

Uncertainty assessment methodologies applied to Tritium production in fusion lithium breeding blankets

O. Cabellos^(1,2), C.J. Diez⁽²⁾, J.S. Martínez⁽²⁾

⁽¹⁾Instituto de Fusión Nuclear ⁽²⁾ Departamento de Ingeniería Nuclear

Universidad Politécnica de Madrid (UPM)

10th Kudowa Summer School "Towards Fusion Energy" June 14-18, 2011 View metadata, citation and similar papers at core.ac.uk

Outline

1. Motivation

- Need of Tritium production
- Neutronic objectives
- The Frascati experiment
- Measurements of Tritium activity

2. Error propagation techniques for activation

- Sensitivity/Uncertainty analysis
- Monte Carlo method

3. Nuclear Data Uncertainties

- ⁷Li and ⁶Li

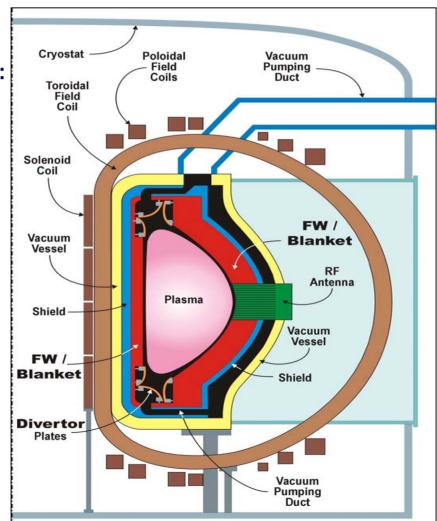
4. Uncertainty Results

- Measurements of tritium activity in HCLL TBM mock-up LiPb

5. Conclusion

2

1. Motivation. Need of T production


- Deuterium-tritium burning fusion systems need to be continuously fueled with:

 a) Deuterium: available from natural water
 b) Tritium: that has to be produced
- Within the reactor Tritium production occurs:

 $^{2}D + n \rightarrow T$

but a very low rate (1 Kg/year)

- Reactor core surroundings:
 - a) sustain a clean plasma domain
 - **b)** recover energy for exploitation
 - c) shield structures and personnel
 - d) breed the plasma with Tritium

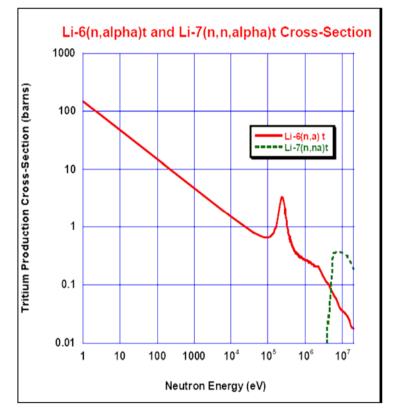
1. Motivation. Need of T production

It is possible to produce Tritium from the reactions

⁷Li + n \rightarrow T + ⁴He + n - 2.8 MeV

(that works with the high energy neutrons)

<u>⁶Li + n → T + ⁴He + 4.8 MeV</u>


(low energy regions, decelerated neutrons)

Tritium generation rate

 $\mathsf{G}=\int_{V}\!\!\!\int_{\mathsf{E}}\!\!\!\phi\,\rho\,\sigma$

depends on neutron flux intensity, Li density and Li cross section

- Optimum tritium breeding requires
 - a) Increase the number of neutrons (neutron multipliers)
 - b) Increase the number of the slower neutrons (6 Li σ)
 - c) Lithium 6 enrichments

Natural mixture: 92.5 % ⁷Li, only 7.5 % ⁶Li

1. Motivation. Neutronic objectives

Module box (container & surface heat extraction) Figure 4 extraction From PDLI Figure 4 extraction Figu

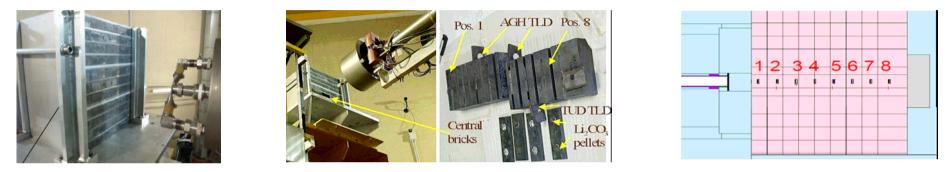
HCLL: Helium-Cooled Lithium-Lead


Several test objectives of the TBM:

- Electromagnetic
- Neutronic

validation of the *capability of the neutronic codes* and *existing nuclear data to predict* the TBM nuclear response, including neutron fluxes and spectra, *the tritium production rate*, nuclear heat deposition, neutron multiplication and shielding efficiency.

