
Equation of state for hot dense matter using a relativistic screened

hydrogenic model

M.A. Mendoza1, J.G. Rubiano1,2, J.M. Gil1,2, R. Rodríguez1,2

R. Florido1,2, P. Martel1,2, E. Mínguez2

1 Departamento de Física, Universidad de Las Palmas de GC, Las Palmas de GC, Spain
2 Instituto de Fusión Nuclear (DENIM), Universidad Politécnica de Madrid, Madrid, Spain

Introduction

The study of matter under conditions of high density, pressure, and temperature is a valuable

subject for inertial confinement fusion (ICF), astrophysical phenomena, high-power laser inter-

action with matter, etc. In all these cases, matter is heated and compressed by strong shocks

to high pressures and temperatures, becomes partially or completely ionized via thermal or

pressure ionization, and is in the form of a dense plasma. The thermodynamics and the hydro-

dynamics of hot dense plasmas cannot be predicted without the knowledge of the equation of

state (EOS) that describes how a material reacts to pressure and how much energy is involved.

Therefore, the equation of state often takes the form of pressure and energy as functions of den-

sity and temperature. Furthermore, EOS data must be obtained in a timely manner in order to

be useful as input in hydrodynamic codes. By this reason, the use of fast, robust and reasonably

accurate atomic models, is necessary for computing the EOS of a material.

We use the ATMED code [1] to compute the equation of state of hot dense plasmas under LTE

conditions in the average atom framework, using a Screened Hydrogenic Model based on a new

set of screened constants including the relativistic splitting of the energy levels [2]. To validate

the code, we have carried out the computation of the Rankine-Hugoniot curve for plasmas of

elements with medium and high Z values.

Description of the model

The model adopts the assumption that ionic and electron quantities are additive to sufficient

accuracy so the Helmholtz free energy per unit of mass can be written in the form:

F(ρ,T ) = Fi(ρ,T )+ Fe(ρ ,T )−Fe(ρ ,Tc)+ Fc(ρ) (1)

In this equation ρ is the plasma density, T is the plasma temperature, Fi(ρ,T ) is the ion free

energy, Fe(ρ,T ) is the electron free energy calculated from the spherical-cell Thomas-Fermi

theory and Fc(ρ) is the energy of the material at zero temperature Tc. The ion contribution to

the energy is obtained from the Cowan ion equation of state, a single analytic model which
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combines general laws in several limiting cases, such as the ideal gas law, the fluid scaling

law, the Lindermann melting law or the Gruneisen pressure law. This model is divided into two

parts, a structural part which gives the thermodynamic functions: pressure pi, internal energy

Ei, entropy Si, and Helmholtz free energy Fi, and an empirical part which predicts the melting

temperature Tm(ρ) and the Debye temperature ΘD(ρ) [3].

The electronic Helmholtz free energy per unit of mass of the plasma is [4]:

Fe(ρ,T ) = Fbound(ρ,T )+ Ff ree(ρ,T )+ Fion−sphere(ρ,T ) (2)

where Fbound = Ebound−T ·Sbound is the free energy of the bound electrons in the average atom,

Ff ree is the energy of a homogeneous free electron gas, and Fion−sphere is introduced to account

for the effect of plasma environment on the bound electronic energy levels, i.e. the continuum

lowering. The internal energy Ebound = ∑k Pk · εk is the energy of an electronic configuration

{Pk}, where εk represents the Dirac’s eigenvalue which is calculated using a new relativistic

hydrogenic model [2]. Sbound is the entropy associated with the electronic configuration of the

average atom model:

Sshm =−kB ∑
k

[
Pk log

(
Pk

Dk

)
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being Dk the fractional electronic degeneracy of the subshell k including dense plasma effects

[4]. The electronic free energy is given by the equation:
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where Z̄ is the average ionization of the plasma, kB is the Boltzmann constant, ηe is the electron

reduced chemical potential and fα(ηe) is the Fermi-Dirac integral of order α . The ion-sphere

energy is:
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(6)

are the ionization potential lowering and the ion-sphere radius, respectively. In these equations

e is the electron charge, NA is the Avogadro number and A is the molar mass.

Since the contribution Fe(ρ,T ) calculated from the Thomas-Fermi model is not valid for

T → 0 then Fe(ρ,0) must be substracted from electron free energy, and replaced by Fc(ρ),

which constitutes the cold curve. In our model, the zero temperature isotherm is obtained from
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Figure 1: Principal Hugoniot curves calculated using ATMED code for several elements are compared

with experimental data. Initial conditions are ρ0 = ρs and T = 300 K.

the scaled binding energy formula for solids [5]. Total pressure p, entropy S and internal energy

E are derived from Helmholtz free energy F(ρ ,T ) according to the equations:

p = ρ2 ∂F
∂ρ

, S =−∂F
∂T

, E = F + T ·S (7)

Results

The correct reproduction of the Rankine-Hugoniot curves or shock adiabats constitutes the

best way to validate a model of equation of state. The Hugoniot curves are obtained from the
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Figure 2: Energy and pressure surfaces for molybdenum computed with ATMED.

equation:

E−E0 =
1
2

(p− p0)(
1
ρ0
− 1

ρ
) (8)

which represents the energy conservation law for a shock wave, and where subscript 0 charac-

terizes the initial state. Main Hugoniot curves have p0 = 0, ρ0 = ρs and T = 300 K, being ρs the

normal solid density. Figure 1 shows principal Hugoniot curves computed with ATMED code

for beryllium, aluminum, iron, copper, molybdenum and platinum. As it can be seen results are

in good agreement with experimental data obtained from reference [6].
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