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Abstract—We propose an optimization-based framework to 
minimize the energy consumption in a sensor network when 
using an indoor localization system based on the combination 
of received signal strength (RSS) and pedestrian dead 
reckoning (PDR). The objective is to find the RSS localization 
frequency and the number of RSS measurements used at each 
localization round that jointly minimize the total consumed 
energy, while ensuring at the same time a desired accuracy in 
the localization result. The optimization approach leverages 
practical models to predict the localization error and the 
overall energy consumption for combined RSS-PDR 
localization systems. The performance of the proposed strategy 
is assessed through simulation, showing energy savings with 
respect to other approaches while guaranteeing a target 
accuracy. 

I. INTRODUCTION 

The capability of tracking the position of people and 
objects is nowadays fundamental within numerous pervasive 
computing applications. In indoor environments, where GPS 
cannot be used, radio-frequency localization techniques [1] 
have become very popular, due to the wide-spread use of 
wireless networks. In particular, as current off-the-shelf 
equipment can easily collect information about the Received 
Signal Strength (RSS), it has become the basis for 
localization in pervasive wireless networks. 

RSS-based localization systems often feature a fixed 
infrastructure of wireless devices (anchors) to collect the 
RSS measurements from the radio transmissions of the 
wireless device to be localized. Such measurements are then 
fed into localization algorithms to estímate the current 
position of the device. The localization accuracy depends in 
general on the accuracy of the RSS measurements, on the 
number and relative positions of the nodes, and on the 
physical characteristics of the environment. 

In order to improve the localization accuracy, hybrid 
localization systems have been proposed, combining RSS 
localization with measurements provided by inertial sensors, 
such as accelerometers and gyroscopes [2], [3], [4], [5]. To 
this end, these devices are mounted on the object/person to 
be tracked to implement dead reckoning systems, which 
provide continuous estimates of the position, speed and 
orientation of the object. Pedestrian Dead Reckoning (PDR) 
systems are especially attractive for localization in 
unprepared environments, as they do not rely on any 
available infrastructure. However, as the new positions are 
calculated from the previous estimations, measurement 

errors are cumulative and may produce an unbounded 
increase in the localization error. 

In addition to localization accuracy, also energy 
efficiency has to be considered when designing localization 
systems, as wireless devices involved in the localization 
process may often be battery-operated. To this extent, the 
localization system has to be designed to achieve a desired 
localization accuracy while limiting the consumed energy 
due to processing and wireless communication. 

This paper targets the design of acórrate and energy 
efficient hybrid localization systems based on RSS 
measurements and dead reckoning. Within this field, the 
simplest approach in the related literature is to use RSS 
localization periodically, whilst using dead reckoning 
techniques between consecutive RSS localization rounds. As 
in plain RSS-based localization, the energy consumption can 
be reduced by (adaptively) setting the RSS localization 
frequency according to heuristic criteria on the estimated 
current localization error and/or on the mobility 
characteristics of the mobile devices. Differently, we 
introduce in this paper an optimization-based framework 
which properly sets, besides the RSS localization frequency, 
also the number of RSS measurements used at each 
localization round. The optimization approach leverages 
practical models to capture/predict the localization error and 
the overall energy consumption for localization systems 
featuring RSS-based and dead reckoning based approaches. 
The performance of the proposed method is assessed through 
simulation and compared against well-known approaches 
available in the literature. 

The structure of the paper is as follows. Section II 
reviews related work on energy-efficient localization. 
Section III defines the models that have been developed to 
capture the localization accuracy of combined RSS-PDR 
localization systems, while their energy consumption is 
analyzed in Section IV. A strategy to minimize energy 
consumption while achieving a target accuracy in the 
localization result is proposed in Section V and its 
performance is evaluated numerically in Section VI. Section 
VII concludes the paper. 

II. RELATED WORK 

A conventional approach to optimize the accuracy-
consumption tradeoff adopted in RSS-based localization 
varíes the periodicity at which the localization is performed: 
more frequent localizations lead to a more precise position 
tracking, at the cost of a higher radio consumption. The very 
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same approach can be easily extended to hybrid RSS-PDR 
systems, with the advantage that inertial measurements can 
be used to find enhanced inter-localization periods. 

