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Abstract—Recent studies have dealt with the possibility of 
increasing light absorption by using the so-called electric 
field enhancement taking place within the grooves of 
metallic gratings. In order to evalúate the potential 
improvements derived from the absorption increase, we 
employ a simplified model to analyze the low-injection 
behaviour of a solar cell with a metallic grating back-
reflector. 

I. INTRODUCTION 

The conversión efficiency of solar cells relies strongly on 
their absorption capability. The need of a higher absorbance is 
especially critical in intermedíate band solar cells (IBSC). The 
first prototypes, fabricated with quantum-dot (QD) absorbers, 
exhibit low absorbance for infrared wavelengths. On the other 
hand, the performance of thin film silicon solar cells is also 
affected by incomplete absorption [1,2]. 

Since absorption is proportional to the squared amplitude of 
the electric field, some recent studies have dealt with the 
possibility of taking advantage of resonance phenomena in the 
near field. These include surface plasmons in metal 
nanoparticles or confined resonances in metallic gratings [3,4]. 

In this work we concéntrate on the latter kind of 
phenomenon, given that the squared electric field inside the 
grating grooves may be up to two orders of magnitude larger 
than that of the incident light [4]. Accordingly, it is quite 
conceivable that this effect may have noticeable consequences 
on photovoltaic devices. Therefore, in this work we outline a 
relatively simple method to asses the impact of using a 
diffraction grating as a back reflector in a solar cell. This can 
be accomplished in two steps: (1) evaluation of the optical 
generation rate profiles inside the device and, (2) evaluation of 
the minority-carrier excess concentration within the cell. 

II. THE ENHANCEMENT OF THE ELECTRIC FIELD 

The device under consideration includes a metallic grating 
back reflector (figure 1). A TE polarized wave with wavelength 
Á illuminates the whole structure, which is comprised by the 
grating itself and the surrounding médium, whose refractive 
índex is vh Each groove has a depth //, a spacing d, and a width 

c. As pointed before, the electric field can be enhanced inside 
the grooves of the grating. In order to ascertain the potential 
improvements derived from this situation, the optical 
generation rate, and henee the squared amplitude of the fields, 
must be known in the first place. To this end, the electric field 
inside the grooves (y < 0) and above the top of a perfectly 
conducting grating (y > 0) can be calculated using the 
Rayleigh-Bloch method [5,6]. 

For normal incidence. the incident field reads 

EAx>y)=Qxp(-i}iy
1yl (1) 

x=2niX being the vacuum wavenumber. As a result of the 
interaction between Ezi and the grating, an electric field is 
scattered off the grating, which can be expressed as: 

E{x9y) = Eú{x9y)+ ¿ An cxp[i(anx + %ny)] (y>0)9 & 
Í J = - c o 

where the n-th reflected wave has an amplitude An and 
wavevector components 

„=fih^o¿. (3) 2K 

x, 

junction 

Figure 1. Perfectly conducting grating illuminated by TE polarized light 
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The interaction also results in an electric field inside the 
grooves that can be expressedby the modal expansión 

E{x,y)=^aJm{x,y) (y<0), 

The modal functions <pm in (4) read: 

<l>m ix>y) = sin[//„ {y + h)]sm(mnx/c), 

ií mis even, and 

0Áx>y) = saí\jJ,m(y + h^cos{m7Dclc). 

ifm is odd, with ¡Um given by 

(4) 

(5) 

(6) 

(7) 

Let us assume that the electric field inside the grooves is 
dominated by the fiíndamental mode (m = 1), having the 
remaining modes an imaginary ¡Um spatial frequency and 
negligible amplitude. This condition is achieved for 
wavelengths X such that c v¡ < X < 2c vh Furthermore, when the 
condition X > dv¡ holds, the dominant reflected orders are the 
specular one (0-th order), and ±l-st orders are evanescent. 
Under these assumptions, Wirgin and Maradudin [6] find that: 

(1) The TE electric field peaks are located near the quasi-
resonant wavelengths 

AJ=2v1{f2/c2
+l/h2) 

2VV2 (8) 

(2) The magnitude of the electric field inside the grooves at the 
wavelength X¡ can be expressed as 

\E(o,y] 
8J„ 

K 

i\juMj)(y+h)] 

MM< 
(9) 

For a given valué of y, the electric field magnitude reaches its 
absolute máximum at ju¡ = 0. The magnitude will be larger the 
smaller is ju¡. This, in turn, implies to choose h as large as 
possible. In the limit / i->t»we find X- •• 2vf • 

Thus, if the hlc ratio is large enough, we can employ this 
result to estímate the dimensions of a grating for a given 
resonance wavelength Xr. For example, QD layers designed for 
AsGa IB solar cells are sensitive to photon energies cióse to 0.3 
eV(4.1|im). 

After substituting v¡ = 3.6 and Xr = 4.1 |jm in the 
expression c = XJ2v¡, we obtain c = 0.57 \\m. By further 
assuming d = 1.2c, and a given hlc aspect ratio (2, 3 or 4), we 
have employed the Rayleigh-Bloch method to calcúlate the 
modal and reflected orders amplitudes introduced in (2) and 
(4). Results of the electric field so calculated right at the centre 
of the groove are shown in figure 2. As one can readily see, 
the electric field becomes substantially increased in the vicinity 
of certain photon energies. The main peaks are also located 
near our target (0.3 eV). 

