
A new DSATUR-based algorithm for exact vértex coloring
Pablo San Segundo*
Centro de Automática y Robótica (CAR), José Abascal 2, 28006, Madrid, Spain

A R T I C L E I N F O A B S T R A C T

This paper describes a new exact algorithm PASS for the vértex coloring problem based on the well
Keywords- known DSATUR algorithm. At each step DSATUR maximizes saturation degree to select a new candidate
Color vértex to color, breaking ties by máximum degree w.r.t. uncolored vértices. Later Sewell introduced a
Graph new tiebreaking strategy, which evaluated available colors for each vértex explicitly. PASS differs from
Exact Sewell in that it restricts its application to a particular set of vértices. Overall performance is improved
DSATUR when the new strategy is applied selectively instead of at every step. The paper also reports systematic

experiments over 1500 random graphs and a subset of the DIMACS color benchmark.

1. Introduction

For a given undirected graph G=(V,E) the vértex coloring
problem (VCP) requires to assign a color to every vértex so that
adjacent vértices are all colored differently and the total number
of colors employed is minimized. The origins of the vértex color
ing problem (VCP) can be traced back to a letter written to Sir
Willian Hamilton by the renowned mathematician Augustus de
Morgan in 1852, where the famous Four Color Theorem has
its roots.

VCP is a well known and deeply studied NP-hard problem in
graph theory [1], which has attracted the attention of many
researchers for its implications in computational theory. More-
over, many real world applications in a wide variety of engineer-
ing fields have also been found, such as register allocation [2],
scheduling [3-5], air traffic [6], etc., which suggest the impor-
tance of efficient algorithms in practice.

Let n and m be the cardinalities of the vértex set V and edge set
E, respectively. deg(v) is the degree of a given vértex v, i.e. the
number of adjacent vértices (alias neighbors). A(G) denotes the
degree of the graph, the máximum degree of any of its vértices.
A vértex v is said to be dominated by vértex w if the neighbor set
of w is a superset of the neighbor set of v.

Subsets of V where all vértices are pairwise non-adjacent are
called independent sets. Any k coloring of G partitions V in disjoint
k independent sets named color classes. A dique in G is any
subgraph with all its vértices pairwise adjacent. cu(G) denotes
the máximum dique in G, the clique with the largest possible size.
The chromatic number of a graph x(G) is the mínimum number of
colors required to color G, i.e. the size of its optimum coloring.

*Tel.: +34 913 363 061; fax: +34 913 363 010.
E-mail address: pablo.sansegundo@upm.es

A partid coloring of a graph II(íi), íi<= V, is and admissible assign-
ment of colors to vértices in U. Given a partial coloring n , c(II) is the
total number of colors used in the partition and c ^ e l l) denotes the
color label assigned to v. p(v) refers to the chromatic degree of a
vértex (alias its saturation degree), the number of adjacent vértices
which have been assigned different colors.

Compared with other related problems such as the máximum
clique or the máximum independent set, VCP is considerably more
challenging; for example, it is possible to compute máximum
clique exactly in graphs with some hundreds of vértices whereas
fast exact coloring of a random graph with 80 vértices and
0.5 edge density already requires efficient algorithms and a
powerful CPU. In fact, exact methods for VCP usually suffer from
the same problem: it is easy to find a good admissible coloring
c{G), but proving that no c(G)-l admissible coloring exists
becomes very difficult.

The hardness of exact VCP computation has given rise to many
efficient heuristics and metaheuristics for the domain. Initial
approaches favored greedy constructive algorithms, which color
each vértex exactly once given a heuristic rule to compute the
next color label based on the current partial coloring. Fast but
usually sensible to some initial criteria (e.g. vértex ordering) the
most important examples are the simple greedy sequential (SEQJ
and the máximum chromatic degree heuristic DSATUR [7].

Constructive algorithms, which produce color classes sequen-
tially have also attracted attention, such as the recursive largest
first (RLF [5]) algorithm or MAXIS [9], an improved variant of [8],
which is known to perform well over difficult random graphs.
Worth mentioning is also the iterated greedy algorithm IG [9],
which iterates over suboptimal colorings by reordering a subset
of color classes following certain criteria at each step.

Classical metaheuristics applied to VCP start from an initial
incorrect color partition and gradually attempt to remove con-
flicts at each step. Many evolutionary algorithms are based on

mailto:pablo.sansegundo@upm.es

tabú search, simulated annealing or some form of hybridation.
In view of the exponential character of exact coloring, real Ufe
problems usually resort to these methods.

The first proposed algorithm, TABUCOL [10], employed tabú
search. In [11] a simulated annealing algorithm was proposed,
which compared different neighborhoods; later the Impasse Class
Neighborhood (ICN) described in [12] became for a long time the
most effective approach to VCP. Algorithm MIPS-CLR [13] com
bines the Tabú Search technique with the ICN to produce a very
effective algorithm. Hybrid algorithms integrating local search
and diversification via crossover, as in [14] or [15], showed that
diversification was able to improve the performance of local
search. Of the more recent algorithms we point out [16], in a
similar vein as MIPS-CLR, and MMT [17]. The latter is based on
ICN and a crossover operator, which is an adaptation of the Greedy
Partitioning Crossover proposed in [15].

The inherent difficulty of VCP makes exact algorithms rather
scarce compared with approximate coloring methods. We give a
brief overview of the leading algorithms.

Integer programming models for VCP have recently attracted
much attention because of the improvement of general purpose ILP
solvers. The first known ILP model for VCP is the so called descriptive
model (VCP-DES), which for exact k-coloring can be defined as

(I) xik+xjk<\ V(¿j)e£,Vfc
(II) E*/< = 1 Vi xiik6{0,l} O)

k

VCP-DES uses nk Boolean variables, which represent all
possible color assignments to vértices. Constraints of type I model
that no two adjacent vértices can have the same color and
constraints of type II do not allow different color labels in any
vértex.

This model has been used in literature, mainly for its simpli-
city. Recently, Méndez-Díaz and Zabala [19,20] showed a way to
exploit it in a branch and cut scheme by refining VCP-DES with
further inequalities to remove symmetries - possibly the most
relevant drawback of such models for any ILP solver - and thus
obtain a stronger continuous relaxation.

A set cover ILP model (VCP-SC) was first employed successfully
using column generation by Mehrotra and Trick [21] in a branch
and price algorithm. VCP-SC can be formalized as follows:

Minimize Y^Xs
5

s.t.

Y^ xs>\ Viel/
5 e {s:i e S]

xs 6(0,1} (2)

where the basic Boolean variables xs represent (maximal) inde-
pendent sets. A valué of xs to 1 indicates that the set is given a
label (color) in the VCP-SC solution; in case a 0 is assigned to xs

that (color) set will not correspond to the mínimum coloring.
Constraints establish that all vértices have to be covered by at
least one independent set.

Branch and price algorithms, which exploit VCP-SC are cur-
rently the best way to attack exact VCP for large structured graphs
and a number of improvements have recently appeared, such as
[22-24].

Worth mentioning is an additional ILP set packing model for
VCP, which has recently been exploited in [25], performing
similarly to VCP-SC in the reported tests. To end this overview
we refer the reader to [18] for a detailed survey on both
approximate and exact methods.

Color heuristics embedded in a complete enumeration scheme
lead also to exact algorithms. Of these, branch and bound DSATUR
[7], later improved by Sewell [26] is undoubtedly the best known

and has been a standard defacto for many years (see Section 2 for
a more detailed analysis of these algorithms).

DSATUR is a simple and efficient algorithm, which has been
known to perform surprisingly well over random graphs. Out-
performed by recent branch and price algorithms on the more
difficult graphs it is still frequently employed both stand-alone or
as part of more sophisticated algorithms to quickly compute
initial upper bounds or to 'wrap up' on small subproblems (c.f.
many of the algorithms described in [12]). This makes research on
DSATUR-based solvers, in the opinión of the authors, still very
important in practice.

