
A user-centric approach to service creation and delivery over next
generation networks

Juan C. Yelmo, José M. del Álamo, Rubén Trapero, Yod-Samuel Martín *
Universidad Politécnica de Madrid, E.T.S.I. Telecomunicación, Av. Complutense 30, Ciudad Universitaria, Madrid 28040, Spain

A R T I C L E I N F O

Keywords:
User-generated services
Next generation networks (NGN)
Service-oriented architecture (SOA)
Mobile applications
Web 2.0

A B S T R A C T

Next Generation Networks (NGN) provide Telecommunications operators with the possibility to share
their resources and infrastructure, facilítate the interoperability with other networks, and simplify and
unify the management, operation and maintenance of service offerings, thus enabling the fast and
cost-effective creation of new personal, broadband ubiquitous services. Unfortunately, service creation
over NGN is far from the success of service creation in the Web, especially when it comes to Web 2.0. This
paper presents a novel approach to service creation and delivery, with a platform that opens to non-tech-
nically skilled users the possibility to créate, manage and share their own convergent (NGN-based and
Web-based) services. To this end, the business approach to user-generated services is analyzed and
the technological bases supporting the proposal are explained.

1. Introduction

Telecommunications operators (téleos for short) gave up the
monopoly on service creation long ago; hoping that third-party
created services could hit upon user needs and thus increase sub-
scribers' expenses on network usage. However, network capabili-
ties are undergoing a process of commoditization, and operators
desperately seek for the new "killer application" that may revital-
ize the languid figures of the Average Revenue Per User (ARPU) and
provide a much needed added valué to their networks. Agüe crea­
tion approaches nave arisen that try to reduce the time to market
of new services. However, even they nave proved to fail at keeping
up with the pace of users' demands—but what if users themselves
could créate the new services provided over the operator's
infrastructure?

Next Generation Networks (NGN) provide open and controlled
interfaces over standard technologies that allow third parties to
créate new services that the underlying infrastructure is as well
prepared to support. Those third parties that créate services unfurl
completely new business models where the relation between the
different agents in the service delivery chain may well depart from
the usual.

* Corresponding author. Address: Universidad Politécnica de Madrid, Departa­
mento de Ingeniería de Sistemas Telemáticos, E.T.S.I. Telecomunicación, C-215, Av.
Complutense 30, Ciudad Universitaria, Madrid 28040, Spain. Tel.: +34 91 336 73
66x3028; fax: +34 91 336 73 33.

E-mail addresses: jcyelmo@dit.upm.es (J.C. Yelmo), jmdela@dit.upm.es (J.M. del
Álamo), rubentb@dit.upm.es (R. Trapero), samuelm@dit.upm.es (Y.-S. Martín).

Drawing from the success of user-generated content (UGC) in
the context of Web 2.0, we envision a rich telecom-based service
ecosystem where tools assist users themselves in creating, sharing
and using countless services, some of which will get to gain wide
popularity and dissemination. Supported by these ideas, we pres-
ent the Open Platform for User-centric service Creation and Execu-
tion (OPUCE) [1]. OPUCE has created a Telecommunications service
delivery platform over a prototype of NGN that supports the rapid
creation of new services by users. Based on a set of user-friendly
service creation and management software tools, OPUCE tries to
bring the successful model of Web 2.0 to the Telecommunications
field, bridging NGN with the concept of user-generated services
(UGS). For that, OPUCE tools handle the particulars of service life-
cycle and hide them from users, whereas providing them with all
the power of NGN at their hands to compose new services—their
creativity being the only limit.

The remaining of the article shows how user-centric service
platforms relying on NGN are viable from a technical perspective
and how business models exist that may support them, providing
OPUCE as a proof of concept. The next section presents an overview
of the evolution of service creation in the Telecommunications do-
main, departing from the traditional closed models to the involve-
ment of third parties and, eventually, towards a user-centric
approach that improves as well the user experience. Section 3
introduces the business approach UGS and explains how a consis-
tent business model may build on them. Section 4 describes our
user-centric service creation and delivery platform, which vali-
dates the ideas introduced along the paper. Section 5 concludes
the article with some global considerations about our major
achievements and the expected future work.

mailto:jcyelmo@dit.upm.es
mailto:jmdela@dit.upm.es
mailto:rubentb@dit.upm.es
mailto:samuelm@dit.upm.es

2. Opening up Telecommunications networks to collaboration

The efforts to open up Telecommunications networks to collab­
oration started with the standardization of the Intelligent Network
(IN) [2], which decoupled the service development from the net­
work infrastructure. Later on, the IN evolved to the Customized
Applications for Mobile networks Enhanced Logic (CAMEL) to solve
newer features and requirements of GSM (Global System for Mo­
bile Communications) networks [3].

However, IN was not able to fulfil some of the requirements that
new converged networks impose, such as a shorter time to market
of new services and the development of value-added, network-
independent services. To cover this gap, the International Telecom-
munication Union - Telecommunication Standardization Sector
(ITU-T) is leading the work towards a convergent approach for
Telecommunications networks, which has been named Next Gen-
eration Network (NGN) [4].

NGN provides network operators with the possibility to share
resources and infrastructure, facilítate the interoperability among
networks, and simplify and unify the management, operation and
maintenance of service offerings. This allows external parties to
take advantage of Telecommunications functionalities in their
own services. And as for the end-users, NGN allows having services
which were precluded to mobile networks due to signalling delays
and latencies, low throughput, etc. Therefore, end-users can now
enjoy personal, broadband mobile services at any time and any-
where and can begin to expect the flexibility, scope, and service
variety they have experienced through the Web. This process is
accelerating, lowering further the barriers to entry for new service
providers and introducing paradigms not previously seen in the
Telecommunications ground.

2.1. Towards external service creation over next generation networks

One of the most salient characteristics of NGN is the conver-
gence of different access and transport technologies around an
all-IP (Internet Protocol) core network, broadening the range of
services available over this common foundation. On the one hand,
NGN services can be provided over any access network and device
supporting IP, thus taking advantage of the respective capabilities
available at each delivery situation and, more important, allowing
users to seamlessly roam among different access contexts with a
uniform service experience (concept known as Virtual Home Envi-
ronment). On the other hand, any existent IP-based service can be
easily provided over NGN; furthermore, new NGN services can
intégrate functionalities from external IP services in a transparent
fashion. Since virtually any service can be provided over packet
technologies such as IP, NGN can leverage on a varied and ever-
increasing base of existing IP services.

Moreover, this reasoning can be extended to higher, applica-
tion-level NGN layers, with the use of the Session Initiation Proto­
col (SIP) as a multi-purpose signalling protocol that enables
flexible sessions of quite different media (voice, video, text, pres-
ence, gaming actions...) and service paradigms (streaming, confer-
ence and multiconference, event subscription...) over diverse
transport protocols. SIP similarity to the most widespread web pro­
tocol, the Hypertext Transfer Protocol (HTTP), being human-read-
able and request-response-structured, eases the development of
services that rely on it.

This is actually a two-way, mutual integration process—NGN
service capabilities are also exposed allowing third-party, IP-based
services to reuse them. Exposure through open Application Pro-
gramming Interfaces (APIs) decouples the application layer from
the underlying servers and protocols implementing NGN functions.
IP-based NGN architectures such as the IP Multimedia Subsystem

(IMS) [5] open the service creation process to third parties collab-
orating through different means such as the Session Initiation Pro­
tocol (SIP) Application Servers (AS), the IP Multimedia Serving
Switching Function (IM-SSF) interfaces with CAMEL application
servers, or the Open Service Access Service Capability Server
(OSA-SCS). Operators expose service capabilities in the form of ser­
vice enablers that employ technologies long used in the Internet
world such as Web Services, thus opening service creation to
new, non-traditional players coming from outside the Telecommu­
nications arena. Notwithstanding, a secured, measurable, and con-
trolled access to NGN capabilities maintains as well the network
under control of the NGN operator.

