Tailoring the Scrum Development Process to
Address Agile Product Line Engineering

Jessica Diaz, Jennifer Pérez, Agustin Yagiie and Juan Garbajosa

Technical University of Madrid (UPM) - Universidad Politécnica de Madrid
Systems & Software Technology Group (SYST), E.U. Informatica, Madrid, Spain
yesica.diaz-at- upm.es, {jenifer.perez,ayague,jgs} -at- eui.upm.es

Abstract. Software Product Line Engineering (SPLE) is becoming widely
used due to the improvement it means when developing software products
of the same family. However, SPLE demands long-term investment on a
product-line platform that might not be profitable due to rapid changing
business settings. Since Agile Software Development (ASD) approaches
are being successfully applied in volatile markets, several companies have
suggested the idea of integrating SPLE and ASD when a family product
has to be developed. Agile Product Line Engineering (APLE) advocates
the integration of SPLE and ASD to address their lacks when they are
individually applied to software development. A previous literature re-
view of experiences and practices on APLE revealed important challenges
about how to fully put APLE into practice. Our contribution address sev-
eral of these challenges by tailoring the agile method Scrum by means of
three concepts that we have defined: plastic partial components, working
PL-architectures, and reflective reuse.

Key words: Agile Product Line Engineering, SPLE, ASD, Scrum, Plas-
tic Partial Components, Reflective reuse

1 Introduction

Many large organizations develop products that can be classified into families.
The products of a family share a set of common features and have variable
features that make them different. Software Product Line Engineering (SPLE)
exploits the commonality across the products of a same family by investing in
the upfront design of the product-line platform —i.e. design of the common set
of reusable core-assets, their variability and the PL-architecture— (domain en-
gineering); then these assets are assembled into customer-specific products just
by deriving the existing variability (application engineering) [1]. However, this
strict domain-then-application model, although has been considered successful
[1], is resource intensive and risky [2]. Since the product-line platform is planned
with a long-term perspective, there is a risk of developing product-line platform
that will become obsolete and not used in the products derivation. This risk
increases with higher volatility of business situations. Then, not all the efforts
in the definition of the product-line platform could be capitalized [3]. The rapid

changing business settings increase frustration to the heavyweight plans, specifi-
cations, and other documentation imposed by traditional software development.
The deficiencies in practices highlighted above are aggravated when the complex-
ity of product lines grows. Changing market conditions and unplanned changes
require alternatives to supplement SPLE. This interest has been expressed by
several companies such as Nokia [4] and [5].

Agile Software Development (ASD) may be an alternative to supplement
SPLE in changing market conditions, as agile processes harness change for the
customer’s competitive advantage [6], even late in the development. ASD prin-
ciples [7] call for incremental development, continuous delivery of valuable soft-
ware, rapid iterations, and welcome to changes. However, scalability is still a
challenge in agile projects; hence, reusability and variability management among
the products from the same family are not easily scaled up [8]. As a consequence,
an approach resulting from their integration of SPLE and ASD, complementing
each other, might make sense. A new approach called Agile Product Line Engi-
neering (APLE) 9] advocates their integration with the aim of addressing their
lacks when they are individually applied to software development.

Several APLE practitioners [10, 2] have proposed an approach in which the
domain-then-application model is incrementally iterated. This provides a reac-
tive approach in which reusable core-assets respond to current customer demands
while (i) being able to incrementally construct a flexible product-line platform
and (ii) being able to deliver features to the customer on time. However, a liter-
ature review on the state of the art APLE [11] reveals that the applicability of
agile methods to domain engineering requires more effort to meet the challenge
of reducing the upfront design with the aim of getting closer to agile principles
and values, while achieving the typical goals of SPLE such as reuse [9]. Most ap-
proaches converge towards this idea of iteratively and progressively building the
product-line platform [12,13,5,2], but in practical terms, there are no mecha-
nisms to incrementally evolve the product-line platform. The agile design of PL-
architectures has been pointed out as a key challenge to overcome, since none of
the mentioned authors have completely solved it. Dealing with this challenge is
essential in order to APLE can be widely adopted by software industry [14]. It
seems clear that mechanisms to realize a flexible product-line platform and the
strategies to address these mechanisms in the APLE development process, are
required.

