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Abstract 

This work is motivated in providing and evaluating a fusion algorithm of remotely sensed images, i.e. the fusion of a high spatial 
resolution panchromatic image with a multi-spectral image (also known as pansharpening) using the dual-tree complex wavelet trans­
form (DT-CWT), an effective approach for conducting an analytic and oversampled wavelet transform to reduce aliasing, and in turn 
reduce shift dependence of the wavelet transform. The proposed scheme includes the definition of a model to establish how information 
will be extracted from the PAN band and how that information will be injected into the MS bands with low spatial resolution. The 
approach was applied to Spot 5 images where there are bands falling outside PAN's spectrum. We propose an optional step in the quality 
evaluation protocol, which is to study the quality of the merger by regions, where each region represents a specific feature of the image. 
The results show that DT-CWT based approach offers good spatial quality while retaining the spectral information of original images, 
case SPOT 5. The additional step facilitates the identification of the most affected regions by the fusion process. 
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1. Introduction 

The term "image fusion" usually implies the integration 
of images acquired by multiple sensors with the intention 
of providing a better perspective of a scene that contains 
more content. For merging remotely sensed images, partic­
ularly one multi-spectral (MS) image and one panchro­
matic (PAN) image (also known as pansharpening), 
fusion algorithms should aim to integrate information 
from images of different spectral and spatial resolution, 
leading to obtain a single image that includes the best fea­
tures of each one. The main restriction is to minimize the 
degradation of the spectral information from original 
multi-spectral image. In remote sensing, the fusion schemes 
can be classified in feature space, spatial domain and scale-
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space techniques (Schowengerdt, 2007). The first category 
exploits the complementary characteristics of spatial and 
spectral resolutions of data (e.g. intensity-hue-saturation 
(IHS), principal component analysis (PCA), etc.). The sec­
ond group of methods injects high frequency components 
from the PAN band over the MS bands (e.g. high-pass fil­
ter (HPF)). 

In the third category, scale-space fusion algorithms have 
been found to be promising and their results can be used 
for quantitative studies of multi-spectral properties 
(Gonzalez-Audicana et al., 2004). Indeed, image fusion 
methods based on injecting high frequency components 
taken from the PAN band into MS resampled bands have 
shown a superior ability to translate the spectral informa­
tion from MS image to the new fused bands (Wang 
et al., 2005), i.e. introducing minimal spectral distortions, 
as in the following cases: discrete wavelet transform 
(DWT) (Garguet-Duport et al., 1996), Laplace pyramids 
(Wang et al., 2005), AWT (a trous wavelet transform) 
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(Gonzalez-Audicana et al., 2004), among others. There­
fore, multi-resolution analysis (MRA) has been recognized 
as one of the most efficient tools for the implementation of 
image fusion in different spatial resolution images. 

Regarding critically subsampled transforms such as 
DWT, in some cases there may be aliasing, and in turn shift 
dependence of the wavelet transform. The latter means that 
small changes in the input signal (time or space) can cause 
major variations in the distribution of energy between 
wavelet transform coefficients at different scales and possi­
bly large changes in reconstructed waveforms (Kingsbury, 
1999); this explains the superiority of fusion schemes based 
on the AWT over algorithms based on DWT. 

Likewise, spatial distortions may occur in MRA-based 
fusion approaches, resulting in translations or blurring of 
the contours and textures, hence, MRA-based mergers 
require the definition of a model to establish how informa­
tion will be extracted from the high resolution PAN band 
and how that information will be injected into the MS 
bands. The aim is that fused bands should be as identical 
as possible to bands that the corresponding sensors would 
observe with the highest resolution, i.e. PAN resolution 
(Aiazzi et al., 2008). 

With this goal, several methods have been proposed 
including histogram matching between PAN and each of 
the MS bands (Li et al., 2002; Nunez et al., 1999; Wang 
et al., 2005), injection of weighted details according to con­
text-driven method (Aiazzi et al., 2002) or window spectral 
response (WiSpeR) method which takes into account the 
relative spectral responses of PAN and MS bands in the 
definition of a set of weights governing the injection of 
high-pass wavelet planes (Otazu et al., 2005). 