- Thermo-mechanic and tritium control
- Integral

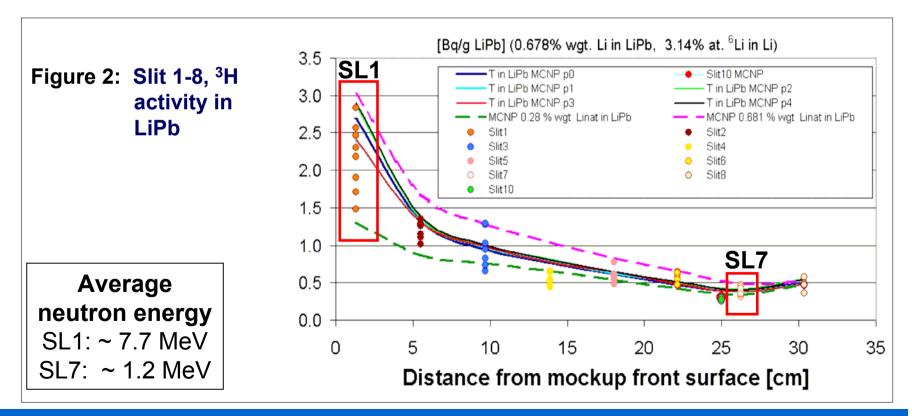


TBM: Test Blanket Module to be installed in ITER

1. Motivation. The Frascati experiment

Neutronic

validation of the capability of the neutronic codes and existing nuclear data to predict the tritium production rate



- At Frascati Neutron Generator Laboratory breeding blanket mock-ups are irradiated to study the tritium production variation with depth in LiPb samples under fusion condition neutron fluxes (14 MeV)
- We can take advantage of the experimental results to:
 - a) validate transport codes and prediction methodologies
 - b) sensitivity studies: tritium production **uncertainty assessment**. Main contributors
 - c) identify lacks and necessary **improvements of the nuclear** data involved in the tritium production

MEASUREMENTS vs MODELS {nuclear data & uncertainties}

1. Motivation. *Measurements of Tritium activity*

- EFFDOC 1113: "Measurements of tritium activity in HCLL TBM mock-up LiPb material irradiated in the Frascati experiment" (by W. W.Pohorecki) JEFF/EFF Meeting Paris, 31 May-2 June 2010
- T activity in LiPb mock-up material irradiated in Frascati: measurement and MCNP results.

7

2. Error propagation techniques for activation

Goal: "to analyse how ND uncertainty is transmitted to N"

$$\frac{d}{dt}N = AN \qquad N = (N_1, N_2, ...) \\ \sigma = (\sigma_1, \sigma_2, ...) \qquad \square > N_i = N_i(\sigma)$$

1) Sensitivity / Uncertainty Analysis (S/U)

Method based on <u>the first order Taylor series</u> to estimate uncertainty indices for each reaction cross section in a continuous irradiation scenario (*linear approximation*)

2) Monte Carlo Uncertainty Analysis (MC)

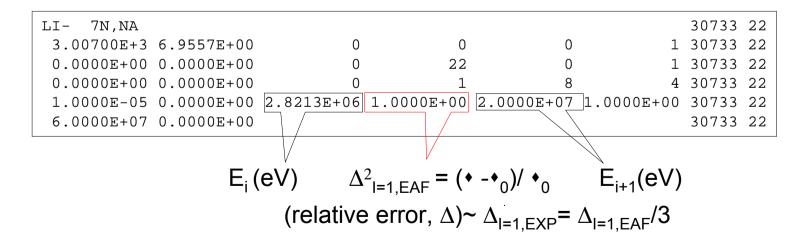
- To treat the global effect of all cross sections uncertainties in activation calculations, we have proposed an uncertainty analysis methodology based on <u>Monte Carlo</u> random sampling of the cross sections
- Assignment of a <u>Probability Density Function (PDF)</u> to each cross section