Our proposal presents a tailored process to address APLE; specifically we
focus on the agile method Scrum, as it adapts well to software evolution and is
widely used by agile community. It is supported through three concepts, some
of them, we have previously defined: plastic partial components (PPCs) [15] and
working architectures [16] to iteratively and flexibly design PL-architectures, and
reflective reuse, that is a new concept to introduce the suitable reuse strategy
and reduce the upfront design during the APLE development process.

The remainder of the paper is structured as follows. Section 2 provides an
overview of Scrum and APLE. Section 3 defines the concepts and strategies to

tailor the Scrum method to address APLE. Section 4 illustrates the use of our
approach. Finally, some conclusions and future work are presented in section 5.

2 Background

2.1 Scrum

Scrum [17] implements an iterative, incremental life cycle which involves three
stakeholders: the Product Owner, the Team, and the Scrum Master; all together
make up the Scrum Team. The Scrum life cycle defines a pre-game phase at the
project beginning and iterative planning, review, and retrospective meetings.
The pregame phase is a light planning process where representative customers
and members of the Scrum Team capture requirements as User Stories (US). The
US objective is to reduce the cost of the requirement elicitation and management
by means of scenarios written by customers without techno-syntax versus con-
ventional methodologies based on formal requirements specification documents.
The result is the product backlog, a list of known US. Then US are prioritized
and divided into short time-framed iterations called sprints. A sprint is a 2-4
weeks period of development time. Each sprint has a sprint planning meeting
at the sprint beginning in which the Product Owner and Team plan together
about what to be done for the sprint. The result is the sprint backlog, a list of
US and tasks that must be performed to achieve the sprint goal. At the end of
each sprint, the sprint review and retrospective meetings are held to put into
practice continuous improvement. In the review meeting, the Product Owner
communicates whether the goals were met, and might introduce changes into
the USs. In the retrospective meeting, the Team and the Scrum Master discuss
what went well and what could be improved for the next sprint.

2.2 Agile Product Line Engineering

APLE is an attempt of taking the benefits that ASD and SPLE offer in such a
way that both can interact and work in cooperation with each other. A system-
atic literature review on the state of the art APLE [11] reports that APLE would
be applicable to business situations in which the convenience of going towards
a product line has been identified, but at the same time the market situation
is not enough stable for different reasons, including technological and business
factors. Specifically, the literature review has identified four main advantages of
putting APLE into practice. APLE researches and practitioner have concluded,
from their experiences and practices, when APLE could be advantageous:

1. If SPL developers do not have enough knowledge to completely perform the
DE, APLE may facilitate the elicitation of further knowledge [12].

2. When anticipated changes cannot be predicted and the SPL life-cycle is not
known, it would be advantageous to use an incremental approach such as
APLE [18].

3. Agile processes may facilitate fast feedback cycles between requirements en-
gineering, development, and field trial in innovative business [19].

4. Trade-offs between SPLE and ASD provide the opportunity to apply the
APLE approach to a wider variety of projects than those served by only
applying ASD or SPL methods [12].

McGregor [10] and Hanssen et al. [5] present theoretical attempts to recon-
struct a hybrid method from SPLE and ASD principles. They conclude that
although at first sight SPLE and ASD may seem contradictory, they actually
complement each other. SPLE and ASD can be tailored under the condition that
both should retain their basic principles. It seems feasible to tailor SPLE with
ASD to obtain an approach that (i) analyzes the most significant commonalities
in a domain, rather than an exhaustive set; and (ii) meets changing customer
requirements, rather than just simply customizing core-assets [12].

However, since APLE is an emerging approach, organizations have still to
face with several barriers to achieve its adoption. Although both the approaches
pursue common goals such as improving customer satisfaction and flexibility, and
reducing cost and time-to-market, SPLE and ASD apply different strategies to
achieve these goals [18, 12, 5]. SPLE stresses the importance of predicting changes
at the beginning of the process, and the need of defining a PL-architecture to
support customization; in this sense it is capable of accommodating predicted
changes to potential members of the product line. On the other hand, ASD
emphasizes value delivery to the customer and welcomes changes by means of
incremental development and close iterations with customers. ASD advocates
for minimal investment in an upfront architecture when knowledge is not read-
ily available, and encourage the continuous improvement and refactoring of the
architecture to achieve the business goals. In fact, agile methods have a reputa-
tion for paying very little attention to software architecture [5] and some agile
practitioners even advocate against investing effort in architecture specification
as it is perceived as wasted effort [6].