In the latter case, something to keep in mind is the spec­
tral range that covers both the PAN and each of the MS 
bands that will be merged. Taking the case of Spot 5 sen­
sor, where the bands cover the following wavelengths: 
PAN (0.48-0.71 (im), green (0.50-0.59 urn), red (0.61-
0.68 (im) and near-infrared (NIR) (0.78-0.89 urn) it is clear 
that NIR spectral response falls completely outside the 
scope of PAN spectral response, see Fig. 1 which shows 
spectral sensitivities of SPOT 51. Therefore, wisper method 
would not apply, because the weights to inject high pass 
details depend on the intersection between PAN and 
band-i spectral response, which is zero for NIR band. 

According to the above, it would be appropriate to use a 
non-critically subsampled wavelet transform with an injec­
tion model, such as "dual-tree complex wavelet transform" 
(DT-CWT) (Selesnick et al., 2005) described in Section 2. 
DT-CWT has been used previously for fusing Quickbird 
images (Ioannidou and Karathanassi, 2007) combining 
the PAN details with the MS low frequency component 
(approximation), applied only to the RGB bands. That 
work proposed to decompose the PAN and the MS bands 
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Fig. 1. SPOT 5 - spectral sensitivities. 

using DT-CWT, where the wavelet coefficients of the PAN 
decomposition and the scaling coefficients of the MS 
decomposition are used to obtain the new fused image by 
means DT-CWT synthesis. This means that a model to 
define the injection of high frequency components into 
spectral bands does not exist yet, an aspect that becomes 
critical when some spectral bands fall outside the PAN 
spectrum, causing spectral distortions. In SPOT 5, where 
there are bands falling outside PAN's spectrum this aspect 
can be advantageous while in Quickbird with a wide PAN 
spectral response, this added value would not be very 
significant. 

The rest of this paper is organized as follows. In Section 
3 we describe an injection model to be applied in conjunc­
tion with multi-resolution analysis based on DT-CWT. 
Section 4, describes the application and the results of the 
approach applied to Spot 5 images of Madrid, Spain. Here, 
the results of this methods are compared with alternative 
fusion approaches. Section 5 introduces the quality assess­
ment by region. The conclusions are presented in Section 6. 

2. MRA with DT-CWT 

Multi-resolution analysis (MRA) gives a simple and fast 
method to analyze a signal at different resolutions; particu­
larly, the wavelet transform uses two types of functions: 
scaling and wavelet, which together with their translations 
and dilations can see the different components of the signal. 
Scaling function gives a series of pictures of the signal, each 
at a resolution differing by a given factor from the previous 
resolution, while the differences of information between the 
signal seen at two successive resolutions are encoded by the 
wavelet function. Hence, the signal is studied at a coarse 
resolution (associated to a scaling function) to get an over­
all picture and at higher resolutions (associated to a wave­
let function) to see an increasing level of details (Burke, 
1998). 
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To achieve DWT in practice, there is a simple and fast 
method, the Mallat's algorithm (Mallat, 2009), which 
decomposes a signal into components differing in size by 
a factor of two. A wavelet coefficient w¿„ (or scaling coef­
ficient aJtn) can be obtained by integrating the product of 
the wavelet function \¡/(t) (or scaling function </>(?)) with 
the signal (« and/ refer to the index of shifts and dilations). 
In practice one uses a simpler scheme, convolving the signal 
with both a short high-pass digital filter associated with the 
wavelet function and a short low-pass digital filter associ­
ated with the scaling function. The filter bank for DWT, 
hereafter referred to as a tree, corresponds to MRA of a 
signal x implemented by means of a filter bank that 
includes two analysis-filter types: ha¡ (low-pass filter) and 
ga. (high-pass filter); wavelet and scaling coefficients can 
be obtained as shown Eqs. (1) and (2), respectively: 

aM = (x, 4>]¡n) = J2hai-2»aj-i,n (1) 
/ 

WJ,n = (X, lA/,„) = X X ^ ' - l . - (2) 
/ 

In this case, the low-pass filtering followed by a down-
sampling operator deliver coarser approximations of signal 
x, i.e. scaling coefficients aJ>n; while the high-pass filtering 
followed by a downsampling operator deliver wavelet coef­
ficients wJ>n. The reconstruction of the output signal, y, is 
possible through the synthesis filters {ha¡} and {#«,}, as 
shown in Eq. (3): 

y{n) = (x, cj>j_hn) = ^ V 2 ¡ w/ , , + J2sañ_2lwp. (3) 