2. Error propagation techniques. Sensitivity/Uncertainty Analysis

We assume only XS uncertainties:

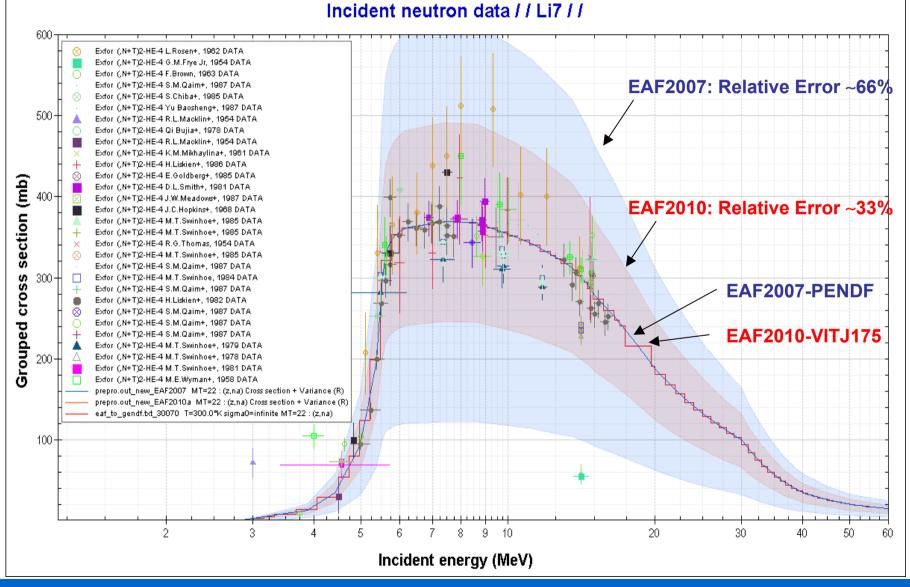
Г

3. Nuclear Data Uncertainties (EAF/UN)


Review of available uncertainty cross-section data

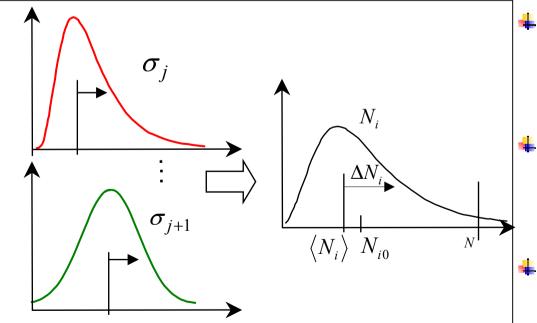
→ Activation-oriented nuclear data libraries

4 EAF2003/5/7/10-UN


Evaluated libraries from experiments and theoretical models

Cross sections, standard deviations, variances, covariances ...

e.g.: EAF2007 Li⁷(n,na) T


EAF 2010&2007 Uncertainties: ⁷Li(n,T)

14-18 June 2011, Kudowa Zdroj

2. Error propagation techniques. *Monte Carlo Method*

- We use simultaneous random sampling of all the XS PDFs involved in the problem. PDF is assigned to each σ_j
- PDF assumed to be lognormal

$$\frac{d}{dt}N = AN$$

- From the sample of the random vector σ , $\sigma = (\sigma_1..., \sigma_j..., \sigma_m)$ the matrix **A** is computed and the vector of nuclide quantities **X** is obtained $N = (N_1..., N_i..., N_n)$
- Repeating the sequence, we obtain a sample of isotopic concentration vectors. The statistic estimators of the sample can be estimated
- Enables to investigate the global effect of the complete set of $\Delta \sigma$ on N

