

A Comparison of Sensitivity/Uncertainty Methodologies for the Tritium Production in 1) the HFTM/IFMIF Specimen Cells & 2) measurements in Tritium activity in HCLL TBM mock-up LiPb

O. Cabellos^(1,2), C.J. Diez⁽²⁾, J.S. Martínez ⁽²⁾

(1)Instituto de Fusión Nuclear
 (2) Departamento de Ingeniería Nuclear

Universidad Politécnica de Madrid (UPM)

Workshop on Activation Data - EAF 2011 01-03 June 2011, Prague

Workshop on Activation Data - EAF 2011

01-03 June 2011, Prague

, citation and similar papers at <u>core.ac.uk</u>

OUTLINE

1. Motivation of this presentation

- HFTM/IFMIF Specimen Cells
- Measurements of tritium activity in HCLL TBM mock-up LiPb

2. Error propagation techniques for activation

- Sensitivity/Uncertainty analysis
- Monte Carlo method

3. Nuclear Data Uncertainties

- ²³Na and ⁵⁶Fe
- ⁷Li and ⁶Li

4. Uncertainty Results

- HFTM/IFMIF Specimen Cells
- Measurements of tritium activity in HCLL TBM mock-up LiPb

5. Conclusion

1. Motivation of this work: (1) HFTM/IFMIF Specimen Cells

The prediction of the tritium production is required for handling procedures of samples, safety&maintenance and licensing of the International Fusion Materials Irradiation Facility (IFMIF).

Table 1. Initial composition (in %atom fraction) for the three testrigs

Element	Rig-1	Rig-2	Rig-3
Cr	7.1	9.3	7.9
С	0.40	0.5	0.4
Mn	0.30	0.39	0.33
V	0.26	0.21	0.18
W	0.22	0.29	0.25
Та	0.016	0.021	0.018
Fe	65.50	86.0	73.4
Na	18.0	2.3	12.0
K	8.30	1.0	5.5

1. Motivation of this work: (1) HFTM/IFMIF Specimen Cells

The prediction of the tritium production is required for handling procedures of samples, safety&maintenance and licensing of the International Fusion Materials Irradiation Facility (IFMIF).

1. Motivation of this work: (1) HFTM/IFMIF Specimen Cells

 EFFDOC – 1054: "Estimation of the tritium production in the HFTM specimen cells"(by A. Klix) JEFF/EFF Meeting Paris, 18-20 Nov 2008

Total tritium production in all rigs is **23.4 Ci/fpy** (calc. with IEAF-2001) Largest contribution from iron, but...

1. Motivation of this work: (2) Measurem. of tritium activity

- EFFDOC 1113: "Measurements of tritium activity in HCLL TBM mock-up LiPb material irradiated in the Frascati experiment" (by W. W.Pohorecki) JEFF/EFF Meeting Paris, 31 May-2 June 2010
- T activity in LiPb mock-up material irradiated in Frascati: measurement and MCNP results.

JEFF/EFF Meeting May 2011

1. Motivation of this work: (3) XSs Uncertainties on TPR calc.

• EFFDOC – 1135: "Analysis of the HCLL Blanket Mock-up Experiment" (by R. Villari et al.) JEFF/EFF Meeting Paris, 9-11 May 2011

2. Error propagation techniques for activation

Goal: "to analyse how ND uncertainty is transmitted to N"

$$\frac{d}{dt}N = AN \qquad N = (N_1, N_2, ...) \\ \sigma = (\sigma_1, \sigma_2, ...) \qquad \square > N_i = N_i(\sigma)$$

1) Sensitivity / Uncertainty Analysis (S/U)

Method based on <u>the first order Taylor series</u> to estimate uncertainty indices for each reaction cross section in a continuous irradiation scenario (*linear approximation*)

2) Monte Carlo Uncertainty Analysis (MC)

- To treat the global effect of all cross sections uncertainties in activation calculations, we have proposed an uncertainty analysis methodology based on <u>Monte Carlo</u> random sampling of the cross sections
- Assignment of a <u>Probability Density Function (PDF)</u> to each cross section

2.1. Sensitivity/Uncertainty Analysis

We assume only XS uncertainties:

2.2. Monte Carlo Method

↓ We use simultaneous random sampling of all the XS PDFs involved in the problem. PDF is assigned to each σ_j : $\sigma_j \rightarrow N(\sigma_{j0}, var(\sigma_j)) \implies \varepsilon_j \rightarrow N(0, \Delta_j^2)$

$$\log \begin{pmatrix} (\sigma_1 / \sigma_{10}) \\ (\sigma_2 / \sigma_{20}) \\ \vdots \\ (\sigma_m / \sigma_{m0}) \end{pmatrix} \rightarrow N(0, V)$$

 \Rightarrow For large values of Δ_i , σ_i could be negative!