Different initiatives have developed specifications to interface
with service-enabling functionalities such as the Open Mobile Alli-
ance (OMA) [6] and theJAIN Service Logic Execution Environment
(JAIN SLEE or JSLEE) [7]. They rely on well-established paradigms
such as object-oriented components, accommodating Telecommu­
nications distinct features such as event-base interactions (which
imply asynchronous interfaces) and transactional models.

These interfaces allow rapid and agüe service creation and
deployment, thus reducing the time to market of new services
and further broadening the range of service creators. Third parties
find easier to program new services that leverage on existing NGN
capabilities, reusing them in a Service-Oriented Architecture (SOA).
Convergent service providers can thus reuse bandwidth-intensive
services requiring broadband capabilities (hi-fi audio, video,
browsing, file sharing, massive multiplayer online role-playing
games), new NGN-specific services (presence, availability, loca-
tion), those enhancing traditional Telco services (VoIP cali setup
and control, SMS - Short Message Service, MMS - Multimedia Mes-
sage Service) or non-Telco ones (instant messaging, IPTV - Internet
Protocol Televisión).

Other NGN facets may also contribute to boost the richness new
services created by external agents:

- Providers can personalize the service experience to user and
access characteristics, reusing profitable personal identity and
context information provided by the operator. Moreover, com-
plex authorization and charging patterns may be issued in an
easy way. Since users are permanently bearing their terminal
devices, information is readily reported to NGN, which makes
it available through convenient interfaces. All the same, user
privacy is preserved, decoupling the exposed information from
other network functions.

- Quality of Service (QoS) mechanisms and Service Level Agree-
ment (SLA) foundations allow creating different service classes
and guarantee service performance, whereas maintaining the
network under control of the NGN operator.

- Automatic service deployment and provisioning can be made
available through the intensive use of Operation Support Sys­
tems (OSS). Simpler interfaces and better OSS systems allow a
dynamic service ecosystem, with continuous activations and
retreats. They permit creating straightforward resource provi­
sioning mechanisms that put the service lifecycle in the hands
of the creator.

- Different providers can offer new services from scratch over
diverse transports and access devices with no network impact,
since exposure interfaces are transport independent.

- NGN provides scalable infrastructures that support this larger
number of services, using decentralized architectures (e.g.
peer-to-peer protocols such as SIP).

More available services may genérate more revenues for the
NGN operator. Most evident benefits come from a more intensive
network usage, but novel business models may also arise—Sec-
tion 3 thoroughly describes our proposal in this respect.

2.2. Enhancing the user experience through user-centric service
creation

The service creation process can be extended to any user by
leveraging on the same principies that have allowed opening
NGN to external service providers. This allows users to acquire a
new role, that of service producers, thus becoming prosumers (pro-
ducers + consumers). This new paradigm initially appeared on the
Internet with UGC, defined by the Organisation for Economic Co-
operation and Development (OECD) as [8]: (a) content made pub-
licly available on the Internet; (b) which reflects a certain amount
of creative effort; and (c) which is created outside of professional
routines and practices. Prosumers and UGC play a pivotal role in
the so-called Web 2.0 applications [9].

User-centric service platforms, built around the needs and
requirements of the end-users and leveraging on Web 2.0 technol-
ogies, draw the role of the prosumers to service creation, allowing
non-expert individuáis to créate and share their own services.
Mashup is the major concept behind the user-centric platforms:
they are small applications made by the composition of two or
more services and contents. Since homogeneous interfaces are
available for NGN services, prosumers could combine in their mash-
ups traditional Telecommunications functionalities with Web 2.0
services. In addition, service delivery can leverage on Web 2.0 sup-
porting tools (recommendations, user profiles, user contacts and
social networks) thanks to those regular interfaces. The main
advantage of user-centric Telecommunications service platforms
over the Internet ones is that the former possess some features that
are particular to core Telecommunications networks.

User-centric service environments support the fast develop­
ment and supply of innovative services enhancing the whole user
experience. End-users can obtain their own, personalized, new ser­
vices at their disposal, according to their needs and expectations. If
it is done with an easy-to-use and intuitive service creation envi-
ronment, the experience of service creation is proved to be quite
pleasant and useful for prosumers: they can customize the services
to their needs without waiting for others (traditional service pro­
viders) to do that. Prosumers thus créate a networked service eco-
system whose valué increases with each new user and service they
créate.

Discovery mechanisms á la 2.0, which are not limited to pull-
type search, but also include information that is pushed to the
users without their intervention, dramatically improve service fin-
dability. Prosumers can share and promote services they have cre­
ated or simply they like, to their friends in their social network.
Community generates information on services: rating them and
thus making best services outstand, adding metadata at a zero-

Table 1
Service mashup platforms comparison.

Feature

IT (Information
Technology) Services

Telco services
Presence
Voice calis
Cali control
Audio video conference
Event oriented
SMS
Positioning

Graphical mashup editor
Open to third parties
Context adaptation
Users' community

Platform

Yahoo
Pipes

YES

NO
NO
NO
NO
NO
NO
NO

YES
NO
NO
YES

Google App
Engine

YES

NO
NO
NO
NO
NO
NO
NO

NO
YES
NO
YES

Ribbit (former
BTWeb21C)

YES

YES
YES
YES
YES
YES
YES
YES

NO
NO
NO
YES

Betavine

YES

NO
NO
NO
NO
NO
YES
YES

YES
YES
NO
YES

Microsoft Connected
Services Sandbox

YES

YES
YES
YES
YES
YES
YES
YES

YES
NO
NO
YES

Open Móvil
Forum

YES

NO
YES
YES
NO
YES
YES
YES

NO
NO
NO
YES

Orange
Partner

YES

YES
YES
YES
YES
YES
YES
YES

NO
NO
NO
YES

AOL Developer
Network

YES

YES
YES
YES
NO
NO
NO
NO

NO
NO
NO
YES

marginal cost through folksonomies (community generated tags),
or simply sharing information and experiences through informal
mechanisms (forums, wikis) that improve feedback on services.
Service platforms themselves may issue recommendations to users
based on their profile, context and usage history information.

When prosumers are allowed to share, rate and recommend ser­
vices, a set of high valué services will flourish and succeed from
among the others. This has a positive effect to the creator's satis-
faction because, eventually, the use of the platform becomes a
desirable experience: Not only the creators enjoy their mashups,
but also they see others doing the same, and thus their own confi-
dence on the platform is increased, especially if they have tight so­
cial links with one another. Moreover, prosumers can feel useful to
the community and develop a sense of prominence, especially
when the services they créate achieve wide success.

2.3. Related work

In this work we focus on telecom-oriented, IP-based, and user-
centric service environments that enable new business models for
NGN. These environments have recently begun to be introduced,
and thus Telecommunications mashups, unlike Web-based mash­
ups, are rather limited. Yahoo! Pipes [10] or Google App Engine
[11] are examples of Web-based mashup tools. British Telecom
(BT) Web21C was one of the earliest telecom-based examples.

BT Web21C allowed external developers and businesses to
build their own applications using a small set of Telecommunica­
tions services, e.g. messaging, voice cali and conference cali. How-
ever, in this case the creators must be technically skilled, because
the means chosen to compose services was through Java and
.NET APIs. Following BT platform launch, other telecom operators
began to provide developers with community portáis and open
APIs for network access e.g. Telefónica's Open movilforum [12],
Vodafone's Betavine [13], Orange Partner [14] and AOL (America
OnLine) Developer Network [15].

Microsoft and BT launched together the Connected Services
Sandbox, which merged the Microsoft Connected Service Frame-
work (focused on aggregating Microsoft services) and the afore-
mentioned Web21C. The result was a Telco 2.0 solution where
Telecommunications services can be part of a service mashup.
However, this solution still lacked the variety of telco services re-
quired to achieve real value-added services, especially since
third-party providers could not introduce their own services for
composition. In our opinión, another drawback was the lack of
an event-oriented model for service triggering, which prevented
creating real telecom-oriented mashups that could be initiated
by an SMS or a voice cali. Recently, both the Microsoft Connected

Services Sandbox and the standalone Web21C initiative were dis-
continued after Ribbit [16] has been acquired by BT, which we
think is a step forward to enhancing the user experience.

