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A R T I C L E I N F O A B S T R A C T 

This paper describes a new exact algorithm PASS for the vértex coloring problem based on the well 
Keywords- known DSATUR algorithm. At each step DSATUR maximizes saturation degree to select a new candidate 
Color vértex to color, breaking ties by máximum degree w.r.t. uncolored vértices. Later Sewell introduced a 
Graph new tiebreaking strategy, which evaluated available colors for each vértex explicitly. PASS differs from 
Exact Sewell in that it restricts its application to a particular set of vértices. Overall performance is improved 
DSATUR when the new strategy is applied selectively instead of at every step. The paper also reports systematic 

experiments over 1500 random graphs and a subset of the DIMACS color benchmark. 

1. Introduction 

For a given undirected graph G=(V,E) the vértex coloring 
problem (VCP) requires to assign a color to every vértex so that 
adjacent vértices are all colored differently and the total number 
of colors employed is minimized. The origins of the vértex color
ing problem (VCP) can be traced back to a letter written to Sir 
Willian Hamilton by the renowned mathematician Augustus de 
Morgan in 1852, where the famous Four Color Theorem has 
its roots. 

VCP is a well known and deeply studied NP-hard problem in 
graph theory [1], which has attracted the attention of many 
researchers for its implications in computational theory. More-
over, many real world applications in a wide variety of engineer-
ing fields have also been found, such as register allocation [2], 
scheduling [3-5], air traffic [6], etc., which suggest the impor-
tance of efficient algorithms in practice. 

Let n and m be the cardinalities of the vértex set V and edge set 
E, respectively. deg(v) is the degree of a given vértex v, i.e. the 
number of adjacent vértices (alias neighbors). A(G) denotes the 
degree of the graph, the máximum degree of any of its vértices. 
A vértex v is said to be dominated by vértex w if the neighbor set 
of w is a superset of the neighbor set of v. 

Subsets of V where all vértices are pairwise non-adjacent are 
called independent sets. Any k coloring of G partitions V in disjoint 
k independent sets named color classes. A dique in G is any 
subgraph with all its vértices pairwise adjacent. cu(G) denotes 
the máximum dique in G, the clique with the largest possible size. 
The chromatic number of a graph x(G) is the mínimum number of 
colors required to color G, i.e. the size of its optimum coloring. 
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A partid coloring of a graph II(íi), íi<= V, is and admissible assign-
ment of colors to vértices in U. Given a partial coloring n , c(II) is the 
total number of colors used in the partition and c ^ e l l ) denotes the 
color label assigned to v. p(v) refers to the chromatic degree of a 
vértex (alias its saturation degree), the number of adjacent vértices 
which have been assigned different colors. 

Compared with other related problems such as the máximum 
clique or the máximum independent set, VCP is considerably more 
challenging; for example, it is possible to compute máximum 
clique exactly in graphs with some hundreds of vértices whereas 
fast exact coloring of a random graph with 80 vértices and 
0.5 edge density already requires efficient algorithms and a 
powerful CPU. In fact, exact methods for VCP usually suffer from 
the same problem: it is easy to find a good admissible coloring 
c{G), but proving that no c(G)-l admissible coloring exists 
becomes very difficult. 

The hardness of exact VCP computation has given rise to many 
efficient heuristics and metaheuristics for the domain. Initial 
approaches favored greedy constructive algorithms, which color 
each vértex exactly once given a heuristic rule to compute the 
next color label based on the current partial coloring. Fast but 
usually sensible to some initial criteria (e.g. vértex ordering) the 
most important examples are the simple greedy sequential (SEQJ 
and the máximum chromatic degree heuristic DSATUR [7]. 

Constructive algorithms, which produce color classes sequen-
tially have also attracted attention, such as the recursive largest 
first (RLF [5]) algorithm or MAXIS [9], an improved variant of [8], 
which is known to perform well over difficult random graphs. 
Worth mentioning is also the iterated greedy algorithm IG [9], 
which iterates over suboptimal colorings by reordering a subset 
of color classes following certain criteria at each step. 

Classical metaheuristics applied to VCP start from an initial 
incorrect color partition and gradually attempt to remove con-
flicts at each step. Many evolutionary algorithms are based on 
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tabú search, simulated annealing or some form of hybridation. 
In view of the exponential character of exact coloring, real Ufe 
problems usually resort to these methods. 

The first proposed algorithm, TABUCOL [10], employed tabú 
search. In [11] a simulated annealing algorithm was proposed, 
which compared different neighborhoods; later the Impasse Class 
Neighborhood (ICN) described in [12] became for a long time the 
most effective approach to VCP. Algorithm MIPS-CLR [13] com
bines the Tabú Search technique with the ICN to produce a very 
effective algorithm. Hybrid algorithms integrating local search 
and diversification via crossover, as in [14] or [15], showed that 
diversification was able to improve the performance of local 
search. Of the more recent algorithms we point out [16], in a 
similar vein as MIPS-CLR, and MMT [17]. The latter is based on 
ICN and a crossover operator, which is an adaptation of the Greedy 
Partitioning Crossover proposed in [15]. 

The inherent difficulty of VCP makes exact algorithms rather 
scarce compared with approximate coloring methods. We give a 
brief overview of the leading algorithms. 

Integer programming models for VCP have recently attracted 
much attention because of the improvement of general purpose ILP 
solvers. The first known ILP model for VCP is the so called descriptive 
model (VCP-DES), which for exact k-coloring can be defined as 

(I) xik+xjk<\ V(¿j)e£,Vfc 
(II) E*/< = 1 Vi xiik6{0,l} O) 

k 

VCP-DES uses nk Boolean variables, which represent all 
possible color assignments to vértices. Constraints of type I model 
that no two adjacent vértices can have the same color and 
constraints of type II do not allow different color labels in any 
vértex. 

This model has been used in literature, mainly for its simpli-
city. Recently, Méndez-Díaz and Zabala [19,20] showed a way to 
exploit it in a branch and cut scheme by refining VCP-DES with 
further inequalities to remove symmetries - possibly the most 
relevant drawback of such models for any ILP solver - and thus 
obtain a stronger continuous relaxation. 

A set cover ILP model (VCP-SC) was first employed successfully 
using column generation by Mehrotra and Trick [21] in a branch 
and price algorithm. VCP-SC can be formalized as follows: 

Minimize Y^Xs 
5 

s.t. 

Y^ xs>\ Viel/ 
5 e {s:i e S] 

xs 6(0,1} (2) 

where the basic Boolean variables xs represent (maximal) inde-
pendent sets. A valué of xs to 1 indicates that the set is given a 
label (color) in the VCP-SC solution; in case a 0 is assigned to xs 

that (color) set will not correspond to the mínimum coloring. 
Constraints establish that all vértices have to be covered by at 
least one independent set. 

Branch and price algorithms, which exploit VCP-SC are cur-
rently the best way to attack exact VCP for large structured graphs 
and a number of improvements have recently appeared, such as 
[22-24]. 

Worth mentioning is an additional ILP set packing model for 
VCP, which has recently been exploited in [25], performing 
similarly to VCP-SC in the reported tests. To end this overview 
we refer the reader to [18] for a detailed survey on both 
approximate and exact methods. 

Color heuristics embedded in a complete enumeration scheme 
lead also to exact algorithms. Of these, branch and bound DSATUR 
[7], later improved by Sewell [26] is undoubtedly the best known 

and has been a standard defacto for many years (see Section 2 for 
a more detailed analysis of these algorithms). 