4 PDF assumed to be lognormal: $\log(\sigma_j / \sigma_{j0}) = \log(1 + \varepsilon_j) \approx \varepsilon_j \rightarrow N(0, \Delta_j^2)$

- From the sample of the random vector σ , $\sigma = (\sigma_1..., \sigma_j..., \sigma_m)$ the matrix **A** is computed and the vector of nuclide quantities **X** is obtained $N = (N_1..., N_i..., N_n)$
- Repeating the sequence, we obtain a sample of isotopic concentration vectors. The statistic estimators of the sample can be estimated
- Enables to investigate the global effect of the complete set of $\Delta \sigma$ on N

Applicability of 1st Taylor-series expansion

- "The deterministic S/U approach should be used wherever it provides sufficiently accurate results"
- "Normally, this will be the case when errors are relatively small and the conditions not extreme"

3. Nuclear Data Uncertainties (EAF/UN)

Review of available uncertainty cross-section data

- → Activation-oriented nuclear data libraries
 - **FENDL UN/A-2.0, EAF2003/5/7/10-UN**

- > The PDF for each XS is assumed to be lognormal: $\log(\sigma/\sigma_0) \sim N(0,\Delta)$
 - σ_0 = the best-estimate XS value contained in the EAF-XS library
 - $\Delta = \Delta^2_{\text{LIM}}$ /9, being Δ^2_{LIM} the variance included in the EAF-UN library

e.g.: FISPACT2007	$\log(\sigma_{exp}/\sigma_{calc}) \sim N(0,\Delta)$, and f=1+ Δ
Manual	$\sigma_{cal}/f < \sigma < \sigma_{cal}^*f$

Workshop on Activation Data - EAF 2011

3.1 HFTM/IFMIF Tritium prediction cross-sections

Figure 3. Tritium production cross section for Fe54

Fe54: Large discrepancy between IEAF2001 and the other evaluated ND libraries.

3.1 HFTM/IFMFIF Tritium prediction cross-sections

Na23: many evaluated data libraries do not contain tritium producing reactions, and large discrepancy between libraries

3.1 Uncertainties in Tritium prediction: EAF2007&2010/UN

Figure 5. ²³Na (n,T) and (n,nT) cross-sections: EAF2007/2010

3.1 TENDL2010: ²³Na(n,xT)

Figure 6. ²³Na (n,T) and (n,nT) cross-sections: EAF2010 and TENDL2010/EAF

Workshop on Activation Data - EAF 2011

3.1 TENDL2010: ²³Na(n,xT)

3.1 TENDL2010: ⁵⁶Fe(n,xT)

Figure 7. ⁵⁶Fe (n,T) and (n,nT) cross-sections: EAF2010 and TENDL2010/EAF

3.2 EAF 2010&2007 Uncertainties: ⁷Li(n,T)

Workshop on Activation Data - EAF 2011

01-03 June 2011, Prague

3.2 EAF 2010&2007: Covariance matrix: ⁷Li(n,T)

• Given V the G-by-G variance matrix of the relative XSs vector, the variance Δ^2 of the relative spectrum-averaged cross section is:

$$\Delta^2 = \omega^T V \omega \quad \text{; with} \quad \omega = \left[\frac{\phi_1}{\overline{\phi}} \frac{\sigma_1}{\sigma^{\text{eff}}}, \cdots, \frac{\phi_G}{\overline{\phi}} \frac{\sigma_G}{\sigma^{\text{eff}}}\right]^T$$

• Assuming
$$\Delta^2_{I=1,EAF}$$
 (relative error, Δ)

$$\rightarrow \Delta_{I=1,EXP} = \Delta_{I=1,EAF}/3$$

1group uncertainty for SL1								
Uncert 1group (EAE2007) = Λ	۸ ²	Polativo Exp Error (%)						
Li6(n,T)He4	△ EAF2007 0.01	3.33						
Li7(n,na)T	4.00	66.67						
F19(n,T)	0.36	20.00						
 F19(n,nT)	16.00	133.33						
	0							
Uncert_1group (EAF2010) = Δ	$\Delta^2_{EAF2010}$	Relative Exp Error (%)						
Li6(n,T)He4	0.01	3.33						
Li7(n,na)T	1.00	33.33						
F19(n,T)	0.36	20.00						
 F19(n,nT)	4.00	66.67						