Table 1 summarizes the aforementioned initiatives and com­
pares them in terms of some features: the Internet- and telecom-
oriented services available and the possibility for third parties to
add more, visual tools to allow non-skilled users to créate their ser­
vices, etc.

3. Business approach to user-generated services

Communication markets are facing a challenging situation, as
Internet competitors become a constant threat to telco operators'
competences. This has made them focus their efforts on seizing
clear market opportunities in order to find extremely successful
services. On the other hand, the Web 2.0 philosophy offers a very
attractive choice for téleos, as it capitalizes on user innovation
[17] and the collective intelligence of user communities to créate
new knowledge and valué, fostering creativity and social networks.
This knowledge can be incorporated into the operators' innovation
process and core business by means of open innovation processes
[18].

User-centric service creation and delivery platforms leverage on
these concepts and provide the means to incorpórate user innova­
tion to open innovation processes, thus enabling what we have
called open user innovation for NGN services. Integrating the
new services obviously benefits the platform provider business,
since new innovative services will be commercialized. But what
about the motivations and benefits for the other roles involved?
Following, we thoroughly explain the business model we propose
to sustain user-centric service creation over NGN.

3.1. Business model description

Three main entities (or agents) particípate in our business mod­
el: user, platform owner and third party provider. The roles they can
play are those of platform provider, service provider, mashup pro-
ducer (or creator) and mashup consumer. Each role represents a dif-
ferent type of customer, which perceives valué from the platform
in different ways.

The platform provider supplies all the features and infrastruc-
ture that enable the creation, the management, the provisión, the
execution and the recommendation of mashups. It is also involved
in the economic flows between the different members. Moreover,
as any software platform, it provides a marketplace for service pro-
viders, producers and consumers to meet, acting as an intermedi-

ary and reducing the transaction costs for the two groups [19].
The platform owner usually plays the role of platform provider.
We envision NGN operators as platform owners.

Service providers deliver their services to the platform so that
they can be reused for composition. Third-party providers will
usually provide specialized resources useful for composition. The
services can come either from the Internet or from Network Capa-
bility Services (NCS) available in an NGN. If the platform owner is
an NGN operator, it may also provide some NCS (e.g. send a SMS,
set up a cali, retrieve presence or information status, etc.) Service
providers use the platform as a distribution channel for their prod­
ucís, thus gaining an intensive use of their resources at a low risk.

Mashup producers (or Creators) find that some functionality is
needed and useful (for themselves or for any other member of the
community) and have the necessary skills and tools to créate a
mashup from the set of services already available within the plat­
form. Once the mashup is created and deployed onto the platform,
the creator can share it so that it becomes public. Producers per-
ceive valué in two ways: mashups that simply fit their needs (for
their own use) or mashups shared to get revenue (when they sell
their mashups through the platform).

Finally, mashup consumers use and enjoy the mashups created
by producers and made available through the platform provider.
Mashup consumers may use a service that has been created by
themselves or by a different entity; in that case, consumers need
to have tools that ease the discovery of services useful for their
specific needs. These tools (e.g. recommendation tools) are sup-
plied by the platform provider that hosts the mashups.

The roles of both a producer and a consumer may be indis-
tinctly played by users, who may act as producers of one mash­
up at one moment, and then as consumers or another mashup
(or the same). Thus, the users in our model can be deemed as
prosumers, as defined above. Prosumers can be profiled based
on Forrester's Research Technographics surveys [20], which clas-
sify Web customers into six overlapping levéis of participation
according to how they use social technologies. Forrester's groups
named creator and spectator represent the extremes of users
that perform most of the time just one of the roles (producer
or consumer). Creators make social content go: writing blogs,
publishing their own Web pages and uploading the contents
they créate. Spectators consume social content created by others.
Between both extremes, we find intermedíate user profiles (con-
tributors, members and collectors). We declare that our prosum­
ers have an additional skill since they are in the context of an
NGN: they are medium/advanced mobile users able to setup
phone calis, send SMS and MMS, and use the device gadgets
such as the camera or the multimedia player.

Fig. 1. Relations between entities (hexagons) and roles played by them (ováis) in the proposed business model.

The relations between the different entities and their roles in
the business model are detailed in Fig. 1.

The traditional valué chain for service delivery assumed a linear
valué flow and unidirectional relations from service providers to
producers and finally to consumers, all supported by a platform.
But in fact, there are many-to-many relations among the actors in-
volved in our proposal that are not accurately described by a valué
chain. Therefore, we have defined our business model as a valué
network [21], which shows the complex web of direct and indirect
ties between the various roles, all delivering valué either to their
immediate customer or to the end-consumer (Fig. 2). Here, the
platform provider role is shown mediating between other roles
intervening, which has been abstracted in the previous figure.

The valué network helps to increase the supply of services on
the providers' side and the delivery of mashups on the producers'
side. Traditional network businesses base their valué on the num-
ber of participants that take advantages of their features. A user-
centric service creation and delivery platform is a network busi­
ness as well, and thus it is important for its success to have as
many members as possible. This will allow the flow of mashups
being shared between producers and consumers to increase.

Nevertheless, users are the ones that play a fundamental role in
our valué network (playing as consumers and producers). First,
consumers demand customized services, thus driving the valué
creation. Additionally, they can be linked together through social
activities such as knowledge sharing and service recommendation,
thus creating the most benefit for the people involved in the net­
work. Knowledge can be shared among producers to créate the
best situations or opportunities, and to stimulate and improve

open user innovation. In addition, service recommendation filters
really valuable services from the huge amount of worthless
(unprofitable) services, thus highlighting potential killer (profit-
able) services in the long tail. Services get consequently promoted
at a mínimum cost through mechanisms such as viral marketing,
which increases product recognition through self-replicating pro-
cesses that leverage on pre-existing social networks, thus cutting
the marketing expenses of traditional telecom business models.
On the consumer side, valué networks enable ideas to flow into
the market and provide the means to the people that need to hear
them.

Two models are usually applied to software platforms in order
to distribute the cost of software development: either the user
pays or the developer pays. We think that user-centric service cre­
ation and delivery platforms will follow a similar path to PC oper-
ating systems (the user pays) with slight variations: unlike the
operating system model, all consumers will be allowed to freely ac-
cess the platform but they will have to pay for some (premium)
services consumption (i.e. freemium approach [22]). Quite in the
same way, service providers will be freely allowed to offer their re-
sources as services, although they will be charged for the consump­
tion of some specific features such as payment intermediation.
Finally, producers will have to pay to use some special services
in their compositions but they will be allowed to receive some rev-
enues for the consumption of their services.

It is worth noting that the critical moment for the revenue gen-
eration mechanism, and also for the business model, is the launch
of the platform: All the actors may be reluctant to invest in a new
idea unless there is a substantial installed base of producers,

Knowledge

Recommendation

Fig. 2. User-centric platform valué network.

Knowledge

Feedback

Fig. 3. Revenue flows between the different roles.

consumere and service providers. However, telecom operators
nave a privileged position to play the role of platform provider as
they do already have this base of customers.

Fig. 3 shows the flows of tangible and intangible revenue be-
tween different roles.

Next section describes OPUCE, a user-centric service creation
and delivery platform that allows validating the model we have
introduced along the paper.

4. Open platform for user-centric service creation and
execution

OPUCE platform is a user-centric service delivery platform that
merges IT (Information Technologies) and NGN services and puts
them at users' disposal for creating service mashups. OPUCE plat­
form aims at leveraging a user-centric, dynamic ecosystem of
user-created services over a NGN deployment. In OPUCE, users
can créate new telecom-oriented mashups by combining elemen-
tary services with an easy-to-use graphical editor. This user-
friendly environment encourages users to créate new services
and promote them, so that others may use them. Moreover, users
may easily steer the service lifecycle without dealing with the
underlying intricacies of resource management. OPUCE takes
advantage of the aforesaid openness that NGN features, ensuring
a firm as well as seamless integration with NGN capabilities. As
from the business perspective, OPUCE fits in the business model
approach described above for UGS, thus benefiting users, platform
and third party providers.