The authors of [6] compare three different methods to set 
the localization frequency: 1) Using a fixed frequency, 2) 
Using an adaptive localization frequency: the next 
localization is scheduled when the node is supposed to have 
traveled a predefined distance, and it is calculated by 
estimating speed from two previous position estimations, 3) 
Dead reckoning is also used to estímate position: if this 
estimated position is similar to the position obtained through 
localization, localization frequency is decreased; otherwise, 
the localization frequency is increased. The simulations 
reported in [6] show that the energy consumption due to 
communication is lower for methods 2) and 3) when the 
mobility pattern is predictable (low speed, infrequent 
changes). On the other hand, the localization errors for these 
strategies increase proportionally to the node speed. 

Similarly, the authors of [7], [8] propose to modify the 
localization frequency depending on the mobility level of the 
node. In particular, tiie estimated speed of the mobile node is 
used to adapt the localization period so that the localization 
error does not exceed a given error tolerance. Four different 
methods are compared to estímate the mobile node speed: 1) 
The mobile node is assumed to move at a constant speed (the 
máximum possible speed in the application), 2) The speed is 
calculated from the two previous position estimations, 3) 
Accelerometers are used to indicate if the node is moving; 
then, if it is static the position is not calculated, if it is 
moving, speed is calculated from the two previous position 
estimations, 4) Speed is estimated by counting the number of 
steps and multiplying them by the average human step 
length. The results show that methods 3) and 4) have a lower 
energy consumption (due to Communications), specially for 
low mobility, but a bit higher non-conformance rate 
(exceeding desired localization error). 

In general, these methods üy to optimize only the 
localization frequency in order to achieve a desired accuracy 
while keeping as low as possible the energy consumption. 
However, the localization accuracy can also be traded for 
energy consumption by optimizing the number of RSS 
measurements used at each localization round. The work in 
[9] leverages this trade-off by optimizing the transmission 
power of the packets from which the RSS measurements are 
collected, as well as the number of RSS samples which are 
averaged to run the localization algorithm in order to obtain a 
given localization accuracy while minimizing energy 
consumption. Along this line, we propose in this paper a new 
method to jointly optimize the localization frequency and the 
number of radio measurements at each localization period in 
order to minimize the energy consumption while achieving a 
desired accuracy in the localization results. 

III. RSS-BASED AND PDR LOCALIZATION ERRORS 

In the following, we propose simplified models of the 
localization error for RSS-based and PDR techniques, which 
will be leveraged to develop the optimal localization 
strategy. 

A. RSS-based localization error 
A popular technique for RSS-based indoor localization, 

due to its ease of deployment and simplicity, is the use of the 
log-normal shadowing path loss model [10] to establish a 
relation between the RSS and the distance between two 
nodes. The location of a node can then be determined from a 
set of pairwise distances using proper positioning algorithms, 
such as the ones in [11]. According to this model, the 
relation between the received power (PRX) and the distance 
(d) between transmitter and receiver is given by: 

d „ ( 1 ) PxxidBm^ A-I0n\o% 
dr, 

•N 

where A is the received power at d0 meters, r¡ is the path loss 
exponent, and 7V~5V(0,o2) is a zero-mean Gaussian random 
variable with standard deviation a. This model describes 
RSS measurements as Gaussian random variables [1], thus, 
their standard deviation can be reduced by a factor of -Jñ if n 
measurements are averaged, provided the measurements are 
independent. 

The Cramer-Rao lower bound for the localization error 
with RSS measurements is derived in [12] and indicates 
which is the minimum variance an unbiased estimator of the 
position can achieve. Assuming the log-normal channel 
model, its expression for a network composed of Mreference 
nodes (with positions (x„ y¡), i=\,...Jvt) and one mobile node 
with unknown position (x, y) is given by: 
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where d{ is the distance between the mobile node and 
reference node i, dp is the distance between reference nodes /' 
and j , dLij is the shortest distance from the mobile node to 
the line segment connecting nodes /' and j , and 
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where r¡ is the pathloss exponent and aK 

the standard deviation of the RSS measurements. If the 
average RSS valué from n packets is used to perform each 
localization, aRSS= a/Jñ, where cris the standard deviation 
due to shadowing in the log-normal model (1). 

Therefore, the accuracy of the RSS-based localization 
depends on the position of the reference nodes, the position 
of the mobile node, the channel parameters r¡ and <rand the 
number n of packets used to obtain the RSS measurement. 