This paper describes a new DSATUR-based algorithm. It is
structured from here in 5 parts. Section 2 reviews existing related
algorithms. Section 3 describes the new algorithm while Section 4
provides a case study. Section 5 reports experiments and finally
Section 6 is the conclusions section.

2. DSATUR review

The general outline of sequential vértex coloring algorithms is
to color each vértex in turn until there are no more left. The
simplest form is the greedy coloring heuristic known as SEQ. Let V
be the set of vértices to be colored and let K = {v-[,.. .,vn) be any
strict ordering of V. SEQ(V, K) can then be described as follows:

SEQ(\Z,K)

for v : = V\ to vn

assign the smallest possible color to v

endfor

Different definitions of K give rise to different heuristics (e.g.
[27,28] are examples of a fixed strategy). DSATUR computes K
dynamically at each step choosing the vértex with máximum
saturation degree w.r.t. the current partial coloring. In case of ties,
the vértex with máximum degree over the set of (as yet) uncolored
vértices is selected. A further tie is broken lexicographically.

An implicit enumeration of vértices combined with any of the
vértex selection rules used in GREEDY produce exact color
algorithms. A direct implementation, however, would lead to
many spurious subproblems being analyzed. Brown [29] was
the first to reduce complexity by enumerating only tight colora-
tions in the graph.

Definition. A coloring c(G)of a given graph G is tight given a strict
ordering of its vértices V\,...,vn if

c(vi+-¡) <colors(¡) + l V¡ = 1,.. . ,n- l
colors(í) = maXjC^j) l < s < ¡ , c(vi) = l

Brélaz [7] used the Brown enumeration to implement exact
DSATUR. Throughout the text, terms in capital letters will refer to
both the heuristic rule and the exact algorithm. Subscript 'h' will
be added when an explicit reference to the rule is required.

DSATUR recursively enumerates all tight partial colorings
which, in turn, become new subproblems. For any partial k-
coloring at a given step, a vértex is chosen using DSATURh and
assigned either one of the k colors already used, or color fc+1 if
none are available. This gives a máximum branching factor of
fe+1 (colors) at any point in the search tree.

Leaf nodes are admissible colorings. When a leaf node is reached,
the size of the coloring is compared with the current minimal
coloring. If the latter is minored, the champion is unseated and the
leaf node determines a new upper bound (UB) for the chromatic
number. UB is used at any step to prune the search tree when the

size of the current pardal coloring k is greater or equal to UB. This
makes DSATUR a branch and bound algorithm.

Applying DSATURh produces an initial partial coloring, which
corresponds to a clique. The size of this initial clique is used
implicitly as lower bound (LB) during search, determining an end
condition when UB=LB. Note that once LB has been fixed it does
not change during the whole procedure whereas UB gradually
decreases. This is an important disadvantage compared with
exact ILP methods, where LB also rises dynamically by solving
the continuous relaxation problem.

A number of improvements to the original DSATUR algorithm
were suggested by Sewell [26]. Apart from an initial reordering of
vértices, Sewell proposed a new tie breaking strategy and
reported a reduction in the number of subproblems searched
under some restrictions. We will refer to this new tiebreak as the
Sewell rule. It can be described informally as follows:

SEWELL RULE
Selectfrom the set of vértices tied at máximum saturation degree

the one with the máximum number of common available colors in
the neighborhood of uncolored vértices.

Compared with DSATURh, this heuristic rule is more informed
since it explicitly takes into account the structure of the graph
together with the number of available colors when branching. Note
that DSATURh only estimates future color availability using degree
and runs in 0(n2) whereas SEWELLh runs in 0(n3) in the worst case.

Apart from the additional overhead, SEWELLh is known to obtain,
on average, worse admissible colorings than DSATURh at the early
stages of the search. To overeóme this problem, Sewell further
proposed to compute a priori upper and lower bounds, which are
also fed into the search algorithm. Reported experiments with a very
tight UB seemed to outperform DSATUR in a benchmark of random
graphs and a small set of real-world graphs. In spite of this, the
SEWELL rule has not met many followers in recent years.

3. A new tiebreaking strategy

This paper proposes a new tiebreaking strategy for DSATUR,
which is much less expensive to compute than SEWELL but has a
similar pruning effect. It will be referred to as the PASS rule (in
reference to the corresponding author's family ñame).

Let G=(V,E) be a given graph to be colored of size n. Let II be
the / partial fe-coloring (c(II) = fc,|II =/) obtained by DSATUR at
the current step and let íi = {V;+1,ví+2.- • -.iM be the set of
remaining uncolored vértices. For any pair of adjacent vértices
in U we define function same : V2 ->naturals; such that

(4)
(0 (t/,,t/2)fÉ £(U)

*"ne(v,,t/2)= j \F(v,)nF(v2)\ (v,,v2)eE(U)

where F(v¡) is the set of admissible color labels for vértex v¡.
DSATUR initially applies DSATURh to select vértices in U with

máximum saturation degree. Let Te U be the set of such candi-
date vértices:

T = maXiiPuiVi)) VteU (5)

SEWELLh will then select a vértex vseT, which minimizes the
number of available colors in the set U\{vs} in child subproblems.
In practice, this is implemented by maximizing the number of
common available colors in the uncolored neighborhood:

/

vsd = max„s e T

\

y ^ same(vs,v)
veU

(6)

The new PASS rule introduces a further variation: it seleets the
new candidate from T in a similar manner as Sewell but restriets
its application to candidate vértices in T only:

(

•• m a x „ s e T

\

y ^ same(vs,v)
v e r

\vj-vs

(7)

/

Further ties are broken lexicographically in all cases.
SEWELLh minimizes the number of subproblems by system-

atically reducing available colors in subproblems at deeper levéis
of the search tree. By restricting this idea to the set of tied vértices
in T, PASS employs a different strategy. It aims at reducing color
domains of vértices, which are already known to have the least
number of available colors, and so therefore more likely to require
a new color in deeper levéis of the search. Note that, at each step,
all candidate vértices in T are, by definition, those with máximum
saturation degree (and therefore have the least number of free
colors). This fact justifies the PASS strategy.

However, consistent application of PASS does not improve the
overall performance because in the initial steps of the search
there are many vértices in T (w.r.t. to íi) and the desired effect is
not obtained. It is much better to selectively apply PASS in steps
where the number of available colors of candidate vértices in T
is below a certain parameter ¡i, which is computed dynamically.
PASS performs better when ¡i is evaluated at each step in the
following way:

fj. = c(n)-pn(v eT) fi>0 (8)

The first term in (8), c(II), is the number of assigned colors in
the current partial coloring. The second term, the saturation
degree (related to II) of every candidate vértex, represents the
number of colors in c(II) not available for every vértex in T (note
that the particular colors can differ for each vértex). Therefore the
difference between both terms is a direct measure of color
availability. When PASS is applied in steps where candidate
vértices have low valúes of ¡i, it is more likely that vértices in T
in future subproblems will require a new color. A step where ¡i=Q
indicates that every vértex in T requires an extra color
fe=c(|II|) + l and so the part of the search tree, which hangs from
the current node is very likely to be pruned.

The current implementation of PASS uses DSATURh tiebreak
rule in all steps where ¡i exceeds a given threshold TH fixed at the
beginning of the search (typically TH=3; Section 5.1 explains the
choice). In steps where ¡i < TH the PASS rule is applied. We note
that ¡i is the same for all candidate vértices and so has to be
computed just once per step, an important practical advantage of
(8). For TH=0, PASS is equivalent to DSATUR. Pseudocode for
PASS is given in full.