4.1. Designing a user-centric service platform

OPUCE platform fulfils three main requirements in the context
of user-centric service creation and delivery:

(a) providing uncomplicated user tools for creating, managing,
discovering, subscribing to and customizing mashups,

(b) starting and running the execution flow of the mashups users
créate and subscribe to, and

(c) managing operation and service lifecycle activities, with
minimal user intervention (or none at all).

Next we present the three main architectural blocks responsible
for each of these functionalities [23]. This architecture is aligned
with that defined by OMA Service Provider Environment (OSPE)
specification [24] -to which OPUCE has actively contributed-,
especially regarding the lifecycle of services. Fig. 4 represents the
platform architecture from the point of view of the integration of
its main modules with NGN capabilities and Internet services.

The Execution Environment (EE) orchestrates the services that
build up a mashup. OPUCE architecture follows an approach sup­
ported by Web Services. Services are exposed using Web Service
Description Language (WSDL), whatever their implementation is
(e.g. JSLEE, Parlay-X [25], etc.). Since composite services (mashups)
are created by combining services, we have chosen Business Pro-
cess Execution Language (BPEL) as the means of expressing their
logic. The Execution Environment receives a BPEL description and
invokes services accordingly, depending on the incoming events
it receives, as will be explained later. It also receives information
to schedule the activation and withdrawal of the mashup.

The Portal provides an interface between the users and the
platform (see Fig. 5). Producers are provided with a set of tools that
make up an environment to créate new mashups and then share
them. Creation in a desktop computer is supported by an AJAX
(Asynchronous Javascript And XML) based editor which provides
a friendly and intuitive interface. In mobile devices, creation is sup­
ported by a locally installed application. Consumers can use the
portal to discover, subscribe to and customize new mashups, man-
age their personal information and share mashup-related informa-

Lifecycle
Manager

PORTAL
Subscription and

Configuration

Gallery

Community
Tools

Mobile Front -end

w

-creation " p

A
\ e . g . Send a

\SMS

e.g. Use /
Webmail . /

Web Front-end

-subscript ion-

CONSUMER

Fig. 4. High-level OPUCE platform architecture.

Welcome to OPUCE!
OPUCE ; .̂ •'L-.1. c-ldllurrn icioivjrtisr. s-i.nr d'ijrrjiíj-yOL:! L.,-.1! JI'-VIL^L

ÍI>U w l l be íblr le íicjitr mJrthupt indu-üng not Ofily tnlrrnrf tofitpnl Ui.1 «lía KHnri*jnicaIion
upabililks Hke i í i L " « i i f n j SMS. ÍW.

rey cur . • "ri i-^nii .--.li:::i-ir; " ini VCII. c.1-1 íJircrly !Ü"OYY« lhe : lai ccimrrlr.

Help «

1\

Fig. 5. OPUCE portal.

tion with their social network through the use of different commu-
nity tools.

As a user-centric platform, OPUCE pays attention to several as-
pects that ensure the best user experience. Users are not usually
skilled programmers, so they encounter straightforward user inter-
face mechanisms that hide the complexities of underlying services.
Besides, users are given a limited set of options (supported with
help and tips) that reduce the possibility of errors and ease recov-
ering from them, while still allowing users unroll the potential of
their creativity in new mashups. Well-established metaphors and
tips allow those users who seldom use the system to remind its
operation between scattered sessions without needing to memo-
rize it. Friendly user interfaces are provided to make the platform
appealing; they also take into account the variety of user devices
that are expected to access the platform in the context of NGN,
paying attention both to desktop and mobile termináis. Finally, a
good information architecture and interaction design ensures that
users will succeed in achieving what they want and doing it fast,
that is, in the efficacy and efficiency of the platform.

The Operation Suppott Systems (OSS) bridge the Portal, the EE
and the underlying NGN implementation. The Lifecycle Manager is
in charge of processes such as mashup deployment, scheduling and
provisioning. The Advertiser manages mashups recommendations.
An Inventory stores the descriptors of mashups and services avail-
able for composition. An Authentication, Authorization andAccount-
ing (AAA) server manages security features. The User Profile
Repository manages information about subscribers and the Context
User Feed compiles users' context information. Finally, the Context
Awareness module uses this information to dynamically adapt the
mashup execution and personalize the presentation according to
user context and preferences.

4.2. Mashups and services inside OPUCE

It is well known that events rule the behavior of a service in the
Telco world. During a phone cali, the communication is established
with an event generated in the destination when the phone is
picked up. And as for SMS, the mobile device keeps waiting for
the event of an incoming message. In OPUCE, the EE handles events
received from different modules: Lifecycle Manager (mashup life­
cycle events), User Information Management (users profile events)
and Context Awareness (context adaptation events). They are trig-
gered anytime during the mashup execution and drive the mashup
logic and thus the invocation of services.

Mashup triggering is also done on an event basis. When a con-
sumer subscribes to a mashup, the OSS registers that subscription
at the EE, so that the mashup execution is triggered when condi-
tions apply. Then, when a subscriber accesses an NGN service
interface (e.g., sending a premium SMS), the event generated dur­
ing the interaction is forwarded through the NGN and the EE to the

mashup that is listening for it. That very same event is used to
determine the service execution path.

OPUCE has captured this event-oriented nature by declaring
that all services can perform actions and may be affected by incom­
ing events. As a result, a service composition is a directed graph
that can be represented as sentences of type "WHEN eventName
THEN DO actionName". We should reflect at this point on the nature
of the execution process of OPUCE mashups and services. An
OPUCE service neither represents a state ñor an activity; it is rather
an atomic component that offers a set of actions to be executed and
defines a set of events it may fire. Consequently, an OPUCE mashup
does not represent either a flow-chart, a workflow or a set of states
through which execution moves; it is just a mesh of services that
specifies the actions associated to each event that may be trig­
gered. The appearance that a mashup is the consecutive execution
of several services is just an illusion that only applies in specific
cases. In general, a running instance of an OPUCE service may fire
many events during its lifetime, and it may be running in parallel
to other services appearing in the same mashup. From a global per-
spective, it would not make sense to denote a specific execution
point at the mashup at each moment, since several services may
be simultaneously running, may fire events at any time, and may
be waiting for action invocations.

Each elemental service may also have its own internal state,
which is exposed as a set of service properties. It is also possible
to personalize some properties in the services with both static
and dynamic valúes (evaluated at runtime). During the creation
process it is possible to include context and user information.
The user sphere concept (represented as %me) supports this. The
set of properties that are visible through %me are managed by
the editors by using virtual services during the composition. For in­
stance, in an EstablishPhoneCall service the destination phone num-
ber can be obtained by different means:

• Directly obtained at the time of creation because the creator
inserts a fixed valué for this property.

• Obtained from the property of another service previously exe­
cuted in the composition. For instance, it could be taken from
the property From of a ReceiveSMS service.

• Extracted from a reference to an attribute of the user profile or
context (i.e., Sme.privatePhoneNumber). The creator does not
know the specific valué of this attribute, but it will be dynami­
cally obtained by the platform during the execution time.

• Filled by the subscriber at subscription time (if the creator left if
blank), when the mashup configuration is being personalized.

Finally, a mashup may also include control structures, presented
to the creator as pseudo-service blocks, which enrich the possible
links established between events and actions. Control structures in­
clude conditional links (¡f-alike), fork points (one event to many ac­
tions), blocking and non-blocking join points (many events to one
action) and termination points (which stop the mashup).

Fig. 6 shows an NGN enabler available in the platform as a ser­
vice, GetLocation, which retrieves a user's position. As any other
service in OPUCE, it contains three types of elements to be set:

• Events:
o when-user-located is triggered when the user's position has

been correctly obtained.
o when-connection-fails is triggered when there has been a

problem while retrieving user's position.
• Properties:

o UserID contains the reference to the user that is going to be
located. In the figure below, the property has the valué
Sme.usemame, which means that the final valué will be taken
from the subscriber profile through the %me parameters.

http://s-i.nr

• Actions:
o get-location fires the locating process of the concerned user.