In practice, we are interested in the average valué of acr¡b 

over the área of interest. In order to find an approximate 
expression, we evaluated acr¡b for different realizations of M 
randomly distributed nodes inside the coverage área of a 
node (a circular área with radius r and área S = nr2 m2). We 
found that the following model: 

° :a4SMb (3) O\riu ~ 
J)4ñ 

fits quite well the theoretical average valué of acr¡b for a = 
0.34 and b = -0.84. The intuition behind this expression 



comes from the fact that for a given number of reference 
nodes, the CRLB should increase with the size 
(proportionally to the square root of the área, due to 
dimensionality reasons) and that for a given área, the CRLB 
should diminish when more reference nodes are added 
(therefore, we expect a JW*-type trend, with a negative valué 
oíb). 

For the extreme case of 3 reference nodes in a 50m-
radius coverage área the difference between the real and the 
approximated valué of acr¡b is 0.58 m. For more realistic 
parameters, the deviation is even lower (see Fig. 1). For 
example for 4 or more reference nodes in the área the 
difference only reaches 0.14 m in the worst case. Thus, this 
expression can be used as an approximate lower bound of the 
RSS locahzation error. 

CRLBaprox - CRLBreal (m) CRLBaprox - CRLBreal {%) 

(a) Difference in m (b) Difference in % 

Figure 1. Difference between the approximated CRLB and the real 
average valué of the CRLB for a topology with M reference nodes 
randomly distributed inside the coverage área (circular with radius r) of a 
node. 

B. PDR locahzation error 

As previously said, dead reckoning consists in estimating 
the trajectory of an object by continuously adding its 
displacements from a given starting point. The main 
disadvantage of using inertial sensors, in particular 
accelerometers and gyroscopes, for dead reckoning is that 
the integration of their noise results in cumulative errors. The 
errors are even bigger for pedestrian dead reckoning, i.e., 
when the object to be tracked is a person, as the inertial 
sensors are attached to the body and, therefore, may move 
with respect to the person during walk. When inertial 
measurements are integrated to track the position of a user 
the main error contributions are the following [13], [14], 
[15]: 

• Accelerometer noise produces an error in the position 
whose RMS valué increases with t15 

o„ = l-^Lt^ (4) 
2V77 

where fs is the sampling frequency and ad the standard 
deviation of the accelerometer noise. 

• Accelerometer bias, when double integrated, produces a 
position error that grows with t2 

oahias=\At2 (5) 

where A is the accelerometer bias. 
• Gyroscope bias produces a position error that grows 

with/3 

where B is the gyroscope bias and a the acceleration 
that affects the sensor (typically, the acceleration due to 
gravityg). 

C. Joint locahzation error 

In the reference system, the RSS-based locahzation is 
done periodically and inertial sensors are used between 
consecutive RSS-localizations to track the position of the 
user. The total localization error will have two contributions, 
one due to the RSS-localization and the other due to PDR-
localization: 

RMSE2(t)=RMSE] -RMSE2
PDR{t) (7) 

where / is the elapsed time from the last localization reset. 
The RSS-localization error does not depend on the time /, 

but only on the positions of the nodes and on the 
characteristics of the channel. In order to simplify this term, 
we can use the approximate equation (3), which depends on 
the number of reference nodes and the size of the 
deployment área. 

The PDR localization error depends on the integration 
time t. The máximum valué of the PDR localization error 
appears at the end of the integration time, i.e. at the end of 
each RSS localization period (i.e. when t = T). At this 
moment, the RMS error can be written as: 

RMSE(T)2 » 
\r¡4ñ 

a-JSM1 1 ff„ 
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It can be seen that the localization accuracy depends on 

the valúes of n and T. On one hand, increasing n will 
diminish the RSS localization error. On the other hand, 
diminishing T will diminish the PDR localization error. 
Thus, a desired localization error (e.g. a given RMSE(7)) 
yields a relationship between n and T. Clearly, the different 
combinations n - T will have a different energy consumption 
(the energy consumption increases with n and diminishes 
with 7), so it would be interesting to find a method to 
calcúlate their optimum valúes. 

IV. ENERGY CONSUMPTION 

In the following, we analyze the dependence of the 
energy consumption on the parameters n and T, which will 
serve to formúlate our optimization strategy. We are 
interested in minimizing the energy consumption at the 
mobile nodes, as they are battery-supplied. During the 
localization activity, the mobile node must communicate 
with the reference nodes to obtain RSS measurements, 
perform some processing operations and use its inertial 
sensors to obtain additional measurements. We will consider 
here the energy consumption during the communication 
activities. The energy consumption due to processing is 
neglected, since it can be optimized separately. On the other 
hand, the inertial sensors should be active all the time to 
perform the PDR localization, so their energy consumption 
will be constant (independent of n and T) and will not have 
any effect in the minimization of the energy consumption. 