Workshop on Activation Data - EAF 2011

3.2 ENDF/B-VII vs EAF2010: ⁷Li(n,T)

3.2 ENDF/B-VII Covariance Matrix in 44g: ⁷Li(n,T)

Workshop on Activation Data - EAF 2011

01-03 June 2011, Prague

3.2 ENDF/B-VII: in Δ_{1g} for SL1: ⁷Li (n,T)

Cross-sections collapsed in 1 group with SL1

					<u> </u>		
	MT853	MT854	MT855	MT856	MT857	MT858	MT859
XS MTs_1g	7.12E-03	4.76E-02	1.48E-02	2.10E-02	2.71E-02	1.53E-02	2.19E-33
MTs/MTtotal	0.05	0.36	0.11	0.16	0.20	0.12	0.00

Relative cocariance matrix

	MT853	MT854	MT855	MT856	MT857	MT858	MT859
MT853	2.49E-03	0.00E+00	2.02E-04	-2.17E-06	-3.54E-05	-2.22E-05	-5.78E-20
MT854	0.00E+00	1.15E-03	-3.16E-04	-4.86E-04	-6.74E-04	-3.38E-04	-7.81E-18
MT855	2.02E-04	-3.16E-04	1.56E-03	1.70E-04	-1.42E-04	-7.21E-05	-5.10E-19
MT856	-2.17E-06	-4.86E-04	1.70E-04	2.07E-03	-2.60E-04	-1.25E-04	-1.36E-18
MT857	-3.54E-05	-6.74E-04	-1.42E-04	-2.60E-04	2.11E-03	2.24E-04	-2.97E-18
MT858	-2.22E-05	-3.38E-04	-7.21E-05	-1.25E-04	2.24E-04	3.16E-03	3.10E-17
MT859	-5.78E-20	-7.81E-18	-5.10E-19	-1.36E-18	-2.97E-18	3.10E-17	0.00E+00

Relative error(%) covariance matrix

	MT853	MT854	MT855	MT856	MT857	MT858	MT859
MT853	4.99	0.00	1.42	0.15	0.59	0.47	0.00
MT854	0.00	3.39	1.78	2.20	2.60	1.84	0.00
MT855	1.42	1.78	3.95	1.31	1.19	0.85	0.00
MT856	0.15	2.20	1.31	4.55	1.61	1.12	0.00
MT857	0.59	2.60	1.19	1.61	4.59	1.50	0.00
MT858	0.47	1.84	0.85	1.12	1.50	5.62	0.00
MT859	0.00	0.00	0.00	0.00	0.00	0.00	0.00

The relative error in 1group "lumped XS" is only 1.17% !!!

1.17

Rel. Err. in 1g (%)

3.2 ENDF/B-VII vs EAF2010: ⁶Li(n,T)

Workshop on Activation Data - EAF 2011

01-03 June 2011, Prague

3.2 EAF 2010/2007 and SCALE6.0: Covariance matrix: ⁶Li(n,T)

Workshop on Activation Data - EAF 2011

01-03 June 2011, Prague

3.2 ENDF/B-VII : Covariance Matrix in 44g: ⁶Li(n,T)

SL1Uncert_1group (ENDF/B-VII) = Δ $\Delta^2_{ENDF/B-VII}$ Relative Exp Error (%)Li6(n,T)He46.64E-060.26

	SL7				
Uncert_1group (ENDF/B-VII) = Δ	$\Delta^2_{ENDF/B-VII}$ Relative Exp Error (%)				
Li6(n,T)He4	1.59E-06 0.13				

3.2 TENDL2010: ⁷Li(n,T)

Figure 8. ⁷Li (n,T) cross-sections: EAF2010 and TENDL2010/EAF

Workshop on Activation Data - EAF 2011

3.2 TENDL2010: ⁶Li(n,T)

Figure 9. ⁶Li (n,T) cross-sections: EAF2010 and TENDL2010/EAF

Workshop on Activation Data - EAF 2011

4. Uncertainty Results

- Sensitivity / Uncertainty Analysis (S/U)
 - Method based on the first order Taylor series to estimate uncertainty indices for each reaction cross section

Is it necessary to take into account non-linear effects ?

How many sensitivity coefficients should be calculated ?

- Monte Carlo Uncertainty Analysis (MC)
 - To treat the global effect of all cross sections uncertainties in activation calculations, we have proposed an uncertainty analysis methodology based on <u>Monte Carlo</u> random sampling of the cross sections
 - Assignment of a <u>Probability Density Function (PDF)</u> to each cross section

Which PDFs should be taken ?