Fig. 7 shows a composition that has been created using the
OPUCE Editor. This mashup monitors a Gmail account; when an
incoming mail arrives, it is converted to a voice message and a
phone cali is automatically issued to the receiver, who can listen
to the incoming mail. In case the user is not available on the phone,
the text of the mail content is sent by SMS. Same as any mashup,
this one is defined by:

- a set of services (a Gmail monitor, a Text-to-Speech converter and
an SMS messaging service, each one with its own parameters to
be configured at creation time),

- a set of links between services, which map events to actions,
and

- an initial event (the explicit start of the mashup from the Portal
by the user).

As we have seen above, service composition in OPUCE involves
several aspects that work together: services from vendors, their
interfaces and many other aspects that are closely interrelated.
OPUCE has created a model for service composition that describes
all the aspects that characterize a mashup, both from the most
common ones ("What is the ñame ofthe mashup?", "Who is the cre-
ator?", "What is this mashup for?"), to the more specific ones
("Which services does this mashup use?", "How does it use them?",
"What tasks are required at deployment time?"). The services them-
selves are also described by using the OPUCE model for service
composition, thus answering to the questions "How can this compo-
nent be combined with others?" "What operations can be done with
this component?" or "How to configure this component to do what I
expect it to do?"

The OPUCE service composition model is based on a complete
service specification that describes all the aspects that might be
specified for a mashup or a service. The OPUCE service specification
is generic and can be mapped to a specific mashup. When it happens,
a linked set of XML (Extensible Markup Language) documents is gen-
erated, which represent the mashup or service in all its aspects. Each
aspect is called afacet and is described in a different document. We
formally define a facet as an abstraction over one of more service
properties that provide a partial description of a service. Thus, each
facet describes a focused task of service consumer, describing func-
tional, non-functional, or management properties.

This faceted approach for mashup description allows adding
new facets whenever it is necessary. Furthermore, as each facet
can be described using a different language, it turns out to be a

very modular and flexible way to describe services in general. As
an example, in OPUCE we have included facets to describe, among
others:

- the logic of the mashup, using BPEL - Business Process Execu-
tion Language;

- the interface of the mashup, using WSDL - Web Services
Description Language;

- the provisioning to be done in the platform for each mashup,
using SPML - Service Provisioning Markup Language;

- the semantic information related to the mashup or service,
using OWL - Ontology Web Language; etc.

The generation ofthe facets is different if we refer to facets that
describe a mashup or a service. If we refer to a mashup, facets are
generated automatically at creation time when creators compose it
using the graphical creation environment. Each facet is automati­
cally generated according to the information introduced by cre­
ators when configuring and linking the modules that represent
the services available. The creation environment interprets the
information obtained from the composition (what modules are
combined, what properties the creator has configured, etc.) and
automatically generates each facet (for instance, the service logic
facet can be generated according to the modules combined and
how they are linked). When the mashup is inserted in the platform
the facets are stored in a service inventory, awaiting to be ex-
tracted by the rest of the modules of the platform as long as they
are needed (i.e., the EE will use the service logic facet when the
mashup is executed).

Finally, if we refer to a service, the facets need to be created by the
external vendors (service providers) when they are introduced to the
platform. This process is not so automatic as with mashups, but
OPUCE provides third parties with a service manager, which in-
cludes wizards and intuitive graphical menus that makes these tasks
easier. This service manager, presented on Fig. 8, provides a set of
graphical wizards that allow service developers from third parties
edit the contents of the different facets of a service, load its imple-
mentation and make it ready at OPUCE platform (providing that
the third party has been granted with sufficient privileges to do
so). This service manager also uses typical IDE (Integrated Develop-
ment Environment) metaphors so that developers find it friendly.

4.3. Executing mashups inside OPUCE

OPUCE EE is based on an orchestration layer that decouples
the mashup logic from the heterogeneous runtimes where ser­
vice implementations may be running. Three main elements are

GetLocation 0
GetLocation BS

when-user-located 3

S W H . d e Events: GetLocatior

0 wtien-user-located

1 I wtien-connedion-fais

UserC
^^™

S m e . u s s n a m s 3 3
M ^ ^ ^ O k ^ ^ ^ M ^ Cancel Help

Fig. 6. GetLocation service.

http://SWH.de

<- c *

Edil - Vfew T Tods - Hele •

r n Other bookmarks

| V q Mail Sendcr

t fo Send SMS

-:¿ Tex t t o «peech cali

GMailMonitcr 0
Tex t tospeechca l l

Start ¡ rom Portal

ftSI«IJM

| when-start-requcst-r. . .

GMaJI Monitor

CMJÍ I I
H a t lor message

Make text lo speech .

when-lirgel-imil-rec... ¿ ^ | e d •

ans;ver |(j¡ Seno St.vl

Fig. 7. Mashup example composed in the OPUCE editor.

distinguished inside the EE, as presented in Fig. 9: the Service
Runtimes, the Event Gateway and the Mashup Logic Engine.

As above explained, each mashup is built of a set of services
-basic building blocks that wrap and provide access to underlying
telco and Internet capabilities, and encapsulate their functional-
ities behind a standardized interface. Each service stores its state
as a set of properties, offers a set of actions (whose exact runtime
behavior may depend on the service state) and may trigger asyn-
chronous event notifications (which may also involve a change of
the service state).

A Service Runtime (SR) is a container where these elemental
services are running. An SR may contain several runtime instances
of the same service, executing at the same time (one for each
appearance of the service at each mashup session where it takes
part). An SR exposes the services running on top of it, through
Web Service interfaces that allow invoking service actions and
accessing service state. Apart from that, no other constraints are
placed on the specific SR technology used -in OPUCE, this is illus-
trated with two SRs developed: aJSLEE platform for telco services a
Java EE container for Internet services.

The Event Gateway (EG) intermediates between the underlying
services and the Mashup Logic Engine. EG is in charge of routing
event notifications, retrieving consumer properties, and starting
new mashups upon initial events. When a service triggers an event,
it is notified to the EG. Then, the EG seeks the mashup instance cor-
responding to the source service instance, dynamically queries up-
dated user context and profile information from OSS modules
(since it may be necessary to fill action parameters); and sends
the notification, the service state and the user information to the
endpoint that is associated with the mashup instance at the
Mashup Logic Engine (MLE).

When no mashup instance is associated to an event notification,
this may be the case of an initial event that starts a mashup ses­
sion. If the EG finds a mashup whose declared initial event matches
the one received, then, it instantiates a new local mashup session
and instructs the MLE to start a new mashup instance. Two sources
of initial events may exist:

- in the case of one-shot mashups, its activation directly triggers
the initial event;

- in continuous mashups (those that are repeatedly executed
every time a trigger event occurs), a configured initial service
fires a notification of an initial event each time a new mashup
session must start.

The Mashup Logic Environment (MLE) consists of a BPEL
orchestrator that invokes service actions (through their Web Ser­
vice interfaces) depending on the events received from the EG.
As it has been explained, a mashup may be basically regarded as
a mesh of service instances, together with a set of associations that
link events to service actions. Accordingly, the function of the MLE
is not to keep track of an execution workflow; it just rather applies
those associations and invokes the actions corresponding to an
event received.

The logic of a mashup is represented at the MLE by a BPEL pro-
cess. When the EG receives an initial event, it instructs the MLE to
créate and start a new instance of the BPEL process associated to
the corresponding mashup. This BPEL process will then represent
the mashup instance at the MLE. The MLE exposes an endpoint
for each mashup instance, where it will receive the associated
events during its lifetime. Together with the event, the EG also sup-
plies the updated valúes of the properties of the service instance
that fired the event. The MLE implementation maintains a local
copy of the state of each service instance, which it updates when
an event is received, thus reducing the need to remotely access a
service each time its properties might be needed.