Tian et al. [12] explicitly recognized these potential challenges and risks asso-
ciated with APLE: (i) traceability management and maintenance of components
might be difficult in agile approaches without explicit knowledge; and (ii) if PL-
architectures are tailored to be more agile, there is a danger that a valuable
architecture supporting other products of the family may be damaged. This pa-
per focuses on the last one. In fact, the agile design of PL-architectures has been
pointed out as a key challenge to overcome, since none of the mentioned authors
have completely solved it. Dealing with this challenge is essential in order to
APLE can be widely adopted by software industry [5, 14]. The key question is:
how to take care of the long-term planning and upfront architecture required by
SPLE while still being able to deliver value to the customer in time? [14]; or
from the opposite point o view: how architecture can be tailored to be more
agile without losing the SPL reusability and flexibility?

3 Tailoring Scrum to address APLE

This section presents how APLE is tackled by means of a tailored Scrum in which
DE and AE processes are performed in an iterative way. To overcome the PL-
architecture challenge and reducing the upfront design, it is necessary to define
the mechanisms and strategies to be applied during the APLE development
process. This is why our contribution is based on these three concepts: plastic
partial components (PPCs), working PL-architecture, and reflective reuse. The
first ones have been previously defined in [15,16] and provide the mechanism
to easily evolve PL-architectures in an agile context, and the last one is a new
concept that provides the means to introduce the suitable reuse strategy during
the development process. These concepts and the tailored Scrum for APLE are
detailed below.

3.1 Plastic Partial Component (PPC) & Working PL-Architecture

PL-architectures define the common and variable structure for all products of
a SPL. This means that PL-architectures can rapidly respond to variabilities
defined by different stakeholders and changes within a well defined market seg-
ment. The APLE development process requires that PL-architectures (i) are in-
crementally and iteratively designed, and (ii) welcome unplanned changes. This
means that the PL-architecture has to evolve in each of the iterations to incre-
mentally include all the features of the product-line. From these assumptions,
we realized that it is necessary to be flexible enough for supporting not only
external evolution (changes in the architectural configuration by adding or re-
moving components or connections), but also internal evolution (changes inside
components).

Our contribution is based on a previous work [16] in which we attempted
to solve the problem of designing software architectures in ASD (agile archi-
tecting) based on the PPC concept. PPCs address agile architecting by defining
architectural components in a iterative and incremental way. PPCs are highly
malleable components that can be partially described, which increases the flexi-
bility of architecture design. In fact, the notion of PPC was originally defined for
SPLE to support the definition of internal variation of architectural components
[15], i.e. specification of variants by modifying the configuration of the software
architectures (adding/removing components to/from the architecture), but also
specification of variations inside components. PPC variability mechanism is used
to define variations among products, and to flexibly add, remove, and modify
the working PL-architecture throughout the APLE life cycle. A working PL-
architecture is one that is incrementally developed with the working products
of the SPL, and includes only the features which are necessary for the current
iteration. As a result, working PL-architectures allow keeping the system in sync
with changing conditions.

The variability mechanism underlying PPCs is based on the principles of
invasive software composition (ISC) [20]. ISC defines components as fragment
boxes that hook a set of reusable fragments of code. Specifically, ISC proposes

that these fragments of reusable code can be aspects which make components,
and by extension, software architectures, easier to maintain. Following these
principles, we defined the variability of a PPC using wvariability points, which
hook fragments of code to the PPC known as variants. These variants, as well
as components and PPCs, realize the requirements —in terms of features— that
have been defined by the domain analysis process at the architectural level. As
requirements can be related to concerns that crosscut the software architecture
(crosscutting concerns) or not (non-crosscutting concerns), we have stated that
those variants that realize crosscutting concerns are called aspects, and those that
realize non-crosscutting concerns are called features. Variability points allow us
to specify the weaving between the PPC and the variant. The weaving principles
of Aspect-Oriented Programming (AOP)[21] provide the needed functionality to
specify where and when extending the PPCs using variants. Therefore, a PPC
is defined by specifying (see Figure 1): (i) its variability points; (ii) the aspects
and/or features that are necessary to complete the definition of the component
for any product of the family; and (iii) the hooks between the variability points
and the aspects and/or features. The complete definition of a PPC for a specific
product is created by means of the selection of aspects and/or features through
the variability points. A formal and more complete definition of the PPC, its
metamodel and its graphical metaphor can be found in [15].

