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1 INTRODUCTION 

The railway overhead (or catenary) is the system of cables responsible for providing elec-
tric current to the train. This system has been reported as wind-sensitive (Scanlon et al., 
2000), and particularly to the occurrence of galloping phenomena. Galloping phenomena of 
the railway overhead consists of undamped cable oscillations triggered by aerodynamic 
forces acting on the contact wire. As is well known, aerodynamic loads on the contact wire 
depends on the incident flow mean velocity and the angle of attack. The presence of em-
bankments or hills modifies both vertical velocities profiles and angles of attack of the flow 
(Paiva et al., 2009). The presence of these cross-wind related oscillations can interfere with 
the safe operation of the railway service (Johnson, 1996). Therefore a correct modelling of 
the phenomena is required to avoid these unwanted oscillations. 

The railway overhead is composed of three different cables, messenger, droppers and 
contact wires (Fig. 1a). The catenary stiffness depends on the distance to the centre of the 
span, see for instance Lopez-Garcia et al. (2007). However, it can be approximated to a 
spring with periodic stiffness distribution in order to establish a one degree of freedom 
(ODOF) equivalent system (Wu and Brennan, 1998) to study the dynamic interaction be-
tween catenary and pantograph. This approach simplifies the determination of the contact 
lose between both elements, but complicates the characterization of the aerodynamic damp-
ing on the equivalent system. In the simple approach herein presented, the stiffness distri-
bution is assumed constant, i.e., a catenary span is represented as a one-dimensional oscil-
lator, as shown in Figure 1.  

Aerodynamic loads caused by an incident flow can lead to the appearance of un-
damped displacements (Stickland and Scanlon, 2001). The motion of the one-dimensional 
ODOF system, y(t), exposed to an incident flow (Fig. 1b) is determined by the following 
differential equation 
 
 

 
 
Figure 1. Simplification of a catenary span (a) to a one degree of freedom oscillator (b) exposed to a steady 
incident wind flow. 
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where cs stands for the structural damping coefficient, M for the equivalent mass, K0 for the 
average stiffness of the catenary,  is the air density, S stands for the reference area, ur is 
the relative wind speed, cl the lift coefficient of the contact wire, cd the drag coefficient, and  
 the angle of attack. The angle of attack is defined as  = atan (v∞–dy/dt)/u∞, where u∞ and 
v∞ are the horizontal and vertical velocity of the incident flow, respectively. 

Some simplifications can be introduced in Equation 1 in order to study one-
dimensional galloping. Assuming  ~ (v∞–dy/dt)/u∞<<1, the linearized motion equation is 

       
2

2
2d d

2 2
d ds a n n a n

y t y t
y t v

t t
           (2) 

where s is the structural damping ratio, defined as s = cs/(2Mn), a is the aerodynamic 
damping ratio and n is the natural frequency. Note that the aerodynamic damping ratio is 
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where H() stands for den-Hartog coefficient (Alonso et al., 2007), H() = cl()+cd(), 
and cl is the lift coefficient slope. The structural damping ratio is always positive, but the 
aerodynamic damping ratio can be negative if H() is negative. Therefore, the one-
dimensional ODOF system can gallop only if H() < 0 and the incident wind speed is larg-
er than the galloping speed , ud = – 4Mns/(SH()), (Stickland and Scanlon, 2001). 

The logarithmic decrement, , of the displacement y(t) is the natural logarithm of the 
amplitude, Y, of two peaks separated n periods, i.e.,  = ln(Y0/Yn)/n. As is well-known, the 
logarithmic decrement is related to the structural and aerodynamic damping ratios, as 
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As can be appreciated, both the structural and aerodynamic damping ratios are related 
in the general problem. For the sake of simplicity, the structural damping ratio is neglected 
in order to characterise the aerodynamic damping ratio. Therefore, in the present analysis 
the aerodynamic logarithmic decrement, in the absence of structural damping, is defined as 
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In the present study, experimental aerodynamic coefficients of the contact wire are 
obtained, and the logarithmic decrement is used to compare aerodynamic damping ratios 
corresponding to the simplified model (Eq. 2) and the non-linear one-dimensional ODOF 
system (Eq. 1). 