The MLE implements a straightforward algorithm for each
mashup instance. The MLE is waiting for events coming from the
EG during most of the time (nonetheless, the mashup can be
deemed to be active since one or more service instances are run­
ning meanwhile). At some point, a service instance fires an event,
which is routed by the EG to the associated mashup endpoint at
the MLE. Upon receiving an event, the MLE looks at the mashup
process description and identifies the corresponding service ac­
tions (if any) associated to that specific event. After filling the ac­
tion parameters, the MLE invokes the actions. Unless the event is
terminal (which implies the termination of the BPEL process in­
stance and the mashup instance), the MLE starts waiting again
for events.

The EE just described corresponds to the initial implementa­
tion used in OPUCE project. However, several improved stand-
alone EE versions have been also developed to enhance EE
performance.

EEví is the EE above described. It is based on a BPEL engine that
orchestrates service invocations and an Event Gateway (imple-
mented as aJBoss Application Server service) that routes events re­
ceived from services to the endpoint associated with each mashup
at the BPEL engine. BPEL was chosen since it defines a WSDL-com-
patible orchestration engine that supports both synchronous and

f íe Edit Yew Projeot 3rd Party Help

| Plalform - ¡Custom

TEdit Base Servic,

* « j » «

0 ^^Q
3 Faceta

MastaDoe
!•••• SerriaMicFaeet

li-iteiteceFacet

PrDviibningFace

É Pschages

Vfltttauar

• appPy.png

_ PldUuiih

[E * Bas* Service] Tm«

nant icFacet In le r iaceFaost PiovrsioninqFacet

- Bifllean

ABE

BSE

ASE

BSE

Timer

Timar

1.0

i má g c í/Big I conJTiín ei, p ng

hrttfií/www , — n/corriponentí/Ti

image s/Sm allí co-nfTi m e r. p n g

i ••'• ." r.l;:-'i

Languagí-

1 d
Add |

Del |

Lenguage

1 d
Add |

D..I

DE 1 EN 1

Der B-síisdrenst Zertplan*r errn cht des
• i - •--!!•••- • i' --i: ••.••• su einsm

besl immten Zellpunkt üder nach einer
besl immten Zeilspanne Er kann auch
2um petiodischen Ausf ¡n einem
definíerbaren Zeitirrtervall vefwendet
werdef i .

:' v:-'-ii.---i-i :'.--i:-:.v:-.,

V í e w X M L " ' : : . • l,u

|§?xral v e c s i o n - " 1 . 0 " encodj .no="UTF-S' , í0
<Facec xmlns : x s i = " h . c t p : / / w u u . «3 . o r g / 2 001/XllLSchema- instance™ noIJ ames paceS chema Locar. i o n = " . \ Co:

• íSecv iceIP>Ti raer - í /£ecv iceID>
<Type> rompo ne iit In teE£ace</Type>
<Language> _ in te - r f a c e < / Language>
•<i)ata>-

<Prope.ET.ies>
í p t o p e c t y namLe="u3etIt1" t y p e = " 3 t t i r i B " 3 e o p e = " i n s t 9 i K : e " a c c e . 3 3 = " t e a d - w c i t e " d e l w u l t = F 'di3tÜjle w

JjJ_

Fig. 8. User interface of the OPUCE service manager.

oss
, L , l , 0 C I c t e I C l > (Context >l

edj¡

User ProfileV
Repository Ji

l[AAA]

Fig. 9. Detailed architecture of the OPUCE execution environment.

asynchronous process definitions and includes tools to manage
incoming events. EEvl provides a centralized entity through which
all events must pass, thus providing a point to enforce control pol-
icies. However, performance tests (presented below) showed poor
results for this EE, which has led to develop alternative implemen-

tations of the EE, whose operation dramatically improved that of
the initial versión.

EEv2 replaces the EG and the BPEL engine with a single, much
lighter, ad hoc orchestrator. As it collapses both elements into a
single component, remote calis are reduced and thus lateney is

http://Prope.ET.ies

lowered -all this helped by the use of non-blocking calis. For
each running mashup, EEv2 orchestrator keeps an in-memory,
static routing table (instead of the BPEL process of EEvl) that
associates service actions to events, in order to invoke the
respective actions as needed. EEv2 orchestrator is completely
stateless (all the session information travels along with each
event, which might nonetheless increase the traffic), thus allow-
ing several orchestrator instances run in parallel, for delegation
and load balance. In addition, EEv2 orchestrator retrieves just
the user information that is required at each moment to fill
the action parameters. Notwithstanding, a centralized, orchestra-
tion management component must be kept sepárate in order to
start/stop services.

EEv3 goes one step further and gets virtually rid of the orches­
trator, substituting it for a choreography-oriented framework.
Event routing information is not stored by a centralized orchestra­
tor; it is instead split and distributed among the services. At
deployment time, each service instance is provided with the rules
to access the necessary parameters during execution and to route
actions to its follow-up service. Then, when a service fires an event,
the service itself uses those rules to map the event to another ser­
vice action and invoke it (thus, notifications do not need to flow
through a centralized module). Same as in EEv2, a centralized, cho-
reography-management component is yet needed for service initi-
ation and termination. EEv3 dramatically reduces the amount of
remote calis that go back and forth (especially when different ser­
vices run inside the same SR), and eliminates the bottleneck orig-
inated by the centralized orchestrator.

EEv4 is an integrated solution implemented on a JSLEE applica-
tion framework, which provides an environment optimized for
asynchronous processing. The mashup engine is implemented as
a JSLEE Service Building Block (SBB) which acts as the orchestrator
(to receive notifications and route events), together with a set of
children SBBs to interact with services. Performance is improved
because of the event-oriented nature of JSLEE, together with the
use of a pool of objects to interact with services. In addition, aJSLEE
Resource Adaptor supports Communications with services and
decouples the specific interface technology. This endows EEv4 with
a versatile, loosely coupled design that enhances compatibility by
allowing different service interfacing technologies, apart from
Web Services -such as native JSLEE Services, which turn out to
be faster as well.

Performance measurements were carried out on the different
versions of EE, isolating this subsystem and preventing it from
interacting with the rest of the platform. A minimal service
SleepSvc was purposely created for performance tests: its only
action (Sleep) simply waits for a fixed amount of time and then
fires an event (Timeout). A mashup was defined with two instances
of SleepSvc: at the beginning, the action Sleep is invoked on the
first instance; later, when the event Timeout is eventually fired,
the action Sleep is invoked on the second instance. Two kinds of
measures were obtained:

• Service latency: using a zero timeout (so that all the delay is
imputable to the EE), latency can be measured as the time dif-
ference between the invocation of the Sleep actions at both
instances of SleepSvc. If a different timeout were used, it should
be subtracted from the time measured. In practice, to reduce
measurement deviations, more instances of SleepSvc were con-
catenated in the mashup and the total latency was divided by
the number of steps.

• Service scalability: this measurement shows how the latency
increases with the platform load, to test the EE behavior with
many parallel running sessions. The EE is periodically pene-
trated with many parallel initial events that start many mashup
instances. The number of running instances keeps increasing

until becoming stable when the first timeouts start expiring.
Then, the latency and the throughput (number of active ses­
sions) are measured.

Tests were performed using three twin machines (one for the
orchestrator and one for each service instance), each running an
Ubuntu (Linux) operating system over an Intel Core Quad proces-
sor at 2.40 GHz and 4 GB of RAM. Next, the results are shown at Ta-
bles 2-4, where the latency and scalability measures are presented.

EEvl confirmed the expected limitations, due to the amount of
calis involved by the double-module (EG + MLE) solution, the poor
performance of the Web Service stack and the heavy processes
running at the BPEL engine. The performance valúes suggest that,
even with hardware improvements, EEvl would not fulfil the
requirements of a production platform. Moreover, it is not proba-
bly due to the particular implementation of the BPEL engine used
(ActiveBPEL), but it seems to be directly related to the choice of
BPEL technology itself, which is not designed for high-throughput
scenarios.

As predicted, EEv3 is the fastest solution because of the fewer
remote calis and its distributed architecture (which spreads the
load and consequently scales up very well).

EEv2 replaces the central orchestrator with a lightweight com­
ponent with a solution in between centralization and distribution
(session information is not stored at the orchestrator). It seems
to be as scalable as EEv3, showing that a central orchestrator can
be a employed, as long as it is lightweight.