The radio energy consumption depends on how the 
message exchange is performed. We consider here the case 
in which the RSS-based localization is performed uplink, i.e. 
the anchor nodes measure the RSS from the beacons sent by 
the mobile node and send these measurements to a central 
node, which performs the localization. For a single RSS-
localization the mobile node sends n beacons and a total of m 
neighbor reference nodes will measure their RSS and send 
them to the central node. The central node estimates the 
position of the mobile node and sends back to the mobile 
node a message with the calculated position. Taking this 
position as a starting point, the mobile node tracks its own 
trajectory with the inertial sensors for a time T, after which a 
new RSS-localization is performed and the whole procedure 
is repeated. The position information between two 
consecutive RSS-based localization remains at the mobile 
node, therefore, the mobile node may send periodically (with 
a period T„<T) a message with its position to the central 
node. The energy consumption over a time interval Ttot» T 
inthis case will be: 

-^ radio ~ ^ TXbeacon + ^ RXpos + ^ TXpos ~ 
rp rp rp \~SJ 

~^TY cc'-TX^TXb / + ~^p~y ce'- RX^füíp ) + ~~Z V cc'-TX^TXp I 
n 

where Vcc is the voltage supply, IJX and IRX are the current 
consumptions in transmission and reception modes, t-m, is 
the time in transmission mode required to send the beacons, 
and tuxp/tjxp are the times in reception/transmission modes 
required to receive/send the position packet. These time are 
given by: tjxb = ntb, t^p = tp + twait and tjxp = tp, where tb is 
the duration of a beacon, tp is the duration of the position 
information packet and twaü is the time during which the 
mobile node remains in reception mode in order to receive 
the position packet. 

Note that only the first two terms of (9) depend on the 
localization interval T and the number of packets n that are 
used to measure the RSS. Therefore, the component of 
energy consumption that should be minimized is given by: 

E(„,r) = l/(„) do) 
where, for the considered uplink localization scenario: 

/ (») = VJTXnth + VJ^ {tp + twait) (11) 
A similar expression can be derived under different 
localization strategies (e.g., RSS samples measured at the 
mobile nodes). 

V. PROPOSED STRATEGY 

As we explained previously, increasing the number of 
RSS measurements n that are averaged for each radio-
localization will diminish the RSS localization error. On the 
other hand, diminishing the localization period T will 
diminish the PDR localization error. Henee, in order to 
achieve a given localization accuracy, we can either modify 
n, or T or both. As this two variables also have an impact on 
the energy consumption, we propose to find the combination 
n - T that yields a lower energy consumption. The objective 
is to minimize the energy consumption at the mobile node 
while, at the same time, maintaining a certain degree of 

accuracy in the localization result. Therefore, the 
optimization problem can be written as: 

vamE{n,T) = —/(«) 

RMSE(n,T)<Acc (-lT> 

s-t-\ Tmm<T<Tmwí 

n>\ 
where Tmin and Tmax are the minimum and máximum valúes 
allowed for the localization period, Acc is the accuracy we 
would like to achieve and RMSE can be calculated according 
to (8). Note that we have decided to impose as a constraint 
that the expected accuracy at the end of each localization 
interval does not exceed a given valué, but other constraints 
could be reasonable depending on the application (e.g. fixing 
the average valué over time of the expected accuracy). 

VI. PERFORMANCE EVALUATION 

In this section we evalúate the performance of the 
proposed technique in terms of energy efficieney and 
accuracy of the localization results through detailed 
simulation. We compare these results with those obtained 
with different strategies aimed at reducing the energy 
consumption during the localization. Namely, the strategies 
adopted for comparison are: 
- Periodic localization [6], [7]: RSS localization is 
performed periodically with a fixed period, equal to the 
máximum localization error divided by the máximum 
expected speed. At a given time, the node is considered to be 
located at the position of the last localization. 
- Periodic localization + PDR: Inertial sensors are added to 
the previous strategy to perform PDR and reduce the 
localization error between RSS localizations. 
- Localization period controlled by mobile node speed: 
The frequeney of the RSS localization is modified according 
to the speed of the mobile node. The objective is to put an 
upper bound on the distance that the node can travel without 
updating its position (dmax), so that the localization period 
can be obtained as T=dmJv. The speed of the mobile node 
can be calculated in different ways: 

• RSS-estimated speed [6], [7]: Speed is estimated from 
the two previous localizations and the time that has 
elapsed between them. 