Figure 2. Electric field enhancement at the position (0,-0.5h) inside the 
groove as a fünction of the photon energy, for TE polarized light incident 

perpendicular to the grating, and hlc = 2, 3 and 4 aspect ratio 

When the device is illuminated by sunlight, we must 
average the squared amplitudes of the TE and TM electric 
fields to correctly evalúate the generation rate inside the 
grooves. However, the condition stated before does not 
guarantee the simultaneous enhancement of the TE and TM 
electric fields [4]. Therefore, if we neglect the contribution due 
to the TM polarization, the squared magnitude of the electric 
field inside the grooves can be approximated by 

\E[x,yi 
1 sin2 [//¡(y + h)\cos2 (m:/c) (10) 

where we have also assumed that the fields are dominated by 
the fiíndamental mode contribution. Of course, the latter 
assumption applies whenever the geometrical features are 
chosen according the conditions stated above. Otherwise, a 
greater number of modal terms should be retained to calcúlate 
the internal electric fields. 

III. CALCULATION OF THE EXCESS MINORITY CARRIER 

CONCENTRATION 

In order to assess the performance of the devised structure 
in a photovoltaic cell, we must calcúlate the excess minority 
carrier density. Thus, first we need to calcúlate the electron-
hole generation. 

We will assume that the dielectric surrounding the metallic 
reflector is a «-type semiconductor, and that the device junction 
is placed at y = y¡ (figure 3). Since the generation rate is the 
ratio between the energy absorption and the photon energy Eph, 
we have 

G(x,y,X)-

a{X) —\E{x,y,Xf 

EjX) 
(11) 



a being the absorption coefficient. As discussed in the 
previous section, the metallic grating reflector can enlarge the 
electric fíeld magnitude in the vicinity of a resonant 
wavelength. Thus, in (11) \E(x,y,Á)f includes the effect of the 
electric fíeld enhancement as calculated before. 

In this work we assume that the QD arrays are allocated 
inside the grooves (R2 región). Therefore, the generation rate 
(11) will be only calculated within this región, thus allowing us 
to concéntrate on the role played by the QD arrays. The 
contribution of the p región to the device current density will 
also be neglected. 

As is well known, if the electric fíeld in the neutral n región 
of apn junction device is neglected, the equation for the excess 
minority hole reads [7]: 

y 2 • 1 • G (12) 

where p '„, Lp and Dp are the excess concentration, diffusion 
length and diffusion constant of holes, respectively. 

Equation (12) can be numerically solved by employing the 
fínite element method [8]. Regarding the boundary conditions, 
since the analysis is restricted to the cell shown in figure 3, the 
normal derivative of the solution must vanish along the lines T2 

and r3. If surface recombination at metal-semiconductor 
interface is neglected the same condition can be imposed on r4. 
Finally, when the device operates in short-circuit the solution 
vanishes at the junction. 

Once the carrier excess distribution is known, the short-
circuit current density contribution of the cell shown in figure 3 
can be readily estimated from 

JM= 
qLuR b/X*>;M)-^*,;M)]ífofy 

where the recombination rate is given by 

U(x,y,Jl) = ^ . 

(13) 

(14) 

IV. RESULTS AND DISCUSIÓN 

The short-circuit current of the cell shown in figure 3 can 
be compared to that exhibited by the same cell when a fíat 
reflector is used instead the grating. 

The groove width, height and spacing of the grating cell of 
figure 3 have been set as c = 0.57 Jim, h = 3c and d = 1.2c, 
respectively. When the fíat reflector replaces the grating, the 
bortom layer width has been assumed to be h. In both cases, 
the width of the top layer is yj = 0.5 Jim. 

The remaining parameters are: Dp = 7.5 cmV1, v¡ = 3.6 and 
a= 0.1 cm"1. The hole lifetime is assumed to be TP = 10 ns in 
R¡, but zp = 1 ns in R2. The same applies to the top and bortom 
layers of the cell with fíat reflector. 

The ratio between the short-circuit current of the cell with 
grating reflector (JSC,DG) and that of the cell with fíat reflector 

(JSC.FR) is plotted in figure 3. As one can see, JSC,DG IJSC.FR 

may be as large as seven at 0.314 eV, in a good agreement 
with that observed for the electric fíeld. 

V. CONCLUSIONS 

In this work we have presented a preliminary versión of the 
low-injection model and, as an example, the results expected 
for a given set of parameters. In this stage, a full parametric 
analysis is outside the scope of this work. Such an analysis, as 
well as extending the model to include other effects such as 
the surface recombination and carrier transport in the 
depletion región, is the objective of the forthcoming paper. 
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Figure 3. Two-dimensional cell considered in the low-injection model 
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Figure 4. Ratio between the short-circuit current densities JSC.DG (cell with 
grating reflector) and JSC.FR (cell with fíat reflector). (See text for details) 
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