Both EEv2 and EEv3 share a session-less behaviour, making
them much lighter and requiring less memory. However, on a real-
istic scenario, the size of the messages could grow and require
quite more network resources (since the size increases at each ser­
vice, when it adds its own state). EEv3 would nonetheless be ex­
pected to perform better due to the lower number of remote calis.

EEv4 holds a much more complex internal logic at a central,
stateful point of orchestration. Even putting aside the throughput,
the general degradation is visibly worse than the EEv2 and EEv3.
Nonetheless, when compared with EEvl, EEv4 gets the advantages
inherent to JSLEE framework (better performance and flexibility).

In EEv4, native services are considerably faster, as expected,
being able to fulfil telco requirements. Regarding the throughput;
the internal mechanics of EEv4 for both types of services (native
or external) are very similar. It should be noted that, when config-
ured with a 3-s timeout, the scalability was even worse than with
external services: other tests should be performed to understand
if this is related to the specific implementation of the internal
SleepSvc or if these results are merely due to setup reasons.

Security requirements are handled through múltiple ap-
proaches: network security, access control, user privacy manage­
ment and mashup sandboxing. First, the platform is executing in
an operator-controlled environment where network protective
measures must have been taken, thus guaranteeing that data in­
side the platform is not subject to counterfeit. For instance, all
the modules in the portal exposing functionalities to final users
are placed into a Demilitarized Zone (DMZ) so that users cannot ac­
cess sensitive modules from the outside. Likewise, remote compo-
nents running out of the platform boundaries (on the users'
terminal or at third party premises) access the platform modules

Table 2
Results for the latency tests (ms).

Latency (ms)

EEvl
EEv2
EEv3 (all services on the same machine)
EEv3 (services on different machines)
EEv4

35.0
5.7
2.4
3.3
8

Table 3
Results for the scalability tests: latency (ms).

Event generation rate (requests/s)

Timeout (s)

EEvl
EEv2
EEv3
EEv4 (Web Service-based services)
EEv4 (native JSLEE services)

50

0

(EEvl
5.7
3.3
9.5
0.1

can only

50

3

handle a
10.0

6.0
97.0
10.0

100

0

rate of about 10 requests/s
5.9
5.1

173.9
0.2

before

100

3

crashing.)
32.0
15.0

203.8
329.6

200

0

8.1
5.2

226.1
0.2

200

3

74.0
144.0
605.0

3864.5

Table 4
Results for the scalability tests: throughput (session activations/s).

Event generation rate (requests/s)

Timeout (s)

EEvl
EEv2
EEv3
EEv4 (Web Service-based services)
EEv4 (native JSLEE services)

50

0

(EEvl
48.6
48.4
48.2
47.9

can only

50

3

handle a rate of about 10
47.7
48.0
43.9
45.5

100

0

requests/s
91.1
91.0
53.2
92.0

before

100

3

crashing)
91.0
88.4
54.3
71.2

200

0

161.0
166

51.9
166.7

200

3

155.9
115.8
51.1

107

through a Proxy Exposure Layer. Second, the AAA server is in
charge of access control to the platform, preventing unauthorized
users from accessing the platform at all, and deciding policies that
restrict the privileges granted to each user for different actions.
Authorized actions may be either platform-wide (e.g. registration),
user-specific (e.g. profile access) or service- or mashup-specific
(creation, deployment, activation, execution, etc.) Different user
classes (basic, premium, trusted third parties, etc.) enjoy different
authorization ranks. Creators themselves may specify the users
authorized to use the mashup they créate. AAA is also in charge
of accounting platform usage, which allows monitoring access at-
tempts. Third, user privacy is managed following some of the prin­
cipies reflected at the European Data Protection Directive [26]:
personal data is only collected or processed with user consent,
for limited, explicit purposes and only disseminated as strictly re-
quired for the respective tasks. Fourth, the platform is virtualized
at the server level and mashups are sand-boxed, allowing only ac­
cess to resources according to SLAs. Finally, it should be remarked
that different attacks have been emulated and succeeded at check-
ing the validity of the security measurements implemented.

4.4. Integrating the platform with a NGN implementation

OPUCE is supported by an underlying NGN implementation
based on IMS. The platform interfaces the IMS using mainly the
Diameter [27] and the SIP protocols (Fig. 10).

Diameter consists of a base protocol that is complemented with
so-called Diameter Applications, which are customizations or exten-
sions to Diameter that suit a particular application in a given envi-
ronment. The IMS uses Diameter in a number of interfaces (Sh, Cx,
and Rf), although not all the interfaces use the same Diameter
application. For example, the Sh interface links IMS application
servers with the Home Subscriber Service (HSS), which is the mas-
ter datábase of IMS storing user profiles, to perform operations re-
lated to subscribers data. In addition, the Cx interface links the
Serving-Call Session Control Function (S-CSCF) and the Interrogat-
ing-Call Session Control Function (I-CSCF) with the HSS to perform
authentication and authorization functions. Finally, the Rf interface
is used by the SIP entities to send accounting information to a
Charging Collection Function (CCF).

Within the OPUCE OSS, the AAA server uses the Cx interface to
manage security features and the Rf interface to perform account­
ing operations. The User Profile Repository uses the Sh interface to

retrieve information about subscribers. Additionally, the Context
User Feed compiles user context information querying network
enablers by means of different protocols e.g. XML Documents Man­
agement (XDM) [28] for group and list management, Mobile Loca-
tion Protocol (MLP) [29] for location, SIP for Instance Messaging
and Presence Leveraging Extensions (SIMPLE) [30] for presence
and availability, etc. Finally, the Context Awareness module uses
this information to support mashups adaptation.

The OPUCE EE also takes advantage of the event-oriented nature
of IMS by means of the IMS application servers (Fig. 10), e.g. SIP
Application Servers or OSA Service Capability Servers (OSA-SCS)
[31]; and network enablers, e.g. based on OMA service enablers
or JSLEE. Services enablers and services deployed in IMS applica­
tion servers can be introduced to the OPUCE platform. They act
as a link point to enable access to the mashup from IMS users
and reach IMS users from a mashup, assigning to the OPUCE plat­
form the role of a user-centric service delivery platform smoothly
integrated with the underlying IMS. As a way of example, OPUCE
has introduced services such as SMSReceiver, which includes SMS
reception functionalities in mashups, and Text2SpeechCa.ll, which
allows setting up a phone cali to a SIP user-agent and reproduce
a locution.

4.5. Moving next-generation mashups into real action

Our proposal is supported by an underlying infrastructure
where services are deployed and executed; in OPUCE, such infra­
structure is an NGN implementation. We have used an open source
implementation of IMS as our initial test-bed. Recently, OPUCE was
launched as a beta versión integrated with Open movilforum. The
integration has been achieved by wrapping the APIs offered by
Open movilforum as Web Services, so that they can be integrated
in OPUCE as services. For example, our initial beta pilot includes
APIs for locating mobile devices based on CellID information
{Localizóme), for using a network-hosted agenda that synchronizes
with the mobile device local agenda (Copiagenda), for sending
SMSs, and even for monitoring the reception of new SMSs; as well
as others from the Internet world for sending email messages,
monitoring e-mail accounts, reading content from an RSS (Really
Simple Syndication) feed, etc. The network operator has assigned
a premium number to our OPUCE test-bed, which, leveraging on
the SMS monitoring service, results specially useful for creating
services "triggered" by an SMS message sent by a user. For in-

http://Text2SpeechCa.ll

Fig. 10. OPUCE OSS and IMS interaction.

stance, the EuroNewsSMS mashup, which is activated when a user
sends an SMS with the word "EuroNews", sends back an SMS con-
taining the news that EuroNews (a European TV) publishes on its
RSS.

The integration with the underlying NGN implementation has
gone further and the authentication of users in OPUCE has been
delegated to the NGN implementation, leveraging on existing telco
assets and subscribers base: Mobile network subscribers are al-
lowed to enjoy the OPUCE platform without needing either a pre-
vious registration or even an explicit login process. Besides, they
are charged for the use of the premium services they use in their
regular monthly bilis.