PASS(l/,;Q.Cmax,rH)

U is the current set of uncolored vértices; II is the current partial
coloring; Cmax is the size of minimal coloring; TH is a fixed
threshold.

C„ = 0;

/

Initial valúes: G = (V,E); U : = V; TI : =
TH: =3
Returns: Cmax:=x{G)
Step 1. Select vértex veU with máximum saturation degree.
Let T be the set of tied vértices. If \i=c(II) - p(v e T) < TH break
ties using PASSh (7) else break ties using DSATURh (5).
Step 2. if (U=4>) then let Cmax : =c(i7) and return
Step 3. Select c(v) with the lowest possible color used in II.
If none are available assign c(v):=c(II) + l

Step 4. if c(v) > Cmax return.
Step 5. PASS(n + (v,c(v)), U-{v}, Cmax, TH)

4. A case study

Graph G depicted in Fig. 1(A) has been chosen to compare the
performance of DSATUR, SEWELL, and new PASS.

Notation i/p will be used to describe the search trees. It
summarizes two facts: (1) vértex v has been assigned color k
((v,k)eTl in the current step) and (2) further tight enumerations
with c(v)eF are still possible. Subscripts or superscripts may be
missing when unnecessary in the context. F is the set of remain-
ing available colors for v (as in (4)) and each color constitutes a
branching point in the search. Note that fe^Falways holds.

= { f % \ f £ l „fc») ,Vn-\¥ "Fn } refers to the current
path, the vértex ordering reflecting the choices taken by the
heuristic at each branching point. Every vértex v¡eP with F¡ # <p is
a subproblem at the ¡th level in the tree. For a given P, c(II) = m
and | n | =d hold. When d=n a leaf node has been reached and
c(II=G) is an admissible coloring for VCP.

The behavior of the three algorithms is compared after the first
minimal coloring has been established by DSATUR (i.e. the initial
branch of the search tree is assumed the same in all three cases).
This allows a cleaner comparison while not losing generality since
SEWELL is known to produce, on average, a worse initial coloring
than DSATUR as explained in [26].

The first minimal coloring obtained by DSATUR is a 5-coloring
(Cmax = 5). While traversing the first branch, DSATUR finds a
3-clique formed by vértices {l9),3?),6?)}. The remaining unco
lored vértices all tie in saturation degree (p=2) so vértex 2 is
chosen lexicographically to generated the child subproblem and

assigned available color 1. The procedure continúes in a similar
way until all vértices are colored (at leaf node I) having traversed

(1) o(2) c (3) 0 (1) Q(4) A<2) n-(4) v (3) Q(5) ¿y-) cW 7 w qpji Sinre C
^Í5)'DÍ5)> /Í5)> s í , f ,))- 5 1 n l - e Ln path PL - {\í4>y-,í4>yuí4>y¿.í4],um,-,í5]^{5],,{5],^í4>]S

it is possible to remove this color from the corresponding F sets so
(1) , (2) R(3) , (1) fi(4) A(2) n-(4) 7 (3) Q(5) that PL is simplified to {1 "3\±G/f>2'. A}¿) cyt> 7 W n P) i
{<!>}' {<!>}' {<!>}' W ' { < ! > } ' { < ! > } ' { < ! > } ' { < ! > } ' { < ! > }

with only one branching point at vértex 2. All three algorithms
backtrack to this vértex, label it with color 4 and update F sets and
saturation degrees in the remaining uncolored vértices accord-
ingly so that at the new step PL+1 ={lW,3^)

),6f¿,2f¿,8{1),4{2),
5{2.4}.7{3}.9(3}} with remaining uncolored vértices íi={4.5.7.8.9}.
Induced subgraph G = G(U,E(U)) is depicted in Fig. 1(B). Saturation
degrees for each vértex in U are p(4)=3, p(5)=2, p(7)=3,
p(8)=3, p(9)=3 with máximum saturation degree set
r={4,7,8,9} (see Fig. 1(C)).

The next step turns out critical for the performance of the
different algorithms. To establish a clear comparison we denote
by HDSATUR, HSEWELL and HPASs the set of valúes obtained by the
corresponding rules over vértices in T.

DSATUR uses máximum degree in G to break ties. At present
AG = degc-(4,5,9) = 3, degc-(7) = 2 and degc-(8) = 1 (see Fig. 1(B))
so HDS/ITUR={3,2,1,3} and the first vértex in T (vértex 4) is chosen
with color assignment c(4) = 2.

In the case of SEWELL and PASS, ties are broken using
Eqs. (6) and (7), respectively. SEWELL rule for vértex 4 considers
common available colors in adjacent vértices in G, (e.g.
HSEWELL(4) = \ since vértex 4 shares just color 2 with neighbor
vértex 5), which results in HS£WEU={1,1,0,1} and the same
lexicographical choice as DSATUR.

PASS applies the same criteria as SEWELL, but evaluates only
neighbor vértices with máximum chromatic degree (the T set). In
particular, vértex 4 shares no available color now (vértex 5 does
not belong to T) so HP/iss={0,1,0,l}and this time vértex 7 is
selected with color label 3.

{4(2)}

e V = {4(2)}

v . = |7(3)j

Fig. 1. A color example. (A) A simple graph. (B) Induced graph G = G({4,5,7,8,9}) by uncolored vértices after first backtrack (C) Available colors and saturation degree
(in brackets) for each vértex in G' (see B). (D) Candidate vértices selected from by DSATUR, SWELL and new PASS. In brackets color assignments for each vértex.

P. San Segundo / Computen & Operations Research • lili III III 5

It is clear that, on average, PASS will be less expensive to
compute than SEWELL (| T| < U\), but the key factor is that it has
captured structure better. SEWELL selects vértex 4 on the basis of
removing color 2 option from vértex 5{2,4} in child subproblems,
but p(5) is not maximal and color 4 will still be available to
continué the search. PASS picks vértex 7 to remove color 3 from
the singleton F set in 9{3} thus producing a cut in the new
subproblem.

This is confirmed in the next step. In the child subproblem
generated by SEWELL a 4 coloring is still possible and all
uncolored vértices íi={5{4},7{3},8{1},9{3}} have non-empty F sets,
so it cannot be pruned.

Fig. 1(D) shows the different choices made by all three
algorithms at step C. As usual, color assignments appear as
superscripts in brackets. The total number of steps needed to
complete the search for DSATUR, SEWELL and PASS was 14, 13
and 12, respectively.

5. Experiments

This section reports a number of experiments on random Gnp

graphs and a subset of the DIMACS color benchmark.
Gnp graphs are random graphs generated by including each

possible edge independently with probability p for a given a list of
n vértices. The density of such graph is approximately p and has been
used extensively to test algorithms for VCP as they are hard known
to be difficult to color. For the report we have generated a bench
mark of 1500 random graph instances of varying sizes and densities
(RB). Specifically RB includes 50 Gnp graphs for sizes n={60,70,75}
and densities ranging from 0.1 up to 0.9 at 0.1 intervals. 50 instances
of G80p with p={0.1,0.2,0.3} complete the collection.

The DIMACS benchmark is currently the standard set for experi-
menting algorithms for VCP and other NP-hard problems (c.f. [30];
instances are publicly available at ftp://dimacs.rutgers.edu/pub/chal
lenge/graph/). The benchmark set includes a number of artificial
graphs (queen, latin_square, Insertion, etc.), random graphs (DSJC,
standard G„iP graphs), geometric random graphs (DSJR and r) and
graphs derived from real word problems amongst others (c.f. http://
mat.gsia.cmu.edu/COLOR03/ for a description of each family). The
subset used in the report comprises 102 graphs (mainly the subset
used in [22]) so as to establish a comparison with leading branch and
price algorithm MMT-BP.