DSATUR is a simple and efficient algorithm, which has been 
known to perform surprisingly well over random graphs. Out-
performed by recent branch and price algorithms on the more 
difficult graphs it is still frequently employed both stand-alone or 
as part of more sophisticated algorithms to quickly compute 
initial upper bounds or to 'wrap up' on small subproblems (c.f. 
many of the algorithms described in [12]). This makes research on 
DSATUR-based solvers, in the opinión of the authors, still very 
important in practice. 

This paper describes a new DSATUR-based algorithm. It is 
structured from here in 5 parts. Section 2 reviews existing related 
algorithms. Section 3 describes the new algorithm while Section 4 
provides a case study. Section 5 reports experiments and finally 
Section 6 is the conclusions section. 

2. DSATUR review 

The general outline of sequential vértex coloring algorithms is 
to color each vértex in turn until there are no more left. The 
simplest form is the greedy coloring heuristic known as SEQ. Let V 
be the set of vértices to be colored and let K = {v-[,.. .,vn) be any 
strict ordering of V. SEQ(V, K) can then be described as follows: 

SEQ(\Z,K) 

for v : = V\ to vn 

assign the smallest possible color to v 

endfor 

Different definitions of K give rise to different heuristics (e.g. 
[27,28] are examples of a fixed strategy). DSATUR computes K 
dynamically at each step choosing the vértex with máximum 
saturation degree w.r.t. the current partial coloring. In case of ties, 
the vértex with máximum degree over the set of (as yet) uncolored 
vértices is selected. A further tie is broken lexicographically. 

An implicit enumeration of vértices combined with any of the 
vértex selection rules used in GREEDY produce exact color 
algorithms. A direct implementation, however, would lead to 
many spurious subproblems being analyzed. Brown [29] was 
the first to reduce complexity by enumerating only tight colora-
tions in the graph. 

Definition. A coloring c(G)of a given graph G is tight given a strict 
ordering of its vértices V\,...,vn if 

c(vi+-¡) <colors(¡) + l V¡ = 1,.. . ,n- l 
colors(í) = maXjC^j) l < s < ¡ , c(vi) = l 

Brélaz [7] used the Brown enumeration to implement exact 
DSATUR. Throughout the text, terms in capital letters will refer to 
both the heuristic rule and the exact algorithm. Subscript 'h' will 
be added when an explicit reference to the rule is required. 

DSATUR recursively enumerates all tight partial colorings 
which, in turn, become new subproblems. For any partial k-
coloring at a given step, a vértex is chosen using DSATURh and 
assigned either one of the k colors already used, or color fc+1 if 
none are available. This gives a máximum branching factor of 
fe+1 (colors) at any point in the search tree. 

Leaf nodes are admissible colorings. When a leaf node is reached, 
the size of the coloring is compared with the current minimal 
coloring. If the latter is minored, the champion is unseated and the 
leaf node determines a new upper bound (UB) for the chromatic 
number. UB is used at any step to prune the search tree when the 



size of the current pardal coloring k is greater or equal to UB. This 
makes DSATUR a branch and bound algorithm. 

Applying DSATURh produces an initial partial coloring, which 
corresponds to a clique. The size of this initial clique is used 
implicitly as lower bound (LB) during search, determining an end 
condition when UB=LB. Note that once LB has been fixed it does 
not change during the whole procedure whereas UB gradually 
decreases. This is an important disadvantage compared with 
exact ILP methods, where LB also rises dynamically by solving 
the continuous relaxation problem. 

A number of improvements to the original DSATUR algorithm 
were suggested by Sewell [26]. Apart from an initial reordering of 
vértices, Sewell proposed a new tie breaking strategy and 
reported a reduction in the number of subproblems searched 
under some restrictions. We will refer to this new tiebreak as the 
Sewell rule. It can be described informally as follows: 

SEWELL RULE 
Selectfrom the set of vértices tied at máximum saturation degree 

the one with the máximum number of common available colors in 
the neighborhood of uncolored vértices. 

Compared with DSATURh, this heuristic rule is more informed 
since it explicitly takes into account the structure of the graph 
together with the number of available colors when branching. Note 
that DSATURh only estimates future color availability using degree 
and runs in 0(n2) whereas SEWELLh runs in 0(n3) in the worst case. 

Apart from the additional overhead, SEWELLh is known to obtain, 
on average, worse admissible colorings than DSATURh at the early 
stages of the search. To overeóme this problem, Sewell further 
proposed to compute a priori upper and lower bounds, which are 
also fed into the search algorithm. Reported experiments with a very 
tight UB seemed to outperform DSATUR in a benchmark of random 
graphs and a small set of real-world graphs. In spite of this, the 
SEWELL rule has not met many followers in recent years. 

3. A new tiebreaking strategy 

This paper proposes a new tiebreaking strategy for DSATUR, 
which is much less expensive to compute than SEWELL but has a 
similar pruning effect. It will be referred to as the PASS rule (in 
reference to the corresponding author's family ñame). 

Let G=(V,E) be a given graph to be colored of size n. Let II be 
the / partial fe-coloring (c(II) = fc,|II =/) obtained by DSATUR at 
the current step and let íi = {V;+1,ví+2.- • -.iM be the set of 
remaining uncolored vértices. For any pair of adjacent vértices 
in U we define function same : V2 ->naturals; such that 

(4) 
(0 (t/,,t/2)fÉ £(U) 

*"ne(v,,t/2)= j \F(v,)nF(v2)\ (v,,v2)eE(U) 

where F(v¡) is the set of admissible color labels for vértex v¡. 
DSATUR initially applies DSATURh to select vértices in U with 

máximum saturation degree. Let Te U be the set of such candi-
date vértices: 

T = maXiiPuiVi)) VteU (5) 

SEWELLh will then select a vértex vseT, which minimizes the 
number of available colors in the set U\{vs} in child subproblems. 
In practice, this is implemented by maximizing the number of 
common available colors in the uncolored neighborhood: 

/ 

vsd = max„s e T 

\ 

y ^ same(vs,v) 
veU 

(6) 

The new PASS rule introduces a further variation: it seleets the 
new candidate from T in a similar manner as Sewell but restriets 
its application to candidate vértices in T only: 

( 

•• m a x „ s e T 

\ 

y ^ same(vs,v) 
v e r 

\vj-vs 

(7) 

/ 

Further ties are broken lexicographically in all cases. 
SEWELLh minimizes the number of subproblems by system-

atically reducing available colors in subproblems at deeper levéis 
of the search tree. By restricting this idea to the set of tied vértices 
in T, PASS employs a different strategy. It aims at reducing color 
domains of vértices, which are already known to have the least 
number of available colors, and so therefore more likely to require 
a new color in deeper levéis of the search. Note that, at each step, 
all candidate vértices in T are, by definition, those with máximum 
saturation degree (and therefore have the least number of free 
colors). This fact justifies the PASS strategy. 

However, consistent application of PASS does not improve the 
overall performance because in the initial steps of the search 
there are many vértices in T (w.r.t. to íi) and the desired effect is 
not obtained. It is much better to selectively apply PASS in steps 
where the number of available colors of candidate vértices in T 
is below a certain parameter ¡i, which is computed dynamically. 
PASS performs better when ¡i is evaluated at each step in the 
following way: 

fj. = c(n)-pn(v eT) fi>0 (8) 

The first term in (8), c(II), is the number of assigned colors in 
the current partial coloring. The second term, the saturation 
degree (related to II) of every candidate vértex, represents the 
number of colors in c(II) not available for every vértex in T (note 
that the particular colors can differ for each vértex). Therefore the 
difference between both terms is a direct measure of color 
availability. When PASS is applied in steps where candidate 
vértices have low valúes of ¡i, it is more likely that vértices in T 
in future subproblems will require a new color. A step where ¡i=Q 
indicates that every vértex in T requires an extra color 
fe=c(|II|) + l and so the part of the search tree, which hangs from 
the current node is very likely to be pruned. 