Concerning the business model, free access and free use are
granted for simpler services, mainly those coming from the Inter­
net world. Premium and advanced services, normally the Telco
ones, require a pay-per-use fee. In the aforementioned example,
the mashup is formed by four different services: three of them
are free (SMS monitoring, RSS feed checker and RSS formatter) and
just the service for sending the SMS is charged to the subscriber's
bilí at the cost of a regular SMS.

5. Conclusions

In this paper we have presented the OPUCE platform, a user-
centric approach for service creation and delivery over Next Gener-
ation Networks. Using OPUCE, non-technically skilled users are
able to créate, deploy, manage and share their own Telecommuni-
cations-based services so that others can subscribe, enjoy and rec-
ommend them. It deals with the application of user-centric service
creation paradigms currently succeeding in the Internet, to the
Telecommunications domain. We have described the technological

and business context supporting our proposal, highlighting the
benefits that the open user innovation approach provides to NGNs.

From a technical point of view, OPUCE provides an easy inter-
face for users to combine a set of Telecommunications and Internet
enablers to créate new services that would fit their needs or the
needs of a certain community. Advanced advertisement capabili-
ties and dynamic context adaptation are other relevant functional-
ities provided in the OPUCE platform, thus benefiting from viral
marketing and personalization opportunities. A suitable manage-
ment of the user sphere (context and profile) allows a straightfor-
ward personalization of services.

Through the use of the introduced faceted service and mashup
model, OPUCE provides a flexible framework to seamlessly cover
functional and non-functional properties in the service and mash­
up management. In addition, OPUCE succeeds at providing an exe-
cution environment and lifecycle management functionalities that
reduce human intervention during the lifetime of a mashup to a
mínimum (either by the operator staff, who would not be able
otherwise to cope with the expected high amount of user gener-
ated mashups, or by the creators who lack the technical skills
needed to opérate mashups). Despite the initial approach for the
Execution Environment did not cope with strict performance
requirements expected, several improvements have been tested
that demónstrate that a production-grade quality can be indeed
achieved.

We have also put forward the role of this platform in the future
approach of NGNs. A smart usage of a NGN deployment has vali-
dated all these ideas. First, OPUCE has been deployed over an
IMS implementation and currently OPUCE also runs over Open
movilforum. These NGN implementations provide an abstraction
layer to lower network resources, and links OPUCE components

with available services which are running either in the Internet or
in a certain operator's domain.

Future work aims at completing the platform with more func-
tionality, more services, and advanced operations and manage-
ment capabilities. We will also deal with monetizing the
relationship towards third parties in order to consolídate their role
in the proposed business model. And as for users, enhanced user
experience and usability are expected, which will enlarge the plat­
form user base.

Acknowledgements

This work was supported by the IST European Integrated Project
OPUCE (Open Platform for User-centric service Creation and Execu-
tion), 6th Framework Programme [Contract No. 34101]. We thank
all OPUCE partners for their valuable comments and proposals
aiming at improving the conceptual model.

References

[1] OPUCE Home Page, 2009, OPUCE Consortium, <http://www.opuce.eu/>.
¡2] J.J. Garraham et al., Intelligent network overview, IEEE Commun. Mag. 31

(1993) 30-36.
[3] J. Zuidweg, Implementing Value-Added Telecom Services, Artech House Inc.,

London, 2006.
[4] ITU-T Y.2001 General Overview of NGN, International Telecommunications

Union, Geneva, Switzerland, 2004.
[5] G. Camarillo, M.-A. García-Martín, The 3G IP Multimedia Subsystem (IMS):

Merging the Internet and the Cellular Worlds, Wiley, Chichester, England,
2004.

[6] The Open Mobile Alliance Home Page, 2009, <http://www.openmobilealliance.
org/>.

[7] JCP. JSR 22 JAIN SLEE API Specification, The Java Community Process, 2004,
<http://jcp.org/en/jsr/detail?id=22>.

[8] OECD DSTI/ICCP/IE(2006)7/FINAL Participative Web: User-Created Content,
Organisation for Economic Co-operation and Development, Paris, France, 2007.

[9] T. O'Reilly, What is Web 2.0: Design patterns and business models for the next
generation of software, O'Reilly Media Inc., 2005, <http://www.oreillynet.com/
pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html>.

[10] Yahoo! Pipes Home Page, Yahoo, 2009, <http://pipes.yahoo.com/>.
¡11] Google App Engine - Google Code, Google, 2009, <http://code.google.com/

appengine/>.
[12] Open movilforum Home Page, Telefónica Internacional, 2009, <http://

open.movilforum.com/>.
[13] Betavine Home Page, Vodafone Group, 2009, <http://www.betavine.net/>.
[14] Orange Partner Home Page, Orange, 2009, <http://www.orangepartner.com/>.
[15] AOL Developer Network Home Page, AOL, 2009, <http://dev.aol.com/>.
[16] Ribbit Home Page, 2009, <http://www.ribbit.com/>.
[17] W.H. Chesbrough, Open Innovation: The New Imperative for Creating And

Profiting from Technology, Harvard Business School Press, Boston, MA, 2005.
[18] E. von Hippel, Democratizing Innovation, The MIT Press, Cambridge, MA, 2006.
[19] D.S. Evans, A. Hagiu, R Schmalensee, Invisible Engines: How Software

Platforms Drive Innovation and Transform Industries, The MIT Press,
Cambridge, MA, 2006.

[20] Groundswell Home Page, Forrester Research, 2009, <http://www.forrest.er.
com/Groundswell/profile_tool.html>.

[21] RC. Basóle, W.B. Rouse, Complexity of service valué networks:
conceptualization and empirical investigation, IBM Syst. J. 47 (1) (2008) 53-70.

[22] C. Anderson, Free: The Future of a Radical Price, Hyperion, New York, NY, 2009.
[23] J. Yu, P. Falcarin, J.M. Álamo, J. Sienel, Q.Z. Sheng, J.F. Mejia, A user-centric

mobile service creation approach converging Telco and IT services, in:
Proceedings of the 2009 Eighth international Conference on Mobile Business
(june 27-28, 2009), ICMB, IEEE Computer Society, Washington, DC, 2009, pp.
238-242.

[24] OMA Service Provider Environment Architecture, Approved Versión 1.0, Open
Mobile Alliance, 22 October, 2009.

[25] Open Service Access (OSA); Parlay X web services; Part 1: Common, TS 29.199-
01, versión 9.0,0, 3rd Generation Partnership Project, 18-12-2009.

[26] Directive 2002/58/EC of the European Parliament and the Council of 12 July
2002 concerning the processing of personal data and the protection of privacy
in the electronic Communications sector, Official Journal of the European
Union L 201, July 2002, pp. 37-47.

[27] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J. Arkko, Diameter Base Protocol,
IETF RFC 3588, Internet Engineering Task Forcé (IETF), 2003, <http://
tools.ietf.org/html/rfc3588>.

[28] XML Document Management (XDM) Specification, Approved Versión 1.1,
Open Mobile Alliance, 27 June, 2008.

[29] Enabler Reléase Definition for Location in SIP/IP Core, Candidate Versión 1.0,
Open Mobile Alliance, 18 August, 2009.

[30] Enabler Reléase Definition for OMA Presence SIMPLE, Candidate Versión 2.0,
Open Mobile Alliance, 17 September, 2009.

[31] Open Service Access (OSA) Application Programming Interface (API); Part 1:
Overview, TS29.198-01, versión 9.0.0, 3rd Generation Partnership Project, 18
December, 2009.

http://www.opuce.eu/
http://www.openmobilealliance
http://jcp.org/en/jsr/detail?id=22
http://www.oreillynet.com/
http://pipes.yahoo.com/
http://code.google.com/
http://
http://open.movilforum.com/
http://www.betavine.net/
http://www.orangepartner.com/
http://dev.aol.com/
http://www.ribbit.com/
http://www.forrest.er
http://
http://tools.ietf.org/html/rfc3588