4.1 HFTM/IFMIF Tritium Prediction Uncertainties

4 Uncertainty calculation

Table 2. Tritium production calculated with EAF2007

0.6	0.8	0.7	0.6
0.7±0.3	1.0±0.5	0.9±0.3	0.7±0.3
0.9	1	0.9	0.9
1.1±0.6	1.2±0.5	1.1±0.4	1.1±0.6
1.1	1.2	1.3	1.1
1.4±0.5	1.4±0.5	1.6±0.9	1.4±0.5

Nominal value (Ci/fpy) Mean ± s.d. (Ci/fpy)

- nominal value (Ci/fpy) calculated with the best-estimate XS data

- mean value (Ci/fpy) and standard deviation (Ci/fpy) calculated with the uncertainty library using the Monte Carlo method with ACAB code

4 Total tritium prediction:

- IEAF2001: 23.4 Ci/fpy
- **EAF-2007:** 11.2 Ci/fpy (best-estimate)
- EAF2007/UN: 13.7±6 (Uncertainties)
- **4** Relative errors up to 51% in tritium prediction can be found in rig 2
- Similar relative errors for the same rigs positioned in different locations
- Histogram of the Monte Carlo sampling fit to a long tail lognormal distribution

4.1 HFTM/IFMIF Uncertainty Results

Baseline results: Histogram of the 1000 values by MC method

Workshop on Activation Data - EAF 2011

 Table 3 . Uncertainty and sensitivity information for cross sections that contribute most to the uncertainty in the tritium prediction.

Isotope	ρ _{jT}	∆ (%)	ρ _{j∓} *Δ	
Fe ⁵⁶ (n,nt)	0.07	133.3	9.03	
Na ²³ (n,nt)	0.06	133.3	8.39	
Na ²³ (n,t)	0.38	4.3	1.86	
Fe ⁵⁶ (n,t)	0.31	4.3	1.32	- ∼ 23% !!!
K ³⁹ (n,nt)	0.008	133.3	1.08	
Na ²³ (n, tα)	0.01	66.7	0.68	
Cr52(n,nt)	0.005	133.3	0.64	
		Total	???	

- ho_{jT} is the sensitivity coefficient for the tritium production from the activation of an isotope after 1fpy
- \succ Δ is the corresponding relative error
- > the index $\rho_{iT}^*\Delta$ that can be used to rank cross sections inducing the highest uncertainties in the tritium prediction

4.1 Sensitivity analysis in the HFTM specimen cells

Element-by-element uncertainty analysis

Table 4. Tritium production and standard deviation (in Ci/fpy) due to an initial mass of 1000 grams for each initial element used in HFTM rigs in the three zones A, B and C.

Zone	Cr	С	Fe	K	Mn	Na	Та	V	W
А	4.2±2.5	46.2±10.8	6.0±3.4	14.0±6.4	9.6±7.6	57.2±40.8	1.8±1.4	6.1±7.4	1.6±0.9
В	2.8±1.6	31.1±7.2	4.1±2.3	9.6±4.3	6.5±5.1	39.2±27.5	1.3±1.0	4.1±4.9	1.1±0.6
С	2.4±1.4	26.3±6.1	3.5±2.0	8.1±3.6	5.5±4.3	33.3±23.2	1.1±0.8	3.5±4.1	0.9±0.5

- Na is the element with the largest generation of tritium
- **V** is the element with the largest relative error (~120%)
- **Fe and Na have relative errors of ~56% and ~70%, respectively**

4.2 Uncertainty of tritium activity in HCLL TBM mock-up LiPb

Table 5: Tritium Uncertainty Prediction in SL1 and SL7 using EAF2007/UN

	SL	1	SL7	SL7		
	Natural Abundance 7.25% Li6 in Li	Depleted Li6 3.14% Li6 in Li	Natural Abundance 7.25% Li6 in Li	Depleted Li6 3.14% Li6 in Li		
Total Bq (at shutdown)	3.92	3.47	0.64	0.28		
Only due to Li	3.78	3.33	0.64	0.28		
Only Li6	0.96	0.40	0.62	0.26		
Only Li7	2.82	2.93	0.02	0.02		
Sensitivity Coefficiente: ρ = (DN/N) / (DXS/XS) in %						
Li6(n,T)He4	0.25	0.12	0.96	> 0.91		
Li7(n,na)T	0.72	0.84	0.04	0.09		
F19(n,T)		0.04				
Mg25(n,T)		1.14E-06				
 F19(n,nT)	•••	6.36E-03				
Sensitivity/Uncertainty (%) = $\rho^*\Delta$						
Li6(n,T)He4	0.82	0.38	3.21	3.03		
Li7(n,na)T	47.83	5 6.21	2.43	──→ 5.76		
F19(n,T)		0.70				
 E19(n nT)		0.85				
Sensitivity/Uncertainty (%)= (ρ*Δ)	47.84	56.22	4.03	6.51		
Uncertainty with Monte Carlo						
Mean value Relative error (%)	4.67 58.62	4.27	0.65 4.78	0.29		