2 EXPERIMENTAL SET-UP 

The cross-section of a typical contact wire is a non-circular one that may exhibit galloping 
phenomena. In order to determine the contact wire aerodynamic load coefficients, wind 
tunnel tests were carried out. The contact wire analysed corresponds to one of the typical 
contact wires used in the Spanish railway system, and consists of a cylinder with a nearly 
circular cross-section with two grooves, as sketched in Figure 2. 



 

 

The contact between catenary and pantograph causes friction which in the long term 
evidently wears both elements, modifying the shape of the wire. Wear modifies the aerody-
namic properties of the contact wire (Stickland and Scanlon, 2001), but the contact wire is 
not replaced while the wear effects are lower than a threshold value (maximum admissible 
wear). In order to take into account the wear effect, three different cross-sections have been 
studied: contact wire with no wear (Fig. 2a), with low wear (Fig. 2b), and with maximum 
admissible wear (Fig. 2c). The diameter of the contact wire mock-up with no wear is 
d0 = 64 mm, being the corresponding aspect ratio L0/d0 ~ 2.3, where L0 is the width of the 
model. The three mock-ups were analysed at a scale 5:1. 

An open-circuit wind tunnel with a closed test section has been used to perform the 
set of two-dimensional tests (Figure 3). The working section is 0.8 m high, 0.15 m wide 
and 1.2 m long. A 6-components strain gauge load cell, model ATI Gamma SI-130-10, has 
been used to determine the aerodynamic loads on the contact wire mock-up.  

The dynamic pressure, q =ur
2/2, has been obtained with an Air Flow 048 pitot tube, 

connected to the Schaewitz Lucas P-3061-2WD pressure transducer. The Reynolds number 
is Re = urd0/, where   1.5×10–5 m2/s is the kinematic viscosity. The wind speed at the 
test section was about 10 m/s. The Reynolds number is about 4.3×104 in the case of wire 
with no wear. Because the contact wire cross-section is symmetric, only angles of attack 
from  = - 90 to  = 90 were analysed. At each angular position, the aerodynamic loads 
and the dynamic pressure were acquired sampling at 100 Hz during 10 s (these values were 
chosen as the appropriate values after trying different sampling rates and periods).  
As is well-known the lift and aerodynamic drag coefficients are defined as, cl = L/(qB0) and 
cd = D/(qB0), respectively, where L is the lift force, D the aerodynamic drag, q is the dy-
namic pressure and B0 is the frontal area of the contact wire mock-up with no wear. The 
aerodynamic coefficients of the catenary contact wire are computed as the mean values of 
the acquired aerodynamic coefficient time series.  
 
 

 
 
Figure 2. Sketch of the contact wire cross-sections used at the experimental tests. a) wire with no wear 
(d0 = 64 mm), b) section with low wear (d1 = 53 mm), c) wire with the highest admissible wear (d2 = 43 mm). 
 
 

 
 
Figure 3. Top view of the wind tunnel used to perform the tests, with some representative dimensions. The 
tests chamber is located in 1. The strain gauge load cell is located inside the access door to the test chamber 2. 
 



 

 

3 EXPERIMENTAL RESULTS 

Experimental results corresponding to den-Hartog coefficient, H(), as function of the an-
gle of attack, , are shown in Figure 4. For those angles of attack with H() < 0, galloping 
phenomena may occur. For low angles of incidence of the flow and the contact wire with 
no wear effect, the galloping phenomena does not appear based on den-Hartog criteria. If a 
low wear effect is introduced, a galloping instability may occur for low and positive values 
of the angle of attack. However, the range of angles of attack in which this instability hap-
pens is larger and is displaced towards the negative region, in the model with the highest 
admissible wear. Also, an increase on the wear effect seems to worsen the effect of the in-
stability for lower angles of attack.  