The current implementation of PASS uses DSATURh tiebreak 
rule in all steps where ¡i exceeds a given threshold TH fixed at the 
beginning of the search (typically TH=3; Section 5.1 explains the 
choice). In steps where ¡i < TH the PASS rule is applied. We note 
that ¡i is the same for all candidate vértices and so has to be 
computed just once per step, an important practical advantage of 
(8). For TH=0, PASS is equivalent to DSATUR. Pseudocode for 
PASS is given in full. 

PASS(l/,;Q.Cmax,rH) 

U is the current set of uncolored vértices; II is the current partial 
coloring; Cmax is the size of minimal coloring; TH is a fixed 
threshold. 

C„ = 0; 

/ 

Initial valúes: G = (V,E); U : = V; TI : = 
TH: =3 
Returns: Cmax:=x{G) 
Step 1. Select vértex veU with máximum saturation degree. 
Let T be the set of tied vértices. If \i=c(II) - p(v e T) < TH break 
ties using PASSh (7) else break ties using DSATURh (5). 
Step 2. if (U=4>) then let Cmax : =c(i7) and return 
Step 3. Select c(v) with the lowest possible color used in II. 
If none are available assign c(v):=c(II) + l 



Step 4. if c(v) > Cmax return. 
Step 5. PASS(n + (v,c(v)), U-{v}, Cmax, TH) 

4. A case study 

Graph G depicted in Fig. 1(A) has been chosen to compare the 
performance of DSATUR, SEWELL, and new PASS. 

Notation i/p will be used to describe the search trees. It 
summarizes two facts: (1) vértex v has been assigned color k 
((v,k)eTl in the current step) and (2) further tight enumerations 
with c(v)eF are still possible. Subscripts or superscripts may be 
missing when unnecessary in the context. F is the set of remain-
ing available colors for v (as in (4)) and each color constitutes a 
branching point in the search. Note that fe^Falways holds. 

= { f % \ f £ l „fc») ,Vn-\¥ "Fn } refers to the current 
path, the vértex ordering reflecting the choices taken by the 
heuristic at each branching point. Every vértex v¡eP with F¡ # <p is 
a subproblem at the ¡th level in the tree. For a given P, c(II) = m 
and | n | =d hold. When d=n a leaf node has been reached and 
c(II=G) is an admissible coloring for VCP. 

The behavior of the three algorithms is compared after the first 
minimal coloring has been established by DSATUR (i.e. the initial 
branch of the search tree is assumed the same in all three cases). 
This allows a cleaner comparison while not losing generality since 
SEWELL is known to produce, on average, a worse initial coloring 
than DSATUR as explained in [26]. 

The first minimal coloring obtained by DSATUR is a 5-coloring 
(Cmax = 5). While traversing the first branch, DSATUR finds a 
3-clique formed by vértices {l9),3?),6?)}. The remaining unco
lored vértices all tie in saturation degree (p=2) so vértex 2 is 
chosen lexicographically to generated the child subproblem and 

assigned available color 1. The procedure continúes in a similar 
way until all vértices are colored (at leaf node I) having traversed 

(1) o(2) c ( 3 ) 0 (1 ) Q(4) A<2) n-(4) v (3) Q(5) ¿y-) cW 7 w qpji Sinre C 
^Í5)'DÍ5)> /Í5)> s í , f , ))- 5 1 n l - e Ln path PL - {\í4>y-,í4>yuí4>y¿.í4],um,-,í5]^{5],,{5],^í4>]S 

it is possible to remove this color from the corresponding F sets so 
(1) , ( 2 ) R(3) , ( 1 ) fi(4) A(2) n-(4) 7 (3 ) Q(5) that PL is simplified to {1 "3\±G/f>2'. A}¿) cyt> 7 W n P ) i 
{<!>}' {<!>}' {<!>}' W ' { < ! > } ' { < ! > } ' { < ! > } ' { < ! > } ' { < ! > } 

with only one branching point at vértex 2. All three algorithms 
backtrack to this vértex, label it with color 4 and update F sets and 
saturation degrees in the remaining uncolored vértices accord-
ingly so that at the new step PL+1 ={lW,3^)

),6f¿,2f¿,8{1),4{2), 
5{2.4}.7{3}.9(3}} with remaining uncolored vértices íi={4.5.7.8.9}. 
Induced subgraph G = G(U,E(U)) is depicted in Fig. 1(B). Saturation 
degrees for each vértex in U are p(4)=3, p(5)=2, p(7)=3, 
p(8)=3, p(9)=3 with máximum saturation degree set 
r={4,7,8,9} (see Fig. 1(C)). 

The next step turns out critical for the performance of the 
different algorithms. To establish a clear comparison we denote 
by HDSATUR, HSEWELL and HPASs the set of valúes obtained by the 
corresponding rules over vértices in T. 

DSATUR uses máximum degree in G to break ties. At present 
AG = degc-(4,5,9) = 3, degc-(7) = 2 and degc-(8) = 1 (see Fig. 1(B)) 
so HDS/ITUR={3,2,1,3} and the first vértex in T (vértex 4) is chosen 
with color assignment c(4) = 2. 

In the case of SEWELL and PASS, ties are broken using 
Eqs. (6) and (7), respectively. SEWELL rule for vértex 4 considers 
common available colors in adjacent vértices in G, (e.g. 
HSEWELL(4) = \ since vértex 4 shares just color 2 with neighbor 
vértex 5), which results in HS£WEU={1,1,0,1} and the same 
lexicographical choice as DSATUR. 

PASS applies the same criteria as SEWELL, but evaluates only 
neighbor vértices with máximum chromatic degree (the T set). In 
particular, vértex 4 shares no available color now (vértex 5 does 
not belong to T) so HP/iss={0,1,0,l}and this time vértex 7 is 
selected with color label 3. 

{4(2)} 

e V = {4(2)} 

v . = |7(3)j 

Fig. 1. A color example. (A) A simple graph. (B) Induced graph G = G({4,5,7,8,9}) by uncolored vértices after first backtrack (C) Available colors and saturation degree 
(in brackets) for each vértex in G' (see B). (D) Candidate vértices selected from by DSATUR, SWELL and new PASS. In brackets color assignments for each vértex. 
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It is clear that, on average, PASS will be less expensive to 
compute than SEWELL (| T| < U\), but the key factor is that it has 
captured structure better. SEWELL selects vértex 4 on the basis of 
removing color 2 option from vértex 5{2,4} in child subproblems, 
but p(5) is not maximal and color 4 will still be available to 
continué the search. PASS picks vértex 7 to remove color 3 from 
the singleton F set in 9{3} thus producing a cut in the new 
subproblem. 

This is confirmed in the next step. In the child subproblem 
generated by SEWELL a 4 coloring is still possible and all 
uncolored vértices íi={5{4},7{3},8{1},9{3}} have non-empty F sets, 
so it cannot be pruned. 

Fig. 1(D) shows the different choices made by all three 
algorithms at step C. As usual, color assignments appear as 
superscripts in brackets. The total number of steps needed to 
complete the search for DSATUR, SEWELL and PASS was 14, 13 
and 12, respectively. 