 $> \rho$: is the sensitivity coefficient for the tritium production

 $\succ \Delta$: is the corresponding relative error collapsed in 1 group

> the index " $\rho\Delta$ " that can be used to rank cross sections inducing the highest uncertainties

Workshop on Activation Data - EAF 2011

01-03 June 2011, Prague

4.2 Monte Carlo sampling using a LogN PDF

Mean Value: $T_M = 4.27$ Bq/g; and relative error : 67.03%

Table 6. Tritium Uncertainty Prediction in SL1 and SL7 using EAF2007/UN

	SL1 (3	3.47 Bq)	SL7 (0.28 Bq)		
	Normal	Log Normal	Normal	Log Normal	
Uncertainty with Monte Carlo					
Mean value	3,79	4,27	0,29	0,29	
Relative error (%)	45,10	67,03	5,77	8,77	

5. Conclusions

- 1. A Comparison of error propagation methodologies for the Tritium Production has been performed:
 - ✓ Tritium Production in the HFTM/IFMIF Specimen Cells
 - ✓ Measurements in Tritium activity in HCLL TBM mock-up LiPb

2. Main (n,xT) cross-section uncertainties are analyzed

- ✓ ²³Na and ⁵⁶Fe for HFTM/IFMIF
- ✓ ⁷Li and ⁶Li in HCLL TBM mock-up LiPb

3. It is shown that Monte Carlo technique is able:

- \checkmark to deal with non-linear effects or when uncertainties are high
- ✓ to provide with the global effect of the uncertainties of the complete set of nuclear data

Processing TENDL2010/EAF

- MT=18 and MT=102 with more than 10000 energy points
- Different channels in the variance and cross section files
- No uncertainties for isomeric/branching reactions

6. References

For this work

- EFFDOC-1144, A Comparison of different Uncertainty Activation Cross-Section Data Libraries. Application to the Prediction Uncertainty in Tritium Production, O. Cabellos
- **EFFDOC-1101**, Improvements in the Prediction Capability of ACAB Code to Transmutation Analysis in IFMIF, O. Cabellos

Other references in uncertainty calculations

- Effect of activation cross-section uncertainties on the radiological assessment of the MFE/DEMO first wall, Fusion Engineering and Design, Volume 81, Issues 8-14, February 2006, Pages 1561-1565, O. Cabellos, S. Reyes, J. Sanz, A. Rodriguez, M. Youssef, M. Sawan
- Effect of activation cross-section uncertainties in selecting steels for the HYLIFE-II chamber to successful waste management, Fusion Engineering and Design, Volumes 75-79, November 2005, Pages 1157-1161, J. Sanz, O. Cabellos, S. Reyes
- Effect of activation cross section uncertainties in the assessment of primary damage for MFE/IFE low-activation steels irradiated in IFMIF, Journal of Nuclear Materials, Volumes 386-388, 30 April 2009, Pages 908-910, O. Cabellos, J. Sanz, N. García-Herranz, B. Otero
- Impact of activation cross-section uncertainties on the tritium production in the HFTM specimen cells, Journal of Nuclear Materials, Available online 1 January 2011, O. Cabellos, A. Klix, U. Fischer, N. Garcia-Herranz, J. Sanz, S. Simakov
- Assessment of fissionable material behaviour in fission chambers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 618, Issues 1-3, 1 June 2010-21 June 2010, Pages 248-259, O. Cabellos, P. Fernández, D. Rapisarda, N. García-Herranz
- Nuclear data requirements for the ADS conceptual design EFIT: Uncertainty and sensitivity study, Annals of Nuclear Energy, Volume 37, Issue 11, November 2010, Pages 1570-1579, N. García-Herranz, O. Cabellos, F. Álvarez-Velarde, J. Sanz, E.M. González-Romero, J. Juan
- Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations, Annals of Nuclear Energy, Volume 35, Issue 4, April 2008, Pages 714-730, Nuria García-Herranz, Oscar Cabellos, Javier Sanz, Jesús Juan, Jim C. Kuijper