Discrete wavelet transform (DWT) is implemented using 
Mallat's algorithm, so after each filter there is a downsam­
pling stage, which discards every second wavelet coefficient 
at each decomposition level, therefore DWT is a critically 
sampled transform. That can lead to aliasing and a subse­
quent shift dependence of the wavelet transform, which 
means that small shifts in the input signal (time or space) 
can cause major variations in the distribution of energy 
between wavelet transform coefficients at different scales 
(Kingsbury, 1999). This can lead to small shifts in the input 
waveform causing large changes in the wavelet coefficients, 
large variations in the distribution of energy at different 
scales and possibly large changes in reconstructed wave­
forms. Consequently, shift-invariance is desirable for sev­
eral applications such as, pattern recognition, image 
fusion, motion estimation or edge detection (Kingsbury, 
1999; Liang and Parks, 1996; Mallat, 2009). 

The dual-tree complex wavelet transform (DT-CWT) 
has as its main objective the reduction of the aliasing of 
the DWT and obtaining an analytic transform (i.e. its 
Fourier transform is zero for negative frequencies) to min­
imize the shift dependence, for which it's possible to use 
complex wavelets that are characterized by the use of a 
complex-type filter bank. With this objective, the DT-
CWT proposes to replace the complex component by two 
real filter banks; to be of complex-type, the response of 

the combination of these two filters should be analytic 
and they must form a "Hilbert pair" (90° out of phase with 
each other). 

To make the DT-CWT analytic, or nearly so, two real 
DWT (corresponding to the two filter banks) are used, the 
first delivers the real DWT transform while the second deliv­
ers the imaginary part. Each DWT, can be implemented 
using Mallat's algorithm (Mallat, 2009). This algorithm is 
a discrete wavelet transform with a fast implementation, 
which obtains from a discrete signal input (N samples) the 
coefficients that represent the new domain. The DT-CWT 
is characterized by good shift invariance, good directional 
selectivity in 2D and 3D, near-perfect reconstruction with 
short support filters, limited redundancy - 2:1 in ID, 4:1 
in 2D and low computation requirements (compared with 
undecimated DWT) (Selesnick et al., 2005). 

DT-CWT provides a time-frequency analysis of the sig­
nal by measuring its frequency content (controlled by the 
scale factor/) at different times (controlled by the time shift 
n). The algorithm decomposes the input signal x(n) in two 
signals or subbands, aJ>n and wjA that represent the low fre­
quency component (approximation) and the high fre­
quency component (details), respectively. DT-CWT with 
the complex wavelet function, \¡/a{x) +j\¡/b(x) and the com­
plex scaling function 4>a(x) +j(f>b(x) decomposes an image 
I(x,y) in one complex scaling subband and six complex 
wavelet subbands (for each level). The wavelet subbands 
are oriented in six dimensions 0 — {±15°,±45°,±75°} 
(Selesnick et al., 2005). 

3. Image fusion with DT-CWT 

The benefit of a fused image is that the single resulting 
image potentially contains both the high-spatial resolution 
and the spectral information. Hence, the result of image 
fusion is a new image which is more suitable for human 
and machine perception or further image-processing tasks 
such a classification, segmentation, feature extraction or 
object recognition. 

The proposed DT-CWT-based image fusion approach is 
summarized in Fig. 2. The first step is to resample the MS 
image so that their bands have the same pixel size as the 
PAN band. Let MS denote the multi-spectral image, R 
denote the scale ratio between MS bands and PAN band; 
and let / denote the 2D interpolation function, then the 
new interpolated image is, MSr — f(MS,R), 

These bands, along with the PAN band are decomposed 
by means of DT-CWT. For each band, one complex-val­
ued approximation band {A.) and six complex-valued 
directional detail subbands [WBj\ are generated in each 
scale of the DT-CWT (Celik and Ma, 2010): 

A(x,y) = ^2ah,n<t>k,n{X>y)> (4) 
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Fig. 2. Image fusion with DT