_S ’/
a I

-~ featureVP . aspectVP
A [min..max] A [min..max]

[featurel [feature2
[Jaspectl [aspect2

Fig. 1. PPC example

Therefore, PPCs variability mechanisms can be advantageously used for
evolving working PL-architectures throughout the different iterations that com-
prise the APLE development. PPCs behave as extensibility mechanisms to flex-
ibly compose pieces of software (aspects, features, components) as if we were
building a puzzle. Their characteristics partial and plastic are fundamental to
support the APLE development. As PPCs are partial, they can be incompletely
specified, in such a way that they may be completely specified in further iter-

ations. PPCs allow one to incrementally develop architectural components by
only taking into account the required functionality for each iteration. As PPCs
are plastic, they are highly malleable. This is thanks to their mechanisms for
specifying variability, which allow one to flexibly adapt software component by
easily adding, or removing fragments of code. Since the weaving principles of
AOP provide the needed functionality to specify where and when extending the
PPC through using the variants, variants are independent of the component
of which they hang. Therefore PPCs architectural components are ready to be
extended or modified at any moment. As a result, PPCs allow getting closer
and closer to agile values and principles. Finally, the description of working
PL-architectures using PPCs is supported by a graphical modeling tool called
Flexible-PLA!. Flexible-PLA is an open-source tool that has been developed fol-
lowing the MDD approach using the Eclipse Modeling Framework (EMF) and
its Graphical Modeling Framework(GMF).

3.2 Reflective Reuse

Barriers to reuse have been reported thoroughly in the literature [22,23]. Our
contribution focusing on dealing with the initial upfront investments for con-
structing repositories by means of the reflective reuse concept. Reflective reuse
takes a step forward providing a theoretical foundation and defining the needed
changes in software development processes. But before defining what reflective
reuse is, systematic and opportunistic reuse are briefly revisited.

Systematic reuse is a preplanned process to develop software to be reused in a
long term, i.e. software is proactively implemented anticipating future customer
needs. This software is usually stored in repositories that are available during
the development process to be reused. Systematic reuse consists of reusing from
these repositories as many times as it is possible following a reuse-planning. This
kind of reuse requires a high investment due to the construction of repositories.
This investment is capitalized once a repository has a reasonable quantity of
reusable software, which can be systematically reused in the development and
maintenance of companies’ products.

Opportunistic reuse is a reactive low-cost process to improve the efficiency
of development in the short term. It is based on opportunities for reuse demon-
strating better results to rapidly develop innovative software products in small to
medium-sized organizations. Opportunistic reuse is a process to extend software
with functionality from a third-party software supplier but this functionality was
not originally intended to be integrated and reused [24,25]. Therefore, oppor-
tunistic reuse is not based on a preplanned reuse and they do not invest in the
construction of repositories. However, opportunistic reuse fails to effectively deal
with the search-and-procurement processes of artifacts.

A representative example of the application of systematic reuse is the SPLE
approach. Whereas, ASD does not support systematic reuse because it focuses
on immediate demands of customers assuming that future changing scenarios

! Available on https://syst.eui.upm.es/FPLA /home

cannot be anticipated in any case, and the up-front investment for the defini-
tion of a repository will not be profitable. But ASD does not preclude other
approaches based on short-term benefits of software reuse such as opportunistic
reuse. It would be greatly useful to be able to define an approach in which oppor-
tunistic and systematic reuse can be applied without paying the cost of giving up
some of the essential advantages of one of them. From reactively opportunistic
reuse to proactively systematic reuse there is a range of reuse strategies based
on the required anticipating degree. Reflective reuse is an abstract concept that
encompasses this range from opportunistic to systematic reuse strategies.
Reflective reuse is necessary in APLE to support different reuse needs during
the development process. Reuse in APLE is not preplanned in the sense that
it is not an activity that entails the whole development process, as in the case
of traditional SPLE, otherwise it only plans a short time (an iteration). So,
the repository is built based on an analysis of future opportunities for reuse
in the short time. Of course a long-term vision is present, but this vision does
not compel the whole process. Since the construction of the repository does
not require initial upfront investment, risk of no being profitable is reduced.
Reflective reuse also takes advantages of opportunities and flexibility generated
by changing requirements when systems have to be quickly evolved and adapted.