5. Experiments 

This section reports a number of experiments on random Gnp 

graphs and a subset of the DIMACS color benchmark. 
Gnp graphs are random graphs generated by including each 

possible edge independently with probability p for a given a list of 
n vértices. The density of such graph is approximately p and has been 
used extensively to test algorithms for VCP as they are hard known 
to be difficult to color. For the report we have generated a bench
mark of 1500 random graph instances of varying sizes and densities 
(RB). Specifically RB includes 50 Gnp graphs for sizes n={60,70,75} 
and densities ranging from 0.1 up to 0.9 at 0.1 intervals. 50 instances 
of G80p with p={0.1,0.2,0.3} complete the collection. 

The DIMACS benchmark is currently the standard set for experi-
menting algorithms for VCP and other NP-hard problems (c.f. [30]; 
instances are publicly available at ftp://dimacs.rutgers.edu/pub/chal 
lenge/graph/). The benchmark set includes a number of artificial 
graphs (queen, latin_square, Insertion, etc.), random graphs (DSJC, 
standard G„iP graphs), geometric random graphs (DSJR and r) and 
graphs derived from real word problems amongst others (c.f. http:// 
mat.gsia.cmu.edu/COLOR03/ for a description of each family). The 
subset used in the report comprises 102 graphs (mainly the subset 
used in [22]) so as to establish a comparison with leading branch and 
price algorithm MMT-BP. 

Some instances from the DIMACS benchmark can be prepro-
cessed in order to reduce their size. This is done by removing 
vértices while preserving chromatic degree by applying recur-
sively the following two rules: 1. Any dominated vértex can be 
removed from the graph. 2. Any vértex v such that deg(v) < LB 
(where LB refers to, as usual, a lower bound on %(G)) can be 
removed from the graph (c.f. [20,25]). Whenever possible, graphs 
have been preprocessed prior to the start of the search. We note 
that this simplification attempt is useless on the random RB 
benchmark. 

Section 5.1 analyses the basic properties of PASSh w.r.t. 
DSATURh and SEWELLh while Section 5.2 compares PASS with 
existing algorithms in literature. 

5.1. Analysis of the new heuristic rule 

The new algorithm employs PASSh rule for tie breaks when 
parameter ¡i is below a certain threshold TH and DSATUR rule 
otherwise. Important issues are how to determine empirically TH, 
the ratio of steps where PASSh is applied (w.r.t. DSATURh) and 
how well it captures structure (w.r.t. SEWELLh). 

Table 1 reports the percentage of steps where PASSh was fired 
instead of DSATURh when running PASS over our benchmark set 

Table 1 
Percentage of steps where PASSh was fired for varying thresholds of parameter m 
using the RB benchmark. Table entries are averaged for each row accordingly (500 
graphs for n¼60, 70 and 75; 150 for n¼80). 

n 

60 
70 
75 
80 

/ !< 1 

63.4 
68.1 
69.9 
77.3 

/ i < 2 

76.0 
81.5 
84.1 
87.7 

/ i < 3 

76.1 
81.7 
84.3 
87.7 

/ i < 4 

76.1 
81.7 
84.3 
87.7 

/ i < 5 

76.1 
81.7 
84.3 
87.7 

Table 2 
Number of steps taken by PASS and SEWELL using a subset of the RB benchmark. 
Each entry is averaged over 50 instances. 

n p 

70 
70 
70 
70 
70 
70 
70 
70 
70 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

PASS 

110 
992 

126,827 
925,802 

2,861,863 
4,345,015 
7,421,229 
1,439,024 

57,024 

SEWELL 

200 
2056 

134,562 
1,090,343 
3,513,657 
4,610,283 
7,128,713 
1,795,241 

113,820 

n p 

75 
75 
75 
75 
75 
75 
75 
75 
75 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

PASS 

433 
7370 

136,937 
4,058,103 

20,408,727 
41,117,085 
44,881,962 
10,621,766 

1,261,113 

SEWELL 

501 
9223 

208,925 
4,134,748 

19,473,294 
30,571,612 
32,458,948 
10,420,784 

1,386,572 

RB using thresholds TH for parameter m ranging from 1 to 5. 
Values of TH greater than three have almost no effect in PASS and 
have an additional overhead so TH has been fixed to 3 in the rest 
of experiments. 

Intuitively, TH captures color availability in maximum satu-
rated vertices. Table 1 shows that the sizes of available color sets 
during search in RB graphs are no greater than 3, and that the 
percentage of steps where m rTH, for a fixed TH, varies more or 
less linearly with size. 

Table 2 presents results about informedness of PASSh w.r.t. 
SEWELLh. PASS is only significantly less informed for the harder 
problems of size 75 (notably p¼0.6, 0.7) but is even more 
informed than SEWELL in the simpler ones. Since the overhead 
introduced by SEWELL is linear w.r.t. PASS, this validates the new 
heuristic. 

5.2. Comparison with existing algorithms in literature 

In this section we compare results obtained by PASS with 
leading ILP and DSATUR-based algorithms. 

In general, exact ILP algorithms for VCP should be able to 
reduce the gap between LB and UB better than any DSATUR 
variant since they are able to produce tighter LBs by solving the 
continuous relaxation problem at each step of the branching 
scheme. In DSATUR-based algorithms, the lower bound computed 
at the beginning of the search or determined by the initial clique 
stays fixed in the remainder of the search. 

In practice, however, reducing the LB–UB gap is important 
specifically if it helps to prove optimality. When it is not possible 
to conclude optimality within a certain time limit, LBs have an 
undeniable theoretical interest but do not help to produce 
admissible colorings (they might help to construct maximal 
cliques). For this reason the comparison between PASS and ILP-
based algorithms has been based on either achieving optimality 
or tighter UBs; reported data on improving LBs, as in [20] or [24] 
has not been considered in this report. 

Our main reference algorithm is MMT-BP [22], a leading 
column generation algorithm enhanced by an efficient metaheur-
istic procedure MMT described in [17]. MMT-BP uses MMT during 
initialization to improve the performance of the branching 

Please cite this article as: San Segundo P. A new DSATUR-based algorithm for exact vertex coloring. Computers and Operations 
Research (2011), doi:10.1016/j.cor.2011.10.008 
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scheme both by obtaining an initial feasible solution (an UB) as 
well as a starting pool of columns for the VCP-SC set cover model 
described in (2). We note that DSATUR is one of the algorithms 
used in MMT. 

Results for the branch and cut approach employed in BC-Col by 
Mé  ndez-Dı´az and Zabala [19], are also reported. During initializa-
tion, BC-Col computes a maximal clique (LB) with a greedy 
algorithm and then runs DSATUR for 5 s to obtain an initial UB. 

As reference DSATUR [7] we have selected the Michael Trick 
implementation available at http://mat.gsia.cmu.edu/COLOR/sol 
vers/trick.c, which is commonly used for comparison purposes. 
We have also implemented an efficient SEWELL variant based on 
PASS. All three algorithms (DSATUR, SEWELL and PASS) have the 
same initialization stage: an exact leading maximum clique 
algorithm BB-MCP described in [31] is run for 5 s to obtain an 
initial LB (although in the majority of cases it finds an optimal 
clique in the first second). Vertices in this initial clique are then 
placed first and the remaining vertices are ordered by non-
increasing degree prior to the start of the search. 

