioned sets. 
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