3.3 APLE Scrum development process

Our vision of APLE involves a tailored Scrum process in which each sprint
consists of two sub-processes: a first one for DE and a second one for AE. These
sub-processes support the incremental definition of the variability, modeling and
design of the working PL-architecture, development of the set of reusable core-
assets, and derivation of the working products of the SPL. The tailored Scrum
process for addressing APLE is detailed as follows:

| Reflective reuse | | PPCs |
|
Sprint 2-4 weeks

hY

< - - Working PL-architecture
B:cilLo 2.SPLRelease | o 3.Sprint | 4.Domain i Reusable core-assets
g Definition planning Engineering 5. Application

1
Engineering +Workmgproduct
!

[]
[] process -‘
> Flow Sprint e e o e e e e e e e -
=) Output Backlog =
= Backlog feedback 6. Review and
lﬂ Mechanisms & strategies Retrospective

Fig. 2. APLE Scrum development process

In the pregame phase (see Figure 2 box 1), representative stakeholders and
the Scrum Team capture and analyze requirements of the SPL in terms of USs.
The result of this preplanning is a list of known user stories called SPL backlog.
Then, the SPL backlog is analyzed in terms of features, this is, logical units of
behavior that are specified by a set of USs. Common and variable features are

explicitly documented in feature models, which is an abstraction of the variability
[26]. This first feature model is not exhaustive and it is consolidated during the
next sprints; its objective is to provide the scope of the SPL.

In the SPL Release Definition phase (see Figure 2 box 2), features are prior-
itized and divided into sprints. The goal is optimizing the features to be consid-
ered in each sprint. Common features can be prioritized from the opportunity to
be reused in the short term following the definition of reflective reuse. Variable
features can be prioritized on the basis of the lowest change impact, the highest
value to the market or flexibility to react to changing market situations.

In the Sprint planning meeting (see Figure 2 box 3), the features to be
implemented in the current sprint are planned and estimated. It determines the
sprint goal and the sprint backlog.

In the DE phase (see Figure 2 box 4), the feature model, PL-architecture,
and core-assets, are incrementally consolidated in each sprint. To achieve it, the
concepts PPC defined in Section 3.1 is applied to. The PPCs, variability points,
variants, and connectors are defined to construct the working PL-architecture.

In the AFE phase (see Figure 2 box 5), variability points are bound to specific
variants. This consists in selecting and applying the variants that are required for
a/several specific working product/s —which depends on the sprint goal defined
in the sprint planning meeting. It can be divided into two different tasks: (i)
to reconfigure the working PL-architecture by adding or removing the variable
components, and connectors; and (ii) to complete the partial specification of
PPCs by weaving aspects and/or features with the core functionality of the
PPC. The results of this phase are: the working product-architecture/s and the
working product/s.

Finally, the review and retrospective meetings (see Figure 2 box 6) pro-
vide feedback to apply the needed changes and adjustments to the next sprint.
Changes in USs enforce to re-prioritize the SPL backlog and allow being aware
of new opportunities for reuse. As a result, the reuse process is able to be flexible
when systems have to be quickly evolved. It lies the concept of reflective reuse.

Therefore, the APLE Scrum process uses the PPCs and working PL-architecture
concepts to construct a flexible SPL platform. Finally, reflective reuse provides
the foundations to implement the best reuse strategy during the development
on the basis of the opportunities of reuse in the short-time or taking advantages
of systematic reuse in the long-term.

4 Experience Report

This section illustrates the application of the tailored Scrum process that we have
proposed to address APLE. It reports our experience in developing environments
for testing software systems (Test and OPeration ENvironment, TOPEN [27]).
Since testing different systems under test (SUTSs) requires different features of

TOPEN and since SUTs are constantly evolving, APLE is an appropriate ap-
proach to address this software development?.