Some instances from the DIMACS benchmark can be prepro-
cessed in order to reduce their size. This is done by removing
vértices while preserving chromatic degree by applying recur-
sively the following two rules: 1. Any dominated vértex can be
removed from the graph. 2. Any vértex v such that deg(v) < LB
(where LB refers to, as usual, a lower bound on %(G)) can be
removed from the graph (c.f. [20,25]). Whenever possible, graphs
have been preprocessed prior to the start of the search. We note
that this simplification attempt is useless on the random RB
benchmark.

Section 5.1 analyses the basic properties of PASSh w.r.t.
DSATURh and SEWELLh while Section 5.2 compares PASS with
existing algorithms in literature.

5.1. Analysis of the new heuristic rule

The new algorithm employs PASSh rule for tie breaks when
parameter ¡i is below a certain threshold TH and DSATUR rule
otherwise. Important issues are how to determine empirically TH,
the ratio of steps where PASSh is applied (w.r.t. DSATURh) and
how well it captures structure (w.r.t. SEWELLh).

Table 1 reports the percentage of steps where PASSh was fired
instead of DSATURh when running PASS over our benchmark set

Table 1
Percentage of steps where PASSh was fired for varying thresholds of parameter m
using the RB benchmark. Table entries are averaged for each row accordingly (500
graphs for n¼60, 70 and 75; 150 for n¼80).

n

60
70
75
80

/ !< 1

63.4
68.1
69.9
77.3

/ i < 2

76.0
81.5
84.1
87.7

/ i < 3

76.1
81.7
84.3
87.7

/ i < 4

76.1
81.7
84.3
87.7

/ i < 5

76.1
81.7
84.3
87.7

Table 2
Number of steps taken by PASS and SEWELL using a subset of the RB benchmark.
Each entry is averaged over 50 instances.

n p

70
70
70
70
70
70
70
70
70

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PASS

110
992

126,827
925,802

2,861,863
4,345,015
7,421,229
1,439,024

57,024

SEWELL

200
2056

134,562
1,090,343
3,513,657
4,610,283
7,128,713
1,795,241

113,820

n p

75
75
75
75
75
75
75
75
75

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PASS

433
7370

136,937
4,058,103

20,408,727
41,117,085
44,881,962
10,621,766

1,261,113

SEWELL

501
9223

208,925
4,134,748

19,473,294
30,571,612
32,458,948
10,420,784

1,386,572

RB using thresholds TH for parameter m ranging from 1 to 5.
Values of TH greater than three have almost no effect in PASS and
have an additional overhead so TH has been fixed to 3 in the rest
of experiments.

Intuitively, TH captures color availability in maximum satu-
rated vertices. Table 1 shows that the sizes of available color sets
during search in RB graphs are no greater than 3, and that the
percentage of steps where m rTH, for a fixed TH, varies more or
less linearly with size.

Table 2 presents results about informedness of PASSh w.r.t.
SEWELLh. PASS is only significantly less informed for the harder
problems of size 75 (notably p¼0.6, 0.7) but is even more
informed than SEWELL in the simpler ones. Since the overhead
introduced by SEWELL is linear w.r.t. PASS, this validates the new
heuristic.

5.2. Comparison with existing algorithms in literature

In this section we compare results obtained by PASS with
leading ILP and DSATUR-based algorithms.

In general, exact ILP algorithms for VCP should be able to
reduce the gap between LB and UB better than any DSATUR
variant since they are able to produce tighter LBs by solving the
continuous relaxation problem at each step of the branching
scheme. In DSATUR-based algorithms, the lower bound computed
at the beginning of the search or determined by the initial clique
stays fixed in the remainder of the search.

In practice, however, reducing the LB–UB gap is important
specifically if it helps to prove optimality. When it is not possible
to conclude optimality within a certain time limit, LBs have an
undeniable theoretical interest but do not help to produce
admissible colorings (they might help to construct maximal
cliques). For this reason the comparison between PASS and ILP-
based algorithms has been based on either achieving optimality
or tighter UBs; reported data on improving LBs, as in [20] or [24]
has not been considered in this report.

Our main reference algorithm is MMT-BP [22], a leading
column generation algorithm enhanced by an efficient metaheur-
istic procedure MMT described in [17]. MMT-BP uses MMT during
initialization to improve the performance of the branching

Please cite this article as: San Segundo P. A new DSATUR-based algorithm for exact vertex coloring. Computers and Operations
Research (2011), doi:10.1016/j.cor.2011.10.008

ftp://dimacs.rutgers.edu/pub/challenge/graph/
ftp://dimacs.rutgers.edu/pub/challenge/graph/
http://mat.gsia.cmu.edu/COLOR03/
http://mat.gsia.cmu.edu/COLOR03/
dx.doi.org/10.1016/j.cor.2011.10.008

P. San Segundo / Computers & Operations Research] (]]]])]]]–]]]

scheme both by obtaining an initial feasible solution (an UB) as
well as a starting pool of columns for the VCP-SC set cover model
described in (2). We note that DSATUR is one of the algorithms
used in MMT.

Results for the branch and cut approach employed in BC-Col by
Mé ndez-Dı´az and Zabala [19], are also reported. During initializa-
tion, BC-Col computes a maximal clique (LB) with a greedy
algorithm and then runs DSATUR for 5 s to obtain an initial UB.

As reference DSATUR [7] we have selected the Michael Trick
implementation available at http://mat.gsia.cmu.edu/COLOR/sol
vers/trick.c, which is commonly used for comparison purposes.
We have also implemented an efficient SEWELL variant based on
PASS. All three algorithms (DSATUR, SEWELL and PASS) have the
same initialization stage: an exact leading maximum clique
algorithm BB-MCP described in [31] is run for 5 s to obtain an
initial LB (although in the majority of cases it finds an optimal
clique in the first second). Vertices in this initial clique are then
placed first and the remaining vertices are ordered by non-
increasing degree prior to the start of the search.

Tests for the DSATUR variants were run on an I7-CPU
920@2.67 GHz with 6 GB of RAM (Windows O.S., Visual Studio–
O2). To allow an approximate (but meaningful) comparison on
time results reported elsewhere, benchmark program dfmax is
publicly available at URL ftp://dimacs.rutgers.edu/pub/dsj/clique/
dfmax.c. Computing times obtained on different machines are
calibrated w.r.t. the performance obtained on this program over a
benchmark set of random instances. We are aware of the limita-
tions of this (typical) procedure, but there is simply no other
option when it is not possible to run all implementations in the
same machine.

User times for dfmax in our machine were 0.031, 0.234, 1.419
and 5.336 s for r200.5, r300.5, r400.5 and r500.5, respectively.

Neither MMT-BP nor BC-Col was publicly available. Color
expert Enrico Malaguti complied with tests for MMT-BP over
our random benchmark set RB. The machine he used was a
PIV@2.4 GHz with 2 GB RAM (Windows O. S.). Reported machine
user times were 2.0 and 7.0 s for r400.5 and r500.5, respectively,
and less than a second for r300.5 and r200.5. The averaged user
time ratio for r400.5 and r500.5 between both machines is 1.332
in favor of our computer.

The original tests for BC-Col where run on a Sun ULTRA
workstation @ 140 MHz with 288 MB of RAM, which took 24 s
to compute r500.5, as reported in [22]. No other comparison
results are available and the authors did not supply further
information on our request. Based on r500.5, the user time ratio
is 4.497 in favor of our computer. In [22] a similar comparison
was established; we note, in both cases, the approximate nature
of the ratio.

Table 3 reports tests over our random benchmark RB for the
Gn,p graph family. MMT-BP was run with a time limit of 1800 s; in
the other three algorithms the limit was fixed at 1200 s (the
calibrated time limit 1800/1.332¼1351 s has been rounded in
favor of MMT-BP). Times for MMT-BP shown in Table 3 (and
reported by Malaguti specifically for this research) have been
calibrated using the 1.332 ratio.