Tests for the DSATUR variants were run on an I7-CPU 
920@2.67 GHz with 6 GB of RAM (Windows O.S., Visual Studio– 
O2). To allow an approximate (but meaningful) comparison on 
time results reported elsewhere, benchmark program dfmax is 
publicly available at URL ftp://dimacs.rutgers.edu/pub/dsj/clique/ 
dfmax.c. Computing times obtained on different machines are 
calibrated w.r.t. the performance obtained on this program over a 
benchmark set of random instances. We are aware of the limita-
tions of this (typical) procedure, but there is simply no other 
option when it is not possible to run all implementations in the 
same machine. 

User times for dfmax in our machine were 0.031, 0.234, 1.419 
and 5.336 s for r200.5, r300.5, r400.5 and r500.5, respectively. 

Neither MMT-BP nor BC-Col was publicly available. Color 
expert Enrico Malaguti complied with tests for MMT-BP over 
our random benchmark set RB. The machine he used was a 
PIV@2.4 GHz with 2 GB RAM (Windows O. S.). Reported machine 
user times were 2.0 and 7.0 s for r400.5 and r500.5, respectively, 
and less than a second for r300.5 and r200.5. The averaged user 
time ratio for r400.5 and r500.5 between both machines is 1.332 
in favor of our computer. 

The original tests for BC-Col where run on a Sun ULTRA 
workstation @ 140 MHz with 288 MB of RAM, which took 24 s 
to compute r500.5, as reported in [22]. No other comparison 
results are available and the authors did not supply further 
information on our request. Based on r500.5, the user time ratio 
is 4.497 in favor of our computer. In [22] a similar comparison 
was established; we note, in both cases, the approximate nature 
of the ratio. 

Table 3 reports tests over our random benchmark RB for the 
Gn,p graph family. MMT-BP was run with a time limit of 1800 s; in 
the other three algorithms the limit was fixed at 1200 s (the 
calibrated time limit 1800/1.332¼1351 s has been rounded in 
favor of MMT-BP). Times for MMT-BP shown in Table 3 (and 
reported by Malaguti specifically for this research) have been 
calibrated using the 1.332 ratio. 

For each row entry in the table, 50 graphs were computed and 
results averaged (including entries for columns w(G),o(G)). Col-
umn Fail is the number of graphs where optimality was not 
proved inside the time limit. Maximum clique column o(G) is the 
LB of all DSATUR variants (as found by BB-MCP) and has been 

Table 3 
Performance over random benchmark RB. Times are averaged over 50 instances for each row and measured in seconds. Column Fail is the number of cases when the 
algorithm was unable to determine an optimum coloring. Time limit was fixed at 1800 s for MMT-BP and 1200 s for the rest to account for the different machines. 

n 

60 
60 
60 
60 
60 
60 
60 
60 
60 

70 
70 
70 
70 
70 
70 
70 
70 
70 

75 
75 
75 
75 
75 
75 
75 
75 
75 

80 
80 
80 

P 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.1 
0.2 
0.3 

X(G) 

4.0 
5.5 
7.0 
8.9 

10.7 
12.9 
15.6 
19.1 
25.7 

4.0 
6.0 
7.8 
9.7 

11.8 
14.1 
17.2 
21.4 
28.5 

4.0 
6.0 
8.0 

10.0 
12.1 
14.9 
18.0 
22.4 

1.0 

4.3 
6.3 
8.2 

MMT-BP [22] 

LB 

4.0 
5.1 
7.0 
8.3 

10.1 
12.5 
15.3 
19.0 
25.7 

4.0 
5.8 
7.1 
9.1 

11.2 
13.6 
16.9 
21.2 
28.5 

4.0 
6.0 
7.5 
9.5 

11.8 
14.3 
17.6 
22.1 
29.9 

4.0 
6.0 
7.9 

P l e a s e c i t e t h i s a r t i c l e a s : 

UB 

0.1 
134.0 

30.8 
183.0 
95.2 
22.3 

8.7 
2.1 
0.2 

0.2 
32.8 

605.1 
470.0 
437.2 
156.4 
57.4 
12.9 

0.4 

16.1 
36.1 

181.6 
357.5 
163.4 
487.5 
131.2 
32.6 
21.0 

334.7 
387.3 
324.0 

Time 

0.2 
191.4 
44.0 

261.5 
135.9 
31.9 
12.4 
3.0 
0.2 

0.3 
46.8 

864.5 
671.4 
624.6 
223.4 

82.0 
18.5 

0.6 

23.0 
51.6 

259.4 
510.7 
233.5 
696.5 
187.5 
46.6 
29.9 

478.1 
553.2 
462.8 

S a n S e g u n d o P . A 

Fail 

0 
3 
1 
2 
1 
0 
0 
0 
0 

0 
0 

20 
14 
13 
4 
0 
0 
0 

0 
1 

12 
11 
4 

13 
2 
0 
0 

10 
15 
11 

n e w 
R e s e a r c h ( 2 0 1 1 ) , d o i : 1 0 . 1 0 1 6 / j . c o r . 2 0 1 1 . 1 0 . 0 0 8 

CÜ(G) 

3.4 
4.5 
5.5 
6.5 
8 
9.7 

12 
16 
24 

3.6 
4.6 
5.6 
7 
8.3 

10 
13 
17 
26 

3.6 
4.6 
5.7 
7 
8.6 

10 
13 
18 
26 

3.8 
4.8 
5.8 

DSATUR 

UB 

4.0 
5.5 
7.0 
8.9 

10.7 
12.9 
15.6 
19.1 
25.7 

4.0 
6.0 
7.8 
9.7 

11.8 
14.1 
17.2 
21.4 
28.5 

4.0 
6.0 
8.0 

10.0 
12.1 
14.9 
18.0 
22.4 

1.0 

4.3 
6.3 
8.2 

[7] 

Time 

0.0 
0.0 
0.0 
0.1 
0.4 
0.6 
0.5 
0.3 
0.0 

0.0 
0.0 
0.3 
2.8 

10.8 
16.3 
30.0 

6.1 
0.2 

0.0 
0.0 
0.4 

12.8 
67.6 

153.4 
141.7 
42.4 

4.2 

0.0 
0.2 

11.3 

DSATUR-based algorithm 

Fail 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
1 
0 
0 

0 
0 
0 

SEWELL 

UB 

4.0 
5.5 
7.0 
8.9 

10.7 
12.9 
15.6 
19.1 
25.7 

4.0 
6.0 
7.8 
9.7 

11.8 
14.1 
17.2 
21.4 
28.5 

4.0 
6.0 
8.0 

10.0 
12.1 
14.9 
18.0 
22.4 

1.0 

4.3 
6.3 
8.2 

for exact vértex 

[26] 

Time 

0.0 
0.0 
0.0 
0.1 
0.5 
0.6 
0.6 
0.3 
0.0 

0.0 
0.0 
0.5 
4.4 

15.2 
20.9 
33.4 

8.1 
0.4 

0.0 
0.0 
0.8 

17.7 
90.5 

153.4 
166.4 

51.5 
5.2 

0.0 
0.3 

17.8 

Fail 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
1 
1 
0 
0 

0 
0 
0 

PASS 

UB 

4.0 
5.5 
7.0 
8.9 

10.7 
12.9 
15.6 
19.1 
25.7 

4.0 
6.0 
7.8 
9.7 

11.8 
14.1 
17.2 
21.4 
28.5 

4.0 
6.0 
8.0 

10.0 
12.1 
14.9 
18.0 
22.4 

1.0 

4.3 
6.3 
8.2 

Time 

0.0 
0.0 
0.0 
0.1 
0.2 
0.3 
0.2 
0.1 
0.0 

0.0 
0.0 
0.2 
1.7 
5.5 
8.4 

14.3 
2.6 
0.1 

0.0 
0.0 
0.2 
6.8 

35.4 
72.2 
76.6 
17.2 

1.6 

0.0 
0.1 
7.3 

Fail 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 

c o l o r i n g . C o m p u t e r s a n d O p e r a t i o n s 

6 
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Table 4 
Comparison between PASS and other exact algorithms over a subset of the DIMACS color benchmark. Bold face time entries for MMT-BP and PASS indícate that an 
optimum coloring was found by one of them but not the other. Cursive time entries indícate that optimality was proved at least 5 times faster w.r.t. each other. Reported 
times for BC-Col and MMT-BP are taken directly from the indicated sources and have not been calibrated. We estímate the 4.49 and 1.33 ratios in favor of our computer for 
BC-Col and MMT-BP, respectively. User times are measured in seconds. 