The definition of the TOPEN Product-Line has been explained thoroughly
in [27]. This case study focuses on a TOPEN product for testing testing biogas
power production plants (TOPEN Biogas). Following the APLE Scrum process
defined in Section 3, TOPEN Biogas was developed through 6 SCRUM sprints
during 15 weeks. During the pregame phase, several USs were identified: (US1)
Test engineers specify a test case utilizing a user interface and with the biogas
plant specific language. (US2) Test engineers compile and execute a test case
from the user interface. The results of the test case executions must be shown
to them. (US3) Test engineers remotely test/monitor the biogas plant. Next, the
SPL backlog was created, USs were analyzed in terms of features, and an initial
feature model was performed (see Figure 3). Then, features were prioritized and
divided into sprints on the basis of the higher value for the customer.

|z TOPEN-PL Featuremodel

sprintd
°. ° ° ° P
[Rvr pistribution | ‘IL;JT iC | [&= | |@ Fomet | [&5surc]
sprint2

A . . . 5. &, 1

[Compitation] [® xecution] [EFeu=] [@etficstions] |@ sum | [&Fto]
[1"1‘ I.,-,; TestCase Interface I [sUTmtertace |

Vi LeicalParser) 13 SemanticParser)

Fig. 3. TOPEN product-line Feature Model

After analyzing these feature, the architects identified four main PPCs that
made up the working TOPEN PL-architecture: the Graphical User Interface
(GUI), the Topen Engine, the Data Management System (DMS), and the Gate-
way. The GUI offers test engineers the graphical interface to define and execute
test cases. The Topen Engine compiles and translates test cases which are de-
fined by test engineer in a domain-specific test language into the language that
the SUT is able to process. The DSM stores test data and maintain the system
business rules. And, the Gateway establishes the communication between the
Topen Engine and the SUT.

This report focuses on the PPC Topen Engine to illustrate how the working
TOPEN PL-architecture was iteratively evolved in each sprint. The PPC Topen
Engine was implemented during the first sprints because architects were aware
of the opportunities of reusing in the short-term to easily adapt TOPEN to other
SUTs. In the first sprint, architects focused on the aspect distribution that it
was firstly based on the remote method invocation (RMI) (see Figure 4a). In the
second sprint, architects focused on the Semantic and Lexical parsers (see Figure

2 This project has been developed with the collaboration of the company Answare
Tech within Flexi ITEA2 6022 project, whose goal is to scale agile.

& “TOPEN.variability_diagram £2 & “TOPEN.variability_diagram £3

a) — [b)

- - /DE
sidpensngme i s;lopen ngine L
I P ak \
A A A A

_~ DistributionType -~ DistributionType . SematicParser

4+ 3.3
4 [L.1] <+ [L.1]
4 [L1]
= [BiogasPlant [switchOn | | O Switchoff | | O ModifyProperty
[ETRMI Domain: Tankg Command || Command Command
Properties and Semantics Semantics Semantics
Commands
B “TOPEN.variability_diagram =]
i il * | 5% Palette 3

) = TopenEngine 1 TT=E
EG/D & Nodes «
= PlasticPertialC...
/ ! A BVP
A FVP
A A A 2| i3 Weaving
ClAspect

Feat
/. DistributionType o R A SematicParser 0 Festure

+3.3] (= Links «
1.1]
&2 il . Weaves
4, Defines
[BiogasPlant| | 0 Switchon | | O switehorf | | O yProperty | e
R S WebServices Domain: Tanks | | command || Command | | Command / Linkhspect
Properties and Semantics Semantics Semantics P

Commands

Fig. 4. Working TOPEN PL-architectures

4b). These parsers validate both lexically and semantically the commands and
alarms that test engineers send or receive to/from the biogas plant. The working
TOPEN PL-architecture was evolved to support these parsers by adding two
variability points and their respective variants. Although it implied more effort
in specifying the pointcuts and the weaving operators, we gained in code modu-
larity, scalability and reusability because these fragments of code are unaware of
the linking context. These variability points may provide flexibility to evolve the
working TOPEN PL-architecture to other language in the short-term. In a third
sprint, a change in the specifications forced to implement web services to sup-
port the communication between the four main PPCs. It was solved by hooking
a new distribution aspect, which provided web services technology (see Figure
4c). Hence, the distribution of our application was modified just by adding a
new single fragment of code. As a result, the incremental design of the work-
ing TOPEN PL-architecture by means of the use of PPC allowed us to flexibly
modify the distribution capabilities with the minimum impact both in cost and
effort, and to inherently refactor the distribution code. Following sprints tackled
with all the features of the TOPEN Biogas tacking the advantages of PPC and
reflective reuse as we have shown in these first sprints.