For each row entry in the table, 50 graphs were computed and
results averaged (including entries for columns w(G),o(G)). Col-
umn Fail is the number of graphs where optimality was not
proved inside the time limit. Maximum clique column o(G) is the
LB of all DSATUR variants (as found by BB-MCP) and has been

Table 3
Performance over random benchmark RB. Times are averaged over 50 instances for each row and measured in seconds. Column Fail is the number of cases when the
algorithm was unable to determine an optimum coloring. Time limit was fixed at 1800 s for MMT-BP and 1200 s for the rest to account for the different machines.

n

60
60
60
60
60
60
60
60
60

70
70
70
70
70
70
70
70
70

75
75
75
75
75
75
75
75
75

80
80
80

P

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1
0.2
0.3

X(G)

4.0
5.5
7.0
8.9

10.7
12.9
15.6
19.1
25.7

4.0
6.0
7.8
9.7

11.8
14.1
17.2
21.4
28.5

4.0
6.0
8.0

10.0
12.1
14.9
18.0
22.4

1.0

4.3
6.3
8.2

MMT-BP [22]

LB

4.0
5.1
7.0
8.3

10.1
12.5
15.3
19.0
25.7

4.0
5.8
7.1
9.1

11.2
13.6
16.9
21.2
28.5

4.0
6.0
7.5
9.5

11.8
14.3
17.6
22.1
29.9

4.0
6.0
7.9

P l e a s e c i t e t h i s a r t i c l e a s :

UB

0.1
134.0

30.8
183.0
95.2
22.3

8.7
2.1
0.2

0.2
32.8

605.1
470.0
437.2
156.4
57.4
12.9

0.4

16.1
36.1

181.6
357.5
163.4
487.5
131.2
32.6
21.0

334.7
387.3
324.0

Time

0.2
191.4
44.0

261.5
135.9
31.9
12.4
3.0
0.2

0.3
46.8

864.5
671.4
624.6
223.4

82.0
18.5

0.6

23.0
51.6

259.4
510.7
233.5
696.5
187.5
46.6
29.9

478.1
553.2
462.8

S a n S e g u n d o P . A

Fail

0
3
1
2
1
0
0
0
0

0
0

20
14
13
4
0
0
0

0
1

12
11
4

13
2
0
0

10
15
11

n e w
R e s e a r c h (2 0 1 1) , d o i : 1 0 . 1 0 1 6 / j . c o r . 2 0 1 1 . 1 0 . 0 0 8

CÜ(G)

3.4
4.5
5.5
6.5
8
9.7

12
16
24

3.6
4.6
5.6
7
8.3

10
13
17
26

3.6
4.6
5.7
7
8.6

10
13
18
26

3.8
4.8
5.8

DSATUR

UB

4.0
5.5
7.0
8.9

10.7
12.9
15.6
19.1
25.7

4.0
6.0
7.8
9.7

11.8
14.1
17.2
21.4
28.5

4.0
6.0
8.0

10.0
12.1
14.9
18.0
22.4

1.0

4.3
6.3
8.2

[7]

Time

0.0
0.0
0.0
0.1
0.4
0.6
0.5
0.3
0.0

0.0
0.0
0.3
2.8

10.8
16.3
30.0

6.1
0.2

0.0
0.0
0.4

12.8
67.6

153.4
141.7
42.4

4.2

0.0
0.2

11.3

DSATUR-based algorithm

Fail

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
0
0

0
0
0

SEWELL

UB

4.0
5.5
7.0
8.9

10.7
12.9
15.6
19.1
25.7

4.0
6.0
7.8
9.7

11.8
14.1
17.2
21.4
28.5

4.0
6.0
8.0

10.0
12.1
14.9
18.0
22.4

1.0

4.3
6.3
8.2

for exact vértex

[26]

Time

0.0
0.0
0.0
0.1
0.5
0.6
0.6
0.3
0.0

0.0
0.0
0.5
4.4

15.2
20.9
33.4

8.1
0.4

0.0
0.0
0.8

17.7
90.5

153.4
166.4

51.5
5.2

0.0
0.3

17.8

Fail

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
1
0
0

0
0
0

PASS

UB

4.0
5.5
7.0
8.9

10.7
12.9
15.6
19.1
25.7

4.0
6.0
7.8
9.7

11.8
14.1
17.2
21.4
28.5

4.0
6.0
8.0

10.0
12.1
14.9
18.0
22.4

1.0

4.3
6.3
8.2

Time

0.0
0.0
0.0
0.1
0.2
0.3
0.2
0.1
0.0

0.0
0.0
0.2
1.7
5.5
8.4

14.3
2.6
0.1

0.0
0.0
0.2
6.8

35.4
72.2
76.6
17.2

1.6

0.0
0.1
7.3

Fail

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0

c o l o r i n g . C o m p u t e r s a n d O p e r a t i o n s

6

http://mat.gsia.cmu.edu/COLOR/solvers/trick.c
http://mat.gsia.cmu.edu/COLOR/solvers/trick.c
mailto:920@2.67
ftp://dimacs.rutgers.edu/pub/dsj/clique/dfmax.c
ftp://dimacs.rutgers.edu/pub/dsj/clique/dfmax.c
dx.doi.org/10.1016/j.cor.2011.10.008

P. San Segundo / Computers & Operations Research l lili l l l - l l l 7

Table 4
Comparison between PASS and other exact algorithms over a subset of the DIMACS color benchmark. Bold face time entries for MMT-BP and PASS indícate that an
optimum coloring was found by one of them but not the other. Cursive time entries indícate that optimality was proved at least 5 times faster w.r.t. each other. Reported
times for BC-Col and MMT-BP are taken directly from the indicated sources and have not been calibrated. We estímate the 4.49 and 1.33 ratios in favor of our computer for
BC-Col and MMT-BP, respectively. User times are measured in seconds.

ñame n tn / BC-Col [19] MMT-BP[22] LBDS DSATUR [7] SEWELL [26] PASS

LB UB Time LB UB Time UB Time UB Time UB Time

queen8_8
queen8_12
queen9_9
queenl0_10
queenl1_11
queenl2_12
queenl3_13
queenl4_14
queenl5_15
queenl6_16

qg.order30
qg.order40
qg.order60

myciel6
myciel7

miles250
miles500
miles750
miles1000
milesl500

anna
huck
jean
david

fpsol2.i.l
fpsol2.i.2
fpsol2.i.3

inithx.i.l
inithx.i.2
inithx.i.3

mug88_l
mug88_25
mugl00_l
mugl00_25

mulsol.i.l
mulsol.i.2
mulsol.i.3
mulsol.i.4
mulsol.i.5

schooll
schooll_nsh

le450_5c
le450_5d
le450_15a
le450_15b
le450_15c
le450_15d
le450_25a
le450_25b

1-Fulllns_4
1-Fulllns_5
2-FullIns_3
2-FullIns_4
2-FullIns_5
3-FullIns_3
3-FullIns_4
3-FullIns_5
4-FullIns_3
4-FullIns_4
4-FullIns_5
5-FullIns_3
5-FullIns_4

l-Insertions_4

64
96
81

100
121
144
169
196
225
256

900
1600
3600

95
191

128
128
128
128
128

138
74
80
87

496
451
425

864
645
621

88
88

100
100

197
188
184
185
186

385
352

450
450
450
450
450
450
450
450

93
282

52
212
852

80
405

2030
114
690

4146
154

1085

67

728
1368
2112
2940
3960
5192
6656
8372

10,360
12,640

26,100
62,400

212,400

755
2360

387
1170
2113
3216
5198

493
301
254
406

11,654
8691
8688

18,707
13,979
13,969

146
146
166
166

3925
3885
3916
3946
3973

19,095
14,612

9803
9757
8168
8169

16,680
16,750

8260
8263

593
3247

201
1621

12,201
346

3524
33,571

541
6650

77,305
792

11,395

232

9
12
10
11
11
12
13
14
15
16

30
40
60

7
8

8
20
31
42
73

11
11
10
11

65
30
30

54
31
31

4
4
4
4

49
31
31
31
31

14
14

5
5
15
15
15
15
25
25

5
6
5
6
7
6
7
8
7
8
?
8
?