ñame n tn / BC-Col [19] MMT-BP[22] LBDS DSATUR [7] SEWELL [26] PASS 

LB UB Time LB UB Time UB Time UB Time UB Time 

queen8_8 
queen8_12 
queen9_9 
queenl0_10 
queenl1_11 
queenl2_12 
queenl3_13 
queenl4_14 
queenl5_15 
queenl6_16 

qg.order30 
qg.order40 
qg.order60 

myciel6 
myciel7 

miles250 
miles500 
miles750 
miles1000 
milesl500 

anna 
huck 
jean 
david 

fpsol2.i.l 
fpsol2.i.2 
fpsol2.i.3 

inithx.i.l 
inithx.i.2 
inithx.i.3 

mug88_l 
mug88_25 
mugl00_l 
mugl00_25 

mulsol.i.l 
mulsol.i.2 
mulsol.i.3 
mulsol.i.4 
mulsol.i.5 

schooll 
schooll_nsh 

le450_5c 
le450_5d 
le450_15a 
le450_15b 
le450_15c 
le450_15d 
le450_25a 
le450_25b 

1-Fulllns_4 
1-Fulllns_5 
2-FullIns_3 
2-FullIns_4 
2-FullIns_5 
3-FullIns_3 
3-FullIns_4 
3-FullIns_5 
4-FullIns_3 
4-FullIns_4 
4-FullIns_5 
5-FullIns_3 
5-FullIns_4 

l-Insertions_4 

64 
96 
81 

100 
121 
144 
169 
196 
225 
256 

900 
1600 
3600 

95 
191 

128 
128 
128 
128 
128 

138 
74 
80 
87 

496 
451 
425 

864 
645 
621 

88 
88 

100 
100 

197 
188 
184 
185 
186 

385 
352 

450 
450 
450 
450 
450 
450 
450 
450 

93 
282 

52 
212 
852 

80 
405 

2030 
114 
690 

4146 
154 

1085 

67 

728 
1368 
2112 
2940 
3960 
5192 
6656 
8372 

10,360 
12,640 

26,100 
62,400 

212,400 

755 
2360 

387 
1170 
2113 
3216 
5198 

493 
301 
254 
406 

11,654 
8691 
8688 

18,707 
13,979 
13,969 

146 
146 
166 
166 

3925 
3885 
3916 
3946 
3973 

19,095 
14,612 

9803 
9757 
8168 
8169 

16,680 
16,750 

8260 
8263 

593 
3247 

201 
1621 

12,201 
346 

3524 
33,571 

541 
6650 

77,305 
792 

11,395 

232 

9 
12 
10 
11 
11 
12 
13 
14 
15 
16 

30 
40 
60 

7 
8 

8 
20 
31 
42 
73 

11 
11 
10 
11 

65 
30 
30 

54 
31 
31 

4 
4 
4 
4 

49 
31 
31 
31 
31 

14 
14 

5 
5 
15 
15 
15 
15 
25 
25 

5 
6 
5 
6 
7 
6 
7 
8 
7 
8 
? 
8 
? 