5 Related Work

O’leary et al. [28] define an agile framework for product derivation (AFPD) which
assists organizations in integrating agile practices in the product derivation pro-
cess. AFPD considers the adoption of early and continuous delivery strategy,
automation of product derivation, product derivation iterations, and agile test-
ing techniques. Babar et al. (P36) describe a successful industrial case study,
and analyze the organizational processes and practices that were used to inte-
grate SPLs and ASD. The authors describe a development process that consists
of three sub-processes: product line platform, exploration before agile product
development, and agile product development. Although these two approaches
are valid and compelling, they focus on a reuse-centric AE process, and do not
discuss the role of agile methods in DE. As a result, they are closer to the concept
of agile development using a SPL platform than the concept of APLE —which
tries to address the entire process, i.e. DE and AE.

Paige et al. [13] introduce the agile design of PL-architectures. They propose
that architecture should be incrementally designed, and variations should be
generated as a result of the agile refactoring practice. Even though this proposal
shows potential, considerations about incremental design of PL-architecture were
not described. Meanwhile, Kakarontzas et al. [29] present an approach based on
elastic components to specify variability. Elastic components address the con-
figuration and evolution of components by means of adding/deleting/modifying
variants that hook from the root component. This work is a first step to show
how PL-architectures can be tailored to be more agile. However, since their vari-
ants are context-dependent, additional mechanisms are needed to make variants
independent of the root component. Context-independent variants may (i) fa-
cilitate the incremental and iterative evolution of PL-architectures in ASD by
reducing the number of changes; and (ii) make more flexible the reuse of vari-
ants among the products of a SPL. In our proposal, variants are unaware of the
linking context, and they are completely reusable.

Finally, Ghanam et al. [2,30] highlight the importance of mining systems,
bearing in mind reuse, and the formalization of commonality and variability
through acceptance tests. They introduce an iterative model for APLE and the
use of test-driven development (TDD) to support this process. Specifically, they
propose a bottom-up application-driven approach that relies on automated ac-
ceptance tests to derive core-assets from existing code. Through this bottom-
up approach, the SPL is iteratively built from existing product instances, the
product-line platform progressively evolves, and variability is handled on-demand,
i.e. reactively. [30] presents a tool for assisting the refactoring of code when a
developer introduces a variation. The code-based tool requests to developers the
method that is causing the variation and creates an abstract factory for this
method, the corresponding concrete classes, and the required test classes. This
approach provides a novel contribution based on TDD to model variability deal-
ing with DE and AE in a context where the XP method is used. Despite the
fact that this contribution is a significant advance in the area, more work is still
necessary to support coarse-grained variability, i.e. not always it is possible to

trace a variation with a class or a method. A variation could be traced to a set
of methods, classes, attributes, or even components, and therefore, a mechanism
such as PPCs is required to easily evolve PL-architectures.

6 Conclusions

It can been concluded that APLE as an approach is feasible, although some
challenges still remain open. For addressing APLE, within the worked reported,
the concepts of PPCs, working PL-architectures, and reflective reuse, have been
used to tailor the agile method Scrum. As future work, we plan to use APLE in
larger-size projects, specifically in the power smart grid application domain in
order to obtain measures from empirical results.

References

1. Pohl, K., Bckle, G., Linden, F.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, Germany (2005)

2. Ghanam, Y., Park, S., Maurer, F.: A test-driven approach to establishing and
managing agile product lines. In: SPLiT’08 in conjunction with SPLC’08. (2008)

3. Verlage, M.: The invisible man-month or what is the real value of a core asset?
http://splc2007 jaist.ac.jp/keynotes.html (2007)

4. Kénséla, K.: Good-Enough Software Process in Nokia. Product Focused Software
Process Improvement 3009/2004 (2004) 424-430

5. Hanssen, G.K., Figri, T.E.: Process fusion: An industrial case study on agile
software product line engineering. J. Syst. Softw. 81(6) (2008) 843-854

6. Cockburn, A.: Agile Software Development. The Cooperative Game. Second Edi-
tion. Addison-Wesley Professional (2006)

7. K. Beck et al.: Manifesto for agile software development

8. Ghanam, Y., Andreychuk, D., Maurer, F.: Reactive variability management in
agile software development. In: Agile '10: Proceedings of International Conference
on Agile Methods in Software Development, IEEE Computer Society (2010) 27-34

9. Cooper, K., Franch, X.: Aple 1st international workshop on agile product line
engineering. In: SPLC ’06: Proceedings of the 10th International on Software
Product Line Conference, IEEE Computer Society (2006) 205-206