5

9
12
9
10
11
12
13
14
15
16

30
40
60

5
5

8
20
31
42
73

11
11
10
11

65
30
30

54
31
31

3
3
3
3

49
31
31
31
31

14
14

5
5
15
15
15
15
25
25

5
4
5
5
5
6
6
6
7
7
6
8
8

5

9
12
11
12
14
15
16
17
18
20

30
42
63

7
8

8
20
31
42
73

11
11
10
11

65
30
30

54
31
31

4
4
4
4

49
31
31
31
31

14
14

5
10
17
17
24
23
25
25

5
6
5
6
7
6
7
8
7
8
9
8
9

5

3.0
init
tout
tout
tout
tout
tout
tout
tout
tout

init
tout
tout

tout
tout

init
init
init
0.2
0.1

init
init
init
init

0.6
1.2
1.1

init
init
init

11.0
184.0
60.0
60.0

init
init
init
init
init

init
init

init
tout
tout
tout
tout
tout
init
init

0.1
tout
0.1
tout
tout
0.1
tout
tout
3.0
tout
tout
2.0
tout

2.0

9
12
10
11
11
12
13
14
15
16

30
40
60

4
5

8
20
31
42
73

11
11
10
11

65
30
30

54
31
31

4
4
4
4

49
31
31
31
31

14
14

5
5

15
15
15
15
25
25

4
4
5
5
5
6
6
5
7
7
6
8
8

3

9
12
10
11
11
13
14
15
16
17

30
40
60

7
8

8
20
31
42
73

11
11
10
11

65
30
30

54
31
31

4
4
4
4

49
31
31
31
31

14
14

5
5

15
15
15
15
25
25

5
6
5
6
7
6
7
8
7
8
9
8
9

5

3.6
0.2
36.6
686.9
1865.7
tout
tout
tout
tout
tout

0.2
2.9
3.8

tout
tout

5.0
3.7
0.2
0.2
0.1

3.6
0.2
0.2
0.2

10.6
11.2
10.0

21.0
9.2
9.9

9.6
10.6
14.4
12.0

0.2
4.7
0.2
0.2
6.0

0.4
17.0

0.1
0.2
0.4
0.2
3.1
3.8
0.1
0.1

tout
tout
2.9
tout
tout
2.9
tout
tout
3.4
tout
tout
4.6
tout

tout

8
12
9

10
11
12
13
14
15
16

30
40
60

2
2

8
20
31
42
73

11
11
10
11

65
30
30

54
31
31

3
3
3
3

49
31
31
31
31

14
14

5
5

15
15
15
15
25
25

3
3
4
4
4
5
5
5
6
6
6
7
7

2

9
12
10
12
13
14
15
17
18
19

30
41
63

7
8

8
20
31
42
73

11
11
10
11

65
30
30

54
31
31

4
4
4
4

49
31
31
31
31

14
14

5
5

17
16
24
23
25
25

5
6
5
6
7
6
7
8
7
8
9
8
9

5

8.3
0.0
tout
tout
tout
tout
tout
tout
tout
tout

0.6
tout
tout

tout
tout

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

77.1
295.0
786.0
978.0

0.0
0.0
0.0
0.0
0.0

0.0
0.6

0.0
1060.0
tout
tout
tout
tout
0.0
0.0

tout
tout
84.6
tout
tout
tout
tout
tout
tout
tout
tout
tout
tout

tout

9
12
10
12
13
14
16
17
18
19

30
40
60

7
8

8
20
31
42
73

11
11
10
11

65
30
30

54
31
31

4
4
4
4

49
31
31
31
31

14
14

5
11
18
16
22
23
25
25

5
6
5
6
7
6
7
8
7
8
9
8
9

5

3.4
0.0
tout
tout
tout
tout
tout
tout
tout
tout

0.1
0.5
66.1

tout
tout

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

120.0
215.0
tout
tout

0.0
0.0
0.0
0.0
0.0

0.1
0.5

73.6
tout
tout
tout
tout
tout
0.0
0.0

tout
tout
79.0
tout
tout
tout
tout
tout
tout
tout
tout
tout
tout

tout

9
12
10
12
13
14
15
16
18
19

30
40
61

7
8

8
20
31
42
73

11
11
10
11

65
30
30

54
31
31

4
4
4
4

49
31
31
31
31

14
14

5
5

16
16
22
23
25
25

5
6
5
6
7
6
7
8
7
8
9
8
9

5

3.0
0.0
466.0
tout
tout
tout
tout
tout
tout
tout

0.0
0.2
tout

tout
tout

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

324.0
191.0
tout
tout

0.0
0.0
0.0
0.0
0.0

0.1
0.4

0.0
98.1
tout
tout
tout
tout
0.0
0.0

0.2
tout
0.0
tout
tout
tout
tout
tout
tout
tout
tout
tout
tout

240.0

Please cite this article a s : San Segundo P. A n e w DSATUR-based algorithm for exact vertex coloring. Computers and Operations
Research (2011), doi:10.1016/j.cor.2011.10.008

dx.doi.org/10.1016/j.cor.2011.10.008

P. San Segundo / Computers & Operations Research] (]]]])]]]–]]]

Table 4 (continued)

ñame

l-Insertions_5
l-Insertions_6
2-Insertions_4
2-Insertions_5
3-Insertions_3
3-Insertions_4
3-Insertions_5
4-Insertions_3
4-Insertions_4

ash331GPIA
ash608GPIA
ash958GPIA
abb313GPIA
WÜ1199GPIA

DSJC125.1
DSJC125.5
DSJC125.9
DSJC250.1
DSJC250.5
DSJC250.9
DSJC500.1
DSJC500.5
DSJC1000.1
DSJC1000.5
DSJC1000.9
DSJR500.1
DSJR500.1c
DSJR500.5

latin_sq._10
gamesl20

zeroin.i.l
zeroin.i.2
zeroin.i.3

wapOla
wap02a
wap05a
wap06a
wap07a
wap08a

n m

202
607
149
597

56
281

1406
79

475

662
1216
1916
1557

701

125
125
125
250
250
250
500
500

1000
1000
1000
500
500
500

900
120

211
211
206

2368
2464

905
947

1809
1870

1227
6337

541
3936

110
1046
9695

156
1795

4185
7844

12,506
53,356

6772

736
3891
6961
3218

15,668
27,897
12,458
62,624
49,629

249,826
449,449

3555
121,275
58,862

307,350
638

4100
3541
3540

110,871
111,742
43,081
43,571

103,368
104,176

X

?
?
4
?
4
?
?
4
?

4
4
4
?
7

5
17
44
?
?
?
?
?
?
?
?
12
85
122

?
9

49
30
30

?
?
50
40
?
?