5 

9 
12 
9 
10 
11 
12 
13 
14 
15 
16 

30 
40 
60 

5 
5 

8 
20 
31 
42 
73 

11 
11 
10 
11 

65 
30 
30 

54 
31 
31 

3 
3 
3 
3 

49 
31 
31 
31 
31 

14 
14 

5 
5 
15 
15 
15 
15 
25 
25 

5 
4 
5 
5 
5 
6 
6 
6 
7 
7 
6 
8 
8 

5 

9 
12 
11 
12 
14 
15 
16 
17 
18 
20 

30 
42 
63 

7 
8 

8 
20 
31 
42 
73 

11 
11 
10 
11 

65 
30 
30 

54 
31 
31 

4 
4 
4 
4 

49 
31 
31 
31 
31 

14 
14 

5 
10 
17 
17 
24 
23 
25 
25 

5 
6 
5 
6 
7 
6 
7 
8 
7 
8 
9 
8 
9 

5 

3.0 
init 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 

init 
tout 
tout 

tout 
tout 

init 
init 
init 
0.2 
0.1 

init 
init 
init 
init 

0.6 
1.2 
1.1 

init 
init 
init 

11.0 
184.0 
60.0 
60.0 

init 
init 
init 
init 
init 

init 
init 

init 
tout 
tout 
tout 
tout 
tout 
init 
init 

0.1 
tout 
0.1 
tout 
tout 
0.1 
tout 
tout 
3.0 
tout 
tout 
2.0 
tout 

2.0 

9 
12 
10 
11 
11 
12 
13 
14 
15 
16 

30 
40 
60 

4 
5 

8 
20 
31 
42 
73 

11 
11 
10 
11 

65 
30 
30 

54 
31 
31 

4 
4 
4 
4 

49 
31 
31 
31 
31 

14 
14 

5 
5 

15 
15 
15 
15 
25 
25 

4 
4 
5 
5 
5 
6 
6 
5 
7 
7 
6 
8 
8 

3 

9 
12 
10 
11 
11 
13 
14 
15 
16 
17 

30 
40 
60 

7 
8 

8 
20 
31 
42 
73 

11 
11 
10 
11 

65 
30 
30 

54 
31 
31 

4 
4 
4 
4 

49 
31 
31 
31 
31 

14 
14 

5 
5 

15 
15 
15 
15 
25 
25 

5 
6 
5 
6 
7 
6 
7 
8 
7 
8 
9 
8 
9 

5 

3.6 
0.2 
36.6 
686.9 
1865.7 
tout 
tout 
tout 
tout 
tout 

0.2 
2.9 
3.8 

tout 
tout 

5.0 
3.7 
0.2 
0.2 
0.1 

3.6 
0.2 
0.2 
0.2 

10.6 
11.2 
10.0 

21.0 
9.2 
9.9 

9.6 
10.6 
14.4 
12.0 

0.2 
4.7 
0.2 
0.2 
6.0 

0.4 
17.0 

0.1 
0.2 
0.4 
0.2 
3.1 
3.8 
0.1 
0.1 

tout 
tout 
2.9 
tout 
tout 
2.9 
tout 
tout 
3.4 
tout 
tout 
4.6 
tout 

tout 

8 
12 
9 

10 
11 
12 
13 
14 
15 
16 

30 
40 
60 

2 
2 

8 
20 
31 
42 
73 

11 
11 
10 
11 

65 
30 
30 

54 
31 
31 

3 
3 
3 
3 

49 
31 
31 
31 
31 

14 
14 

5 
5 

15 
15 
15 
15 
25 
25 

3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
7 
7 

2 

9 
12 
10 
12 
13 
14 
15 
17 
18 
19 

30 
41 
63 

7 
8 

8 
20 
31 
42 
73 

11 
11 
10 
11 

65 
30 
30 

54 
31 
31 

4 
4 
4 
4 

49 
31 
31 
31 
31 

14 
14 

5 
5 

17 
16 
24 
23 
25 
25 

5 
6 
5 
6 
7 
6 
7 
8 
7 
8 
9 
8 
9 

5 

8.3 
0.0 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 

0.6 
tout 
tout 

tout 
tout 

0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

77.1 
295.0 
786.0 
978.0 

0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.6 

0.0 
1060.0 
tout 
tout 
tout 
tout 
0.0 
0.0 

tout 
tout 
84.6 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 

tout 

9 
12 
10 
12 
13 
14 
16 
17 
18 
19 

30 
40 
60 

7 
8 

8 
20 
31 
42 
73 

11 
11 
10 
11 

65 
30 
30 

54 
31 
31 

4 
4 
4 
4 

49 
31 
31 
31 
31 

14 
14 

5 
11 
18 
16 
22 
23 
25 
25 

5 
6 
5 
6 
7 
6 
7 
8 
7 
8 
9 
8 
9 

5 

3.4 
0.0 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 

0.1 
0.5 
66.1 

tout 
tout 

0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

120.0 
215.0 
tout 
tout 

0.0 
0.0 
0.0 
0.0 
0.0 

0.1 
0.5 

73.6 
tout 
tout 
tout 
tout 
tout 
0.0 
0.0 

tout 
tout 
79.0 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 

tout 

9 
12 
10 
12 
13 
14 
15 
16 
18 
19 

30 
40 
61 

7 
8 

8 
20 
31 
42 
73 

11 
11 
10 
11 

65 
30 
30 

54 
31 
31 

4 
4 
4 
4 

49 
31 
31 
31 
31 

14 
14 

5 
5 

16 
16 
22 
23 
25 
25 

5 
6 
5 
6 
7 
6 
7 
8 
7 
8 
9 
8 
9 

5 

3.0 
0.0 
466.0 
tout 
tout 
tout 
tout 
tout 
tout 
tout 

0.0 
0.2 
tout 

tout 
tout 

0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

324.0 
191.0 
tout 
tout 

0.0 
0.0 
0.0 
0.0 
0.0 

0.1 
0.4 

0.0 
98.1 
tout 
tout 
tout 
tout 
0.0 
0.0 

0.2 
tout 
0.0 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 

240.0 
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Table 4 (continued) 

ñame 

l-Insertions_5 
l-Insertions_6 
2-Insertions_4 
2-Insertions_5 
3-Insertions_3 
3-Insertions_4 
3-Insertions_5 
4-Insertions_3 
4-Insertions_4 

ash331GPIA 
ash608GPIA 
ash958GPIA 
abb313GPIA 
WÜ1199GPIA 

DSJC125.1 
DSJC125.5 
DSJC125.9 
DSJC250.1 
DSJC250.5 
DSJC250.9 
DSJC500.1 
DSJC500.5 
DSJC1000.1 
DSJC1000.5 
DSJC1000.9 
DSJR500.1 
DSJR500.1c 
DSJR500.5 

latin_sq._10 
gamesl20 

zeroin.i.l 
zeroin.i.2 
zeroin.i.3 

wapOla 
wap02a 
wap05a 
wap06a 
wap07a 
wap08a 

n m 

202 
607 
149 
597 

56 
281 

1406 
79 

475 

662 
1216 
1916 
1557 

701 

125 
125 
125 
250 
250 
250 
500 
500 

1000 
1000 
1000 
500 
500 
500 

900 
120 

211 
211 
206 

2368 
2464 

905 
947 

1809 
1870 

1227 
6337 

541 
3936 

110 
1046 
9695 

156 
1795 

4185 
7844 

12,506 
53,356 

6772 

736 
3891 
6961 
3218 

15,668 
27,897 
12,458 
62,624 
49,629 

249,826 
449,449 

3555 
121,275 
58,862 

307,350 
638 

4100 
3541 
3540 

110,871 
111,742 
43,081 
43,571 

103,368 
104,176 

X 

? 
? 
4 
? 
4 
? 
? 
4 
? 

4 
4 
4 
? 
7 

5 
17 
44 
? 
? 
? 
? 
? 
? 
? 
? 
12 
85 
122 

? 
9 

49 
30 
30 

? 
? 
50 
40 
? 
? 

BC-Co 

LB 

4 
4 
4 
3 
4 
3 
3 
3 
3 

4 
4 
4 
8 

5 
17 
42 
5 
13 
48 
5 
13 
6 
15 
65 
12 
78 
119 

90 
9 

49 
30 
30 

41 
40 
50 
40 
40 
40 

[19] 

UB 

6 
7 
5 
6 
4 
5 
6 
4 
5 

4 
4 
5 
10 

5 
13 
47 
9 
36 
88 
15 
63 
26 
116 
301 
12 
88 
130 

129 
9 

49 
30 
30 

46 
45 
51 
44 
46 
47 

Time 

tout 
tout 
tout 
tout 
1.0 
tout 
tout 
tout 
tout 

51.0 
692.0 
tout 
tout 
tout 

0.9 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
init 
tout 
tout 

tout 
init 

init 
init 
init 

tout 
tout 
tout 
tout 
tout 
tout 

MMT-BP[22] 

LB 

3 
3 
3 
2 
3 
3 
2 
3 
2 

4 
3 
3 
7 
7 

5 
16 
43 

5 
15 
71 
4 

11 
5 

13 
51 
12 
85 

122 

90 
9 

49 
30 
30 

40 
40 
50 
40 
40 
40 

UB 

6 
7 
5 
6 
4 
5 
6 
4 
5 

4 
4 
4 
9 
7 

5 
17 
44 

8 
28 
72 
12 
48 
20 
92 

226 
12 
85 

122 

108 
9 

49 
30 
30 

43 
42 
50 
40 
42 
42 

Time 

tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 

45.9 
tout 
tout 
tout 
80.7 

142.0 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
35.3 
288.5 
342.2 

tout 
0.2 

4.4 
4.5 
3.6 

tout 
tout 
293.2 
175.0 
tout 
tout 

LBDS 

2 
2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
3 
8 
6 

4 
10 
34 

4 
12 
39 

5 
13 
6 

14 
57 
12 
80 

120 

90 
9 

49 
30 
30 

41 
40 
50 
40 
40 
40 

DSATUR [7] 

UB 

6 
7 
5 
6 
4 
5 
6 
4 
5 

5 
5 
5 

10 
7 

5 
19 
47 

9 
35 
86 
15 
62 
25 

110 
300 

12 
87 

130 

130 
9 

49 
30 
30 

48 
49 
50 
49 
47 
45 

Time 

tout 
tout 
tout 
tout 
2.6 
tout 
tout 
tout 
tout 

tout 
tout 
tout 
tout 
tout 

0.0 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
0.0 
tout 
tout 

tout 
0.0 

0.0 
0.0 
0.0 

tout 
tout 
0.0 
tout 
tout 
tout 

SEWELL [26] 

UB Time 

6 
7 
5 
6 
4 
5 
6 
4 
5 

4 
5 
5 

10 
7 

5 
19 
47 

9 
36 
88 
15 
61 
25 

110 
300 

12 
88 

130 

130 
9 

49 
30 
30 

47 
46 
50 
48 
45 
45 

tout 
tout 
tout 
tout 
0.3 
tout 
tout 
96.9 
tout 

0.1 
tout 
tout 
tout 
tout 

0.0 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
0.0 
tout 
tout 

tout 
0.0 

0.0 
0.0 
0.0 

tout 
tout 
0.0 
tout 
tout 
tout 

PASS 

UB 

6 
7 
5 
6 
4 
5 
6 
4 
5 

4 
4 
4 

10 
7 

5 
19 
46 

9 
34 
82 
14 
62 
25 

110 
300 

12 
85 

130 

130 
9 

49 
30 
30 

46 
46 
50 
47 
44 
45 

Time 

tout 
tout 
tout 
tout 
0.6 
tout 
tout 
351.0 
tout 

0.0 
0.1 
0.4 
tout 
tout 

0.0 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
tout 
0.0 
tout 
tout 

tout 
0.0 

0.0 
0.0 
0.0 

tout 
tout 
0.0 
tout 
tout 
tout 

placed immediately to the left of them for clarity. Time entries 
average user times in seconds. 