• Measured speed [8]: Speed is measured with the 
inertial sensors. As inertial measurements need to be 
integrated to calcúlate the speed, they can be also used 
to obtain PDR position estimations that can be used 
between two consecutive RSS localizations to reduce 
the error. 

- Localization period controlled by PDR accuracy [6]: 
Dead reckoning is used to track the position of the mobile 
node between RSS localizations. When a new RSS 
localization is obtained, the PDR position is compared with 
that of the RSS (which is supposed to be aecurate). If the two 
positions are similar, the PDR is assumed to be performing 
well, so the localization period is increased. Otherwise, the 
localization period is reduced. 

The simulation environment comprises a sensor network 
composed of M reference nodes deployed on a rectangular 



grid covering an área of xmax x xmax m2. Two different 
trajectories have been simulated for the mobile node: a 
uniform circular motion and a trajectory generated with the 
random waypoint mobility model [16]. 

When the simulation starts, the mobile node performs a 
RSS localization and schedules the next localization T 
seconds later. Then it starts moving and the initial 
localization result is used as the starting point for the PDR 
algorithm. After T seconds a new RSS localization is 
performed, which will reset the PDR positioning error, and 
the procedure will continué. The localization period T and 
the number of packets («) are chosen according to the proper 
strategies. 

RSS localization is simulated in the following way. The 
log-normal channel model (1) is used to transform the real 
distances between the nodes into RSS measurements. Once n 
valúes of the RSS for each mobile-reference node pair are 
obtained, those RSS valúes below the sensitivity threshold 
are discarded and those above the threshold are averaged and 
used to obtain the pair-wise distance estimations. Finally, 
these estimated distances are used to estimate the position of 
the mobile node using the weighted hyperbolic positioning 
algorithm [11]. The message exchange strategy for the RSS-
based localization is simulated as described in Section IV. 

On the other hand, from the simulated trajectory of the 
node, the real accelerations and angular rates in the mobile 
reference system are obtained (with a sampling rate of fs). 
Noise and bias are then added to genérate the simulated 
inertial measurements, which are then integrated to obtain 
the estimated position using the equations in [15]. Since the 
initial position, speed and orientation are needed when the 
PDR is started, the PDR is reset after each RSS localization 
using the estimated position as the initial position. The initial 
speed and orientation are ideally initialized with their trae 
valúes. 

In the following figures we present the performance of 
the considered methods for a simulation environment withM 
= 9 anchor nodes in a 20 x 20 m2 área, where a mobile node 
follows a circular trajectory during 500 s. The inertial 
measurements are affected by acceleration noise (o¿ = 
5.7575T0"2 m/s2) and gyroscope bias (B = 107h) and are 
taken at a sampling frequency fs = 50 Hz. The propagation 
channel is modeled using the log-normal model, with 
parameters r¡ = 2.5, <r= 5 dB and.4 = -60 dB (coverage radio 
around 25 m, as the sensitivity was set to S = -95 dBm). The 
máximum localization period was set to 30 s for all the 
strategies. 

Fig. 2 shows how the proposed strategy adapts T and n 
depending on the desired accuracy. As expected, when the 
desired accuracy is lower, T is allowed to be higher and n 
smaller. The sharp behavior is due to the fact that n must be 
an integer, so if n decreases by 1, the accuracy of the RSS-
based localization decreases significatively and, thus, T 
should be reduced with respect to its previous valué in order 
to increase the accuracy of the PDR system. The relation 
between the final localization accuracy and the energy 
consumption of the proposed strategy is shown in Fig. 3, 
where the different points were obtained for different valúes 
of the desired accuracy. 

2 2.5 3 3.5 4 15 5 \ 2.5 3 3.5 4 4.5 5 
Máximum desired error (m) Máximum desired error (m) 

Figure 2. Valúes of T and n given by the proposed strategy as a function 
of the desired accuracy. 

1 1.5 2 2.5 3 3.5 4 4.5 5 
Radio Energy consumption (mj) 

Figure 3. Error-Consumption curve for the proposed method. Each point 
was obtained for a different desired accuracy (from 2 m to 6 m). The 
average valué of n corresponding to each point is also represented. 