10. McGregor, J.D.: Agile software product lines, deconstructed. Journal of Object
Technology 7(8) (November-December 2008) 7-19

11. Diaz, J., Pérez, J., Alarcén, P.P., Garbajosa, J.: Agile product line engineeringa
systematic literature review. Software: Practice and Experience Journal 41(8)
(2011) 921-941

12. Tian, K., Cooper, K.: Agile and software product line methods: Are they so differ-
ent? In: APLE ’06: 1st International Workshop on Agile Product Line Engineering.
(2006)

13. Paige, R., Wang, X., Stephenson, Z., Brooke, P.: Towards an agile process for build-
ing software product lines. In: XP ’06: Proceedings of Extreme Programming and
Agile Processes in Software Engineering. Volume 4044/2006., Berlin, Heidelberg,
Springer-Verlag (2006) 198-199

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Ali Babar, M., Thme, T., Pikkarainen, M.: An industrial case of exploiting product
line architectures in agile software development. In: SPLC ’09: Proceedings of the
13th International Conference on Software Product Lines. (2009)

Pérez, J., Diaz, J., Costa-Soria, C., Garbajosa, J.: Plastic partial components:
A solution to support variability in architectural components. In: WICSA’09:
Proceedings of the Joint Working IEEE/IFIP Conference on Software Architecture,
IEEE Computer Society Press (2009) 221-230

Pérez, J., Diaz, J., Garbajosa, J., Alarcén, P.P.: Flexible working architectures:
agile architecting using PPCs. In: ECSA’10: Proceedings of the 4th European
conference on Software Architecture, Berlin, Heidelberg, Springer-Verlag (2010)
102-117

Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-Hall
(2002)

Carbon, R., Lindvall, M., Muthig, D., Costa, P.: Integrating product line engineer-
ing and agile methods: Flexible design up-front vs. incremental design. In: APL’06:
1st International Workshop on Agile Product Line Engineering. (2006)

Kircher, M., Schwanninger, C., Groher, I.: Transitioning to a software product
family approach - challenges and best practices. In: SPLC ’06: Proceedings of the
10th International on Software Product Line Conference, Washington, DC, USA,
IEEE Computer Society (2006) 163-171

Assmann, U.: Invasive Software Composition. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA (2003)

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectj. In: ECOOP ’01: Proceedings of the 15th European Conference
on Object-Oriented Programming, London, UK, Springer-Verlag (2001) 327-353
Favaro, J.M., Favaro, K.R., Favaro, P.F.: Value based software reuse investment.
Annals of Software Engineering 5 (1998) 5-52

Frakes, W.B., Kang, K.: Software reuse research: Status and future. IEEE Trans.
Softw. Eng. 31(7) (2005) 529-536

Kotonya, G., Lock, S., Mariani, J.: Opportunistic reuse: Lessons from scrapheap
software development. In: CBSE ’08: Proceedings of the 11th International Sympo-
sium on Component-Based Software Engineering, Springer-Verlag (2008) 302-309
Jansen, S., Brinkkemper, S., Hunink, 1., Demir, C.: Pragmatic and opportunistic
reuse in innovative start-up companies. IEEE Softw. 25(6) (2008) 42-49

K. Kang et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical report, CMU/SEI-90-TR-21, Carnegie Mellon University, PA (1990)
Magro, B., Garbajosa, J., Pérez, J.: Development of a Software Product Line for
Validation Environments Software. In: Applied Software Product Line Engineering.
Taylor and Francis (2009) 173-199

O’Leary, P., McCalffery, F., Richardson, I., Thiel, S.: Towards agile product deriva-
tion in software product line engineering. In: EuroSPI’09: Proceedings of 16th
European Conference on Software Process Improvement. (2009) 8.1-8.6
Kakarontzas, G., Stamelos, 1., Katsaros, P.: Product line variability with elastic
components and test-driven development. In: CIMCA ’08: Proceedings of the 2008
International Conference on Computational Intelligence for Modelling Control &
Automation, IEEE Computer Society (2008) 146-151

Ghanam, Y., Maurer, F.: Extreme product line engineering refactoring for vari-
ability: A test-driven approach. In: XP ’10: Proceedings of the 11th International
Conference Agile Processes in Software Engineering and Extreme Programming.
Volume 48 of LNBIP., Springer (2010) 43-57