BC-Co

LB

4
4
4
3
4
3
3
3
3

4
4
4
8

5
17
42
5
13
48
5
13
6
15
65
12
78
119

90
9

49
30
30

41
40
50
40
40
40

[19]

UB

6
7
5
6
4
5
6
4
5

4
4
5
10

5
13
47
9
36
88
15
63
26
116
301
12
88
130

129
9

49
30
30

46
45
51
44
46
47

Time

tout
tout
tout
tout
1.0
tout
tout
tout
tout

51.0
692.0
tout
tout
tout

0.9
tout
tout
tout
tout
tout
tout
tout
tout
tout
tout
init
tout
tout

tout
init

init
init
init

tout
tout
tout
tout
tout
tout

MMT-BP[22]

LB

3
3
3
2
3
3
2
3
2

4
3
3
7
7

5
16
43

5
15
71
4

11
5

13
51
12
85

122

90
9

49
30
30

40
40
50
40
40
40

UB

6
7
5
6
4
5
6
4
5

4
4
4
9
7

5
17
44

8
28
72
12
48
20
92

226
12
85

122

108
9

49
30
30

43
42
50
40
42
42

Time

tout
tout
tout
tout
tout
tout
tout
tout
tout

45.9
tout
tout
tout
80.7

142.0
tout
tout
tout
tout
tout
tout
tout
tout
tout
tout
35.3
288.5
342.2

tout
0.2

4.4
4.5
3.6

tout
tout
293.2
175.0
tout
tout

LBDS

2
2
2
2
2
2
2
2
2

3
3
3
8
6

4
10
34

4
12
39

5
13
6

14
57
12
80

120

90
9

49
30
30

41
40
50
40
40
40

DSATUR [7]

UB

6
7
5
6
4
5
6
4
5

5
5
5

10
7

5
19
47

9
35
86
15
62
25

110
300

12
87

130

130
9

49
30
30

48
49
50
49
47
45

Time

tout
tout
tout
tout
2.6
tout
tout
tout
tout

tout
tout
tout
tout
tout

0.0
tout
tout
tout
tout
tout
tout
tout
tout
tout
tout
0.0
tout
tout

tout
0.0

0.0
0.0
0.0

tout
tout
0.0
tout
tout
tout

SEWELL [26]

UB Time

6
7
5
6
4
5
6
4
5

4
5
5

10
7

5
19
47

9
36
88
15
61
25

110
300

12
88

130

130
9

49
30
30

47
46
50
48
45
45

tout
tout
tout
tout
0.3
tout
tout
96.9
tout

0.1
tout
tout
tout
tout

0.0
tout
tout
tout
tout
tout
tout
tout
tout
tout
tout
0.0
tout
tout

tout
0.0

0.0
0.0
0.0

tout
tout
0.0
tout
tout
tout

PASS

UB

6
7
5
6
4
5
6
4
5

4
4
4

10
7

5
19
46

9
34
82
14
62
25

110
300

12
85

130

130
9

49
30
30

46
46
50
47
44
45

Time

tout
tout
tout
tout
0.6
tout
tout
351.0
tout

0.0
0.1
0.4
tout
tout

0.0
tout
tout
tout
tout
tout
tout
tout
tout
tout
tout
0.0
tout
tout

tout
0.0

0.0
0.0
0.0

tout
tout
0.0
tout
tout
tout

placed immediately to the left of them for clarity. Time entries
average user times in seconds.

In this scenario, PASS clearly outperforms the other algo-
rithms, proving optimality faster in the majority of cases (and
never performing worse). The ratio of improvement in time w.r.t.
DSATUR and SEWELL rises in moderately difficult instances to
nearly triple (e.g. (60,0.7) or (70, 0.8)) and decreases with the
more difficult ones to around double (e.g. (75, 0.5)). This can be
explained by the fact that there are fewer vertices tied at
maximum saturation degree in the former case so PASSh is more
effective. On the easier less dense instances, we report similar
performances in all three algorithms up to a tenth of a second.
Out of the 1500 instances in RB, SEWELL failed in two (rows (75,
0.6), (75, 0.7)) and DSATUR in one ((75, 0.6)). PASS was the only
algorithm to finish the full set inside the limit.

Interestingly, leading branch and price MMT-BP was totally
outperformed in RB, even by the older DSATUR variants, which
points at a structural weakness of the set cover VCP-SC model (2).
Specifically, it performed worse on the a priori easier less dense
graphs (e.g. (70, 0.3), (80, 0.1–0.3)). This fact has not been
mentioned explicitly in existing literature to our knowledge,
probably because a systematic test on random graphs has been
somewhat lacking in recent branch and price reports,
(i.e.[18,23,24]) and constitutes, in the opinion of the author, an
additional contribution of this research.

Further evidence of a possible structural weakness was con-
firmed by tests carried out by VCP expert Stefano Gualandi
(complying to our request) over a subset of RB fed to the branch
and price algorithm described in [23]. Reported times did not
essentially improve MMT-BP, so they have not been included in
the report. Of interest is the fact that in the original column
generation algorithm LPCOLOR [21], the same trend appeared but
in a smaller scale. The reduced computing power at the time
could only handle a small subset of random graphs.

Column generation techniques applied to VCP require to solve,
at each step, a maximum weighted stable set slave problem
(MWSS), which is NP-hard in the general case (c.f. [21] or [18]
for a detailed explanation) so effective procedures to solve MWSS
become critical in overall performance. As density decreases, the
slave problem at each step of the branching scheme is also harder.
This would explain why MMT-BP fails to compute optimality for
instances of size 80 in 36 cases out of 150, whereas DSATUR based
algorithms solve the whole subset without difficulty.

Table 4 reports comparisons between the four previous algo-
rithms and branch-and-cut BC-Col. Most column headers have the
same interpretation as in Table 3. LBDS entries (column 10) refer
to the lower bound obtained during the initial stage of all three
DSATUR variants which, in the majority of cases, is a maximum
clique. To emphasize the comparison between PASS and MMT-BP,
bold face time entries for both algorithms indicate that an

Please cite this article as: San Segundo P. A new DSATUR-based algorithm for exact vertex coloring. Computers and Operations
Research (2011), doi:10.1016/j.cor.2011.10.008

8

dx.doi.org/10.1016/j.cor.2011.10.008

P. San Segundo / Computen & Operations Research • lili III III 9

op t imum was found by one and not t he other . Cursive t ime
entr ies indicate tha t optimality was proved a t least five t imes
faster w.r.t. each other .

Time limits for BC-Col and MMT-BP were fixed a t 7200 and
2400 seconds respectively, so 1500 s was chosen as t ime limit for
all DSATUR variants to account for the difference in machine
t imes. W e note tha t t ime limits based on available dfmax data
should be approximately 1600 and 1800 s, respectively, so again
t he rounding in t he tests is in favor of t he previous existing
algori thms.

BC-Col and MMT-BP entr ies in t he table were taken directly
from the original sources ([19,22] respectively) and have not been
calibrated in Table 4 . This seemed preferable to correcting t imes
based on the available weak evidence, and was t he s ame policy
adopted in [22] w.r.t. BC-Col user t imes. The difference in
machines is, however, explicitly ment ioned w h e n needed in t he
comparat ive analysis.

With t he exception of qg.order60, r andom graph DJSC500.5,
school1 and the mug family, PASS is clearly superior to t he other
t w o DSATUR variants, finding faster and/or bet ter UBs in many
cases. This validates t he n e w tie-breaking strategy for large
s tructured DIMACS graphs.

Also PASS has improved performance of DSATUR-based algo-
r i thms w.r.t. BC-Col compared to reported results in [22] : there
are many instances whe re t he UB found by PASS is tighter (e.g.
5 cases in the queen family, 4 in the le450, ash958GPIA, 8 in t he
DSJC random family, etc.). BC-Col, on t he other hand, finds bet ter
bounds in 5 cases.

Column generation based MMT-BP outperforms PASS in large
DIMACS graphs. There are 14 cases where MMT-BP finds an
op t imum coloring whereas PASS cannot prove optimality. More-
over in t he queen, le450, DSJC and wap families MMT-BP also
captures s t ructure bet ter and tends to find bet ter bounds .