In this scenario, PASS clearly outperforms the other algo-
rithms, proving optimality faster in the majority of cases (and 
never performing worse). The ratio of improvement in time w.r.t. 
DSATUR and SEWELL rises in moderately difficult instances to 
nearly triple (e.g. (60,0.7) or (70, 0.8)) and decreases with the 
more difficult ones to around double (e.g. (75, 0.5)). This can be 
explained by the fact that there are fewer vertices tied at 
maximum saturation degree in the former case so PASSh is more 
effective. On the easier less dense instances, we report similar 
performances in all three algorithms up to a tenth of a second. 
Out of the 1500 instances in RB, SEWELL failed in two (rows (75, 
0.6), (75, 0.7)) and DSATUR in one ((75, 0.6)). PASS was the only 
algorithm to finish the full set inside the limit. 

Interestingly, leading branch and price MMT-BP was totally 
outperformed in RB, even by the older DSATUR variants, which 
points at a structural weakness of the set cover VCP-SC model (2). 
Specifically, it performed worse on the a priori easier less dense 
graphs (e.g. (70, 0.3), (80, 0.1–0.3)). This fact has not been 
mentioned explicitly in existing literature to our knowledge, 
probably because a systematic test on random graphs has been 
somewhat lacking in recent branch and price reports, 
(i.e.[18,23,24]) and constitutes, in the opinion of the author, an 
additional contribution of this research. 

Further evidence of a possible structural weakness was con-
firmed by tests carried out by VCP expert Stefano Gualandi 
(complying to our request) over a subset of RB fed to the branch 
and price algorithm described in [23]. Reported times did not 
essentially improve MMT-BP, so they have not been included in 
the report. Of interest is the fact that in the original column 
generation algorithm LPCOLOR [21], the same trend appeared but 
in a smaller scale. The reduced computing power at the time 
could only handle a small subset of random graphs. 

Column generation techniques applied to VCP require to solve, 
at each step, a maximum weighted stable set slave problem 
(MWSS), which is NP-hard in the general case (c.f. [21] or [18] 
for a detailed explanation) so effective procedures to solve MWSS 
become critical in overall performance. As density decreases, the 
slave problem at each step of the branching scheme is also harder. 
This would explain why MMT-BP fails to compute optimality for 
instances of size 80 in 36 cases out of 150, whereas DSATUR based 
algorithms solve the whole subset without difficulty. 

Table 4 reports comparisons between the four previous algo-
rithms and branch-and-cut BC-Col. Most column headers have the 
same interpretation as in Table 3. LBDS entries (column 10) refer 
to the lower bound obtained during the initial stage of all three 
DSATUR variants which, in the majority of cases, is a maximum 
clique. To emphasize the comparison between PASS and MMT-BP, 
bold face time entries for both algorithms indicate that an 
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op t imum was found by one and not t he other . Cursive t ime 
entr ies indicate tha t optimality was proved a t least five t imes 
faster w.r.t. each other . 

Time limits for BC-Col and MMT-BP were fixed a t 7200 and 
2400 seconds respectively, so 1500 s was chosen as t ime limit for 
all DSATUR variants to account for the difference in machine 
t imes. W e note tha t t ime limits based on available dfmax data 
should be approximately 1600 and 1800 s, respectively, so again 
t he rounding in t he tests is in favor of t he previous existing 
algori thms. 

BC-Col and MMT-BP entr ies in t he table were taken directly 
from the original sources ([19,22] respectively) and have not been 
calibrated in Table 4 . This seemed preferable to correcting t imes 
based on the available weak evidence, and was t he s ame policy 
adopted in [22] w.r.t. BC-Col user t imes. The difference in 
machines is, however, explicitly ment ioned w h e n needed in t he 
comparat ive analysis. 

With t he exception of qg.order60, r andom graph DJSC500.5, 
school1 and the mug family, PASS is clearly superior to t he other 
t w o DSATUR variants, finding faster and/or bet ter UBs in many 
cases. This validates t he n e w tie-breaking strategy for large 
s tructured DIMACS graphs. 

Also PASS has improved performance of DSATUR-based algo-
r i thms w.r.t. BC-Col compared to reported results in [22 ] : there 
are many instances whe re t he UB found by PASS is tighter (e.g. 
5 cases in the queen family, 4 in the le450, ash958GPIA, 8 in t he 
DSJC random family, etc.). BC-Col, on t he other hand, finds bet ter 
bounds in 5 cases. 

Column generation based MMT-BP outperforms PASS in large 
DIMACS graphs. There are 14 cases where MMT-BP finds an 
op t imum coloring whereas PASS cannot prove optimality. More-
over in t he queen, le450, DSJC and wap families MMT-BP also 
captures s t ructure bet ter and tends to find bet ter bounds . 

On the other hand, comparing wi th t he reported results in [22] 
t he difference be tween UBs is n o w tighter on average. Further-
more, PASS finds an op t imum coloring in 6 cases where MMT-BP 
exceeds the t ime limit. W e also no te tha t w h e n PASS is able to 
prove optimality, it is usually faster than MMT-BP, since t he latter 
is much more complex and requires hard instances for column 
generation overhead to pay off. Specifically, it takes PASS more 
than 5 t imes less than its counterpart (machine differences 
accounted for) t o compute chromatic degree in more than 30 
cases. In t he opinion of t he author, this makes it a very useful tool 
in practice (notice that DSATUR is also used both in BC-Col and 
MMT-BP during initialization, so PASS could be used to improve 
this stage in both cases). 

6. Conclus ions 

This paper describes a n e w exact coloring algorithm (PASS) 
based on the well known DSATUR algorithm of Bre´laz and a later 
improvement proposed by Sewell. PASS introduces a n e w t ieb-
reaking strategy, which can be computed m u c h faster than Sewell 
because it is restricted to a subset of vertices. Reported results 
show tha t it is n o less informed on average and improves overall 
performance w h e n selectively applied in s teps where t he number 
of available colors for maximal sa turated vertices is below a given 
threshold. 

Today DSATUR-based algorithms are still very much employed 
in practice because of their simplicity and efficiency. In many 
cases they are also applied a t some stage in metaheurist ics or in 
t he more complex exact algori thms. Moreover, reported results 
reveal that PASS clearly outperforms a leading column generation 
algorithm in a benchmark of 1500 random graphs. In t he opinion 
of t he authors t he above reasons make PASS a very useful tool for 
exact VCP in real-life applications. 
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