It should be pointed out that there exist differences with results obtained by Stickland 
and Scanlon (2001). Two reasons may lay behind such apparent differences. First, both 
tests were performed independently; therefore the wind tunnels used in the tests, the ana-
lysed cross-section geometry, and the upstream flow condition are different in both studies. 
Second, the contact wire geometries used in both studies may differ, and as reported by 
Stickland and Scanlon slight differences in the cross-section geometry of the contact wire 
can produce larger qualitative differences in the aerodynamic loads. This effect can also be 
appreciated in the results herein presented. 

The aerodynamic logarithmic decrement, a0, defined in Equation 5 for angles of at-
tack from  = –͘10º to  = 10º is presented in Figure 5. In order to compute the aerodynam-
ic logarithmic decrement, the reference area is chosen as B0 = d0l, where l = 50 m is the 
length of one catenary span. The mass of the span is approximated as M ~ 84 kg, based on 
density values reported by Cho (2008). The circular natural frequency is chosen as 
n ~ 1.4 rad/s (Stickland and Scanlon, 2001). 
 
 

 
 
Figure 4. den-Hartog coefficient, H, as function of the angle of attack, , for the three contact wires analysed. 
 



 

 

 
 

 
 
Figure 5. Aerodynamic logarithmic decrement, a0, corresponding to the linear model shown in equation 5, as 
function of the angle of incidence of the flow, , and the incident flow wind speed, ur, for the catenary con-
tact wires with low wear. 
 
 

Results shown in Figure 5 correspond to the aerodynamic logarithmic decrement for 
the linear model, as shown in Equation 5. Consequently they provide qualitative infor-
mation quite similar to den-Hartog criteria, but they also provide a more simple perspective 
of the degree in which the oscillations decay or are amplified, as function of the velocity of 
the incident flow. Typical structural damping ratios are lower than s < 0.05 (s < 0.31, ap-
prox.) in many cable structures (Macdonald, 2002). As can be seen in the results, this first 
approximation provides values which are similar to the typical values of the structural 
damping ratio for those angles of attack with H() > 0 (a > 0). Therefore, if the aerody-
namic damping ratio is positive, and the incident wind speed is high enough, the aerody-
namic contribution to the damping coefficient is at least of the same order of magnitude to 
the structural one. 

4 CONCLUSIONS AND DISCUSSION 

Most of the studies related to catenary-pantograph interaction simplify the equivalent 
damping ratio to constant values to elude the characterization of the aerodynamic contribu-
tion. In this document a simplified model to estimate the aerodynamic damping ratio, as-
suming both quasi-static angles of attack and absence of structural damping is used. De-
spite the limitations of this approach, when the aerodynamic contribution counteracts the 
apparition of galloping phenomena, the aerodynamic contribution is comparable to the typ-
ical structural one. However, the damping ratios provided by this first approach are lower 
than the damping ratio used by Wu and Brennan (1998). A more thoughtful insight to the 
model should be undertaken in future to take into consideration the non-linear effects and 
the three-dimensional nature of the problem. 



 

 

 
 
Figure 6. Aerodynamic logarithmic decrement, a0, corresponding to the complete non-linear model in equa-
tion 1, when the initial condition to compute the oscillation is y0 = 0.2 m, as function of the angle of inci-
dence of the flow, , and the incident flow wind speed, ur, for the catenary contact wire with low wear effect. 
 
 

As a first attempt to compare the effect of the nonlinearities, Equation 1 can be inte-
grated in order to compute the corresponding aerodynamic logarithmic decrement, as 
shown in Figure 6 for the contact wire with low wear effect taking as initial condition a 
displacement y0 = 0.2 m. As is shown, nonlinearities introduce significant changes in the 
stability map shown in Figure 5, but they also depend on the initial conditions used. How-
ever, this approach has some limitations. Higher order approximations introduce non-linear 
effects on the aerodynamic damping ratio, modifying its value during the oscillation. 
Therefore it should be considered the shape of the of the aerodynamic coefficient in the di-
rection of the oscillation (Barrero et al., 2009) and the existence of possible limit cycles. 
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