On the other hand, comparing wi th t he reported results in [22]
t he difference be tween UBs is n o w tighter on average. Further-
more, PASS finds an op t imum coloring in 6 cases where MMT-BP
exceeds the t ime limit. W e also no te tha t w h e n PASS is able to
prove optimality, it is usually faster than MMT-BP, since t he latter
is much more complex and requires hard instances for column
generation overhead to pay off. Specifically, it takes PASS more
than 5 t imes less than its counterpart (machine differences
accounted for) t o compute chromatic degree in more than 30
cases. In t he opinion of t he author, this makes it a very useful tool
in practice (notice that DSATUR is also used both in BC-Col and
MMT-BP during initialization, so PASS could be used to improve
this stage in both cases).

6. Conclus ions

This paper describes a n e w exact coloring algorithm (PASS)
based on the well known DSATUR algorithm of Bre´laz and a later
improvement proposed by Sewell. PASS introduces a n e w t ieb-
reaking strategy, which can be computed m u c h faster than Sewell
because it is restricted to a subset of vertices. Reported results
show tha t it is n o less informed on average and improves overall
performance w h e n selectively applied in s teps where t he number
of available colors for maximal sa turated vertices is below a given
threshold.

Today DSATUR-based algorithms are still very much employed
in practice because of their simplicity and efficiency. In many
cases they are also applied a t some stage in metaheurist ics or in
t he more complex exact algori thms. Moreover, reported results
reveal that PASS clearly outperforms a leading column generation
algorithm in a benchmark of 1500 random graphs. In t he opinion
of t he authors t he above reasons make PASS a very useful tool for
exact VCP in real-life applications.

Acknowledgmen t s

This work is funded by the Spanish Ministry of Science and
Technology (ARABOT: DPI 2010-21247-C02-01) and supervised by
CACSA whose kindness we gratefully acknowledge. We also want to
thank Enrico Malaguti and Stefano Gualandi for running two leading
branch and price solvers on our random benchmark RB.

References

[1] Garey. M, Johnson D. Computers and intractability: a guide to the theory of
NP completeness. San Francisco, California: Freeman; 1979.

[2] Chow Fred C, John L. Hennessy. The priority-based coloring approach to
register allocation. ACM Trans. Program. Lang. Syst. 1990;12(4):501–36.

[3] Zufferey N, Amstutz P, Giaccari. P. Graph coloring approaches for a satellite
range scheduling problem. Journal of Scheduling 2008;11(4):263–77.

[4] Gamache M, Hertz A, Ouellet. JO. A graph coloring model for a feasibility
problem in monthly crew scheduling with preferential bidding. Computers &
Operations Research 2007;34(8):2384–95.

[5] Leighton. FT, Graph A. Coloring algorithm for large scheduling problems.
Journal of Research of the National Bureau of Standards 1979;84(6):489–506.

[6] Barnier N, Brisset Graph P. Coloring for air traffic flow management. In:
Proceedings of the CPAIOR’02 fourth international workshop on integration
of AI and OR techniques in constraint programming for combinatorial
optimisation problems. Le Croisic, France; 2002. p. 133–47.

[7] Bre´laz D. New methods to color the vertices of a graph. Communications of
the ACM 1979;22(4):251–6.

[8] Bolloba´s B., Thomason A. Random graphs of small order. Random graphs ’83.
Annals of discrete mathematics, vol. 28, Section 6. North-Holland Publishing
Co.; 1985. p. 47–97.

[9] Culberson J. Iterated greedy graph coloring and the difficulty landscape.
Technical Report 92-07. Department of Computing Science, The University of
Alberta, Edmonton, Alberta, Canada; 1992.

[10] Hertz A, de Werra D. Using tabu search techniques for graph coloring.
Computing 1987;39(4):345–51.

[11] Johnson DD, Aragon CR, McGeoch LA, Schevon C. Optimization by simulated
annealing: an experimental evaluation; part II, graph coloring and number
partitioning. Operations Research 1991;39:378–406.

[12] Morgenstern CA. Distributed coloration neighborhood search. In: Johnson DS,
Trick MA, editors. Cliques, coloring, and satisfiability: 2nd DIMACS. Imple-
mentation Challenge, 1993. DIMACS series in discrete mathematics and
theoretical computer science. American Mathematical Society; 1996.
p. 335–58.

[13] Funabiki N, Higashino T. A minimal-state processing search algorithm for
graph coloring problems. IEICE Transactions on Fundamentals 2000;E83-
A:1420–30.

[14] Fleurent C, Ferland J. Object-oriented implementation of heuristics search
methods for graph coloring, maximum clique, and satisfiability. DIMACS
series in discrete mathematics and theoretical computer science. American
Mathematical Society, vol. 26; 1996. p. 619–52.

[15] Galinier P, Hao JK. Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization 1999;3:379–97.

[16] Blö chliger I, Zufferey. N. A reactive tabu search using partial solutions for the
graph coloring problem. Computers & Operations Research 2008;35:960–75.

[17] Malaguti E, Monaci M, Toth. P, Metaheuristic A. Approach for the vertex
coloring problem. Informs Journal of Computing 2008;20(2):302–16.

[18] Malaguti E, Toth. P. A survey on vertex coloring problems. International
Transactions in Operational Research 2010;17(1):1–34.

[19] Mendez-Diaz I, Zabala. P. A branch-and-cut algorithm for graph coloring.
Discrete Applied Mathematics 2006;154(5):826–47.

[20] Me´ndez-Dı´az I, Zabala P, Cutting Plane A. Algorithm for graph coloring.
Discrete Applied Mathematics 2008;156:159–79.

[21] Mehrotra A, Trick. MA. A column generation approach for graph coloring.
INFORMS Journal on Computing 1996;8(4):344–54.

[22] Malaguti E, Monaci M, Toth P. An exact approach for the Vertex Coloring
Problem. Discrete Optimization 2011;8(2):174–90.

[23] Gualandi S, Malucelli F. Exact solution of graph coloring problems via
constraint programming and column generation. Technical report. Optimiza-
tion Online; 2010.

[24] Held S, Sewell EC, Cook W. Safe lower bounds for graph coloring. Accepted for
IPCO; 2011.

[25] Hansen P, Labbe´ M, Schindl. D. Set covering and packing formulations of
graph coloring: algorithms and first polyhedral results. Discrete Optimization
2009;6:135–47.

[26] Sewell E. An improved algorithm for exact graph coloring. In: Trick MA,
Johnson DS, editors. Cliques, coloring, and satisfiability. Proceedings of the
second DIMACS implementation challenge, vol. 26. American Mathematical
Society; 1996. p. 359–73.

[27] Matula. DW, Marble. G, Issacson. JD. Graph coloring algorithms. In: Read RC,
editor. Graph theory and computing. New York: Academic Press; 1972.

Please cite this article a s : San Segundo P. A n e w DSATUR-based algorithm for exact vertex coloring. Computers and Operations
Research (2011), doi:10.1016/j.cor.2011.10.008

dx.doi.org/10.1016/j.cor.2011.10.008

10 P.San Segundo/Computers &

[28] Welsh DJA, Powell. MB. An upper bound for the chromatic number of a graph
and its application to timetabling problems. The Computer Journal
1967;10(1):85–6.

[29] Brown JR. Chromatic scheduling and the chromatic number problem.
Management Science 1972;19(4):456–63 Application Series, Part 1.

[30] Johnson DS, Trick MA., editors. Cliques, coloring, and satisfiability: 2nd
DIMACS implementation challenge, 1993. DIMACS series in discrete

Operations Research] (]]]])]]]–]]]

mathematics and theoretical computer science. American Mathematical
Society; 1996.

[31] San Segundo P, Rodriguez-Losada D, Jimenez A. An exact bit-parallel algo-
rithm for the maximum clique problem. Computers & Operations Research
2011;38(2):571–81.

Please cite this article a s : San Segundo P. A n e w DSATUR-based algorithm for exact vertex coloring. Computers and Operations

Research (2011), doi:10.1016/j.cor.2011.10.008

dx.doi.org/10.1016/j.cor.2011.10.008