4.Uncertainty results of tritium activity in Frascati LiPb mock-up

Table 5: Tritium Uncertainty Prediction in SL1 and SL7 using EAF2007/UN

	SL1	SL7
	Depleted Li6	Depleted Li6
	3.14% Li6 in Li	3.14% Li6 in Li
Total Bq (at shutdown)	3.47	0.28
Only due to Li	3.33	0.28
Dnly Li6	0.40	0.26
Dnly Li7	2.93	0.02
Sensitivity Coefficiente: $\rho = (DN/N) / (DXS/XS)$ in %		
.i6(n,T)He4	0.12	
i7(n,na)T	0.84	0.09
F19(n,T)	0.04	
/lg25(n,T)	1.14E-06	
519(n,nT)	6.36E-03	
Sensitivity/Uncertainty (%) = $\rho^*\Delta$		
.i6(n,T)He4	0.38	3.03
.i7(n,na)T	→ 56.21	
F19(n,T)	0.70	
 -19(n,nT)	0.85	
Sensitivity/Uncertainty (%)= (ρ*Δ)	56.22	6.51
	30.22	0.01
	_	
Uncertainty with Monte Carlo		
Mean value	4.27	0.29
Relative error (%)	67.03	8.77

 $\succ \rho\,$: is the sensitivity coefficient for the tritium production

 $\succ \Delta$: is the corresponding relative error collapsed in 1 group

> the index " $\rho\Delta$ " that can be used to rank cross sections inducing the highest uncertainties

10th Kudowa Summer School "Towards Fusion Energy"

14-18 June 2011, Kudowa Zdroj

- Deviations in MCNP calculations of produced Tritium at high energies (\sim 7 MeV) can be caused by ⁷Li(n,an)T cross section uncertainties.
- An experimental effort should be done in order to improve ⁷Li tritium production nuclear data quality
- Tritium production rate calculations are not affected by these uncertainties due to the energy range in which the tritium production from ⁷Li happens

6. References

For this work

- EFFDOC-1144, A Comparison of different Uncertainty Activation Cross-Section Data Libraries. Application to the Prediction Uncertainty in Tritium Production, O. Cabellos
- EFFDOC-1101, Improvements in the Prediction Capability of ACAB Code to Transmutation Analysis in IFMIF, O. Cabellos

Other references in uncertainty calculations

- Effect of activation cross-section uncertainties on the radiological assessment of the MFE/DEMO first wall, Fusion Engineering and Design, Volume 81, Issues 8-14, February 2006, Pages 1561-1565, O. Cabellos, S. Reyes, J. Sanz, A. Rodriguez, M. Youssef, M. Sawan
- Effect of activation cross-section uncertainties in selecting steels for the HYLIFE-II chamber to successful waste management, Fusion Engineering and Design, Volumes 75-79, November 2005, Pages 1157-1161, J. Sanz, O. Cabellos, S. Reyes
- Effect of activation cross section uncertainties in the assessment of primary damage for MFE/IFE low-activation steels irradiated in IFMIF, Journal of Nuclear Materials, Volumes 386-388, 30 April 2009, Pages 908-910, O. Cabellos, J. Sanz, N. García-Herranz, B. Otero
- Impact of activation cross-section uncertainties on the tritium production in the HFTM specimen cells, Journal of Nuclear Materials, Available online 1 January 2011, O. Cabellos, A. Klix, U. Fischer, N. Garcia-Herranz, J. Sanz, S. Simakov
- Assessment of fissionable material behaviour in fission chambers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 618, Issues 1-3, 1 June 2010-21 June 2010, Pages 248-259, O. Cabellos, P. Fernández, D. Rapisarda, N. García-Herranz
- Nuclear data requirements for the ADS conceptual design EFIT: Uncertainty and sensitivity study, Annals of Nuclear Energy, Volume 37, Issue 11, November 2010, Pages 1570-1579, N. García-Herranz, O. Cabellos, F. Álvarez-Velarde, J. Sanz, E.M. González-Romero, J. Juan
- Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations, Annals of Nuclear Energy, Volume 35, Issue 4, April 2008, Pages 714-730, Nuria García-Herranz, Oscar Cabellos, Javier Sanz, Jesús Juan, Jim C. Kuijper