Fig. 4 represents the relation between the radio energy 
consumption and the average accuracy of the localization for 
the considered strategies, obtained for a target accuracy of 3 
m and for different valúes of n. Note that the valué of n 
determines the accuracy of the radio localization. Only the 
proposed strategy calculates its optimum valué, together with 
the localization period. The other strategies should decide a 
priori the number of packets whose RSS should be averaged 
to get each localization. This figure highlights the 
importance of properly choosing its valué: smaller valúes of 
n yield in general lower energy consumption but also lower 
localization accuracy. Obviously, for the proposed strategy, 
as n is calculated automatically, the valúes of energy 
consumption and accuracy do not change. 

50 10 20 30 40 50 
Radio Energy consumption {mJ) 

Figure 4. Error-Consumption curves for different valúes of n (from 1 to 
7), for a speed of 1/100 rps (~0.5 m/s) and a máximum desired error of 3 m. 

It can be seen that the periodic strategies consume much 
more energy than the proposed one. The same applies to the 
strategy that adjusts the localization period from the speed 
measured by the inertial sensors, even if this strategy has a 
lower energy consumption than the periodic ones, as it 
adapts the localization period to the real speed of the mobile 
node (in this case around 0.5 m/s, one third of the máximum 
speed -1.5 m/s- considered for the periodic strategies). 
Finally, the two strategies that use previous RSS localization 
results to adjust the localization period (either by estimating 



the speed from the two last localizations, or by taking the 
RSS-based localization as a reference to determine the PDR 
accuracy) are greatly affected by the accuracy of the RSS-
based localization: for small valúes of n (not enough to make 
the RSS localization error smaller than the desired accuracy), 
their performance degrades very quickly, giving raise to an 
extremely high energy expenditure, as they try to reduce the 
error by increasing the localization frequency, which in these 
cases is impossible. 

The proposed strategy has the lowest radio energy 
consumption (2.5 mJ), whereas the lowest energy 
consumption for the PDR-accuracy based method (the 
second best) is more than twice this valué in the best case 
(5.4 mJ, for n = 5). Besides, the proposed method achieves 
an average localization accuracy below the máximum 
desired error. Therefore, among all the considered methods, 
the one proposed in this paper is able to guarantee the 
desired accuracy while effectively minimizing the radio 
energy consumption. 

The previous simulation was repeated for different 
speeds of the mobile node, and for the random waypoint 
mobility model, obtaining similar results. Different target 
accuracies were also simulated. We noticed that for lower 
valúes of the desired localization error, the two methods that 
use previous RSS localization results to adjust the 
localization period are more affected by the valué of n 
(leading to a very high energy consumption if n is not large 
enough). Therefore, in order to use these strategies, one 
should select the valué of n carefully, otherwise, the 
performance could be completely unsatisfactory. With 
respect to the other three strategies, their energy 
consumption ulereases when the desired máximum error is 
lower, as expected, but their accuracy does not adapt to the 
desired one. Finally, the proposed strategy adapts to the 
desired accuracy by increasing the energy consumption in 
such a way that achieves a lower energy consumption than 
the other methods while, at the same time, obtains, in 
average, the desired localization accuracy. 

VIL CONCLUSIÓN 

In this paper we have proposed an strategy for combined 
RSS-PDR localization systems that jointly optimizes the 
localization frequency and the number of radio 
measurements at each localization period with the aim of 
minimizing the energy consumption while achieving a 
desired accuracy in the localization results. The numerical 
evaluation has shown a good performance of the proposed 
approach in comparison with other approaches available in 
the literature, since it is able to guarantee an average final 
localization accuracy below the máximum desired error 
while effectively minimizing the radio energy consumption. 
Besides, the method establishes automatically the best valué 
of n, so no attention has to be paid into tuning this parameter 
for an acceptable performance, as it oceurs for other 
strategies. 

Future work will address the integration of the 
transmission power in the optimization framework and the 
extensión of the proposed approach to more complex RSS-
PDR localization systems, as those combining RSS and 

inertial measurements through particle filters. On the other 
hand, we have deployed a testbed with MicaZ and Shimmer 
devices and we are starting to carry out some experimental 
tests, which seem encouraging. We are also planning to 
incorpórate orientation and speed resets through practical 
approaches, as using GPS (outdoors) or magnetometers 
(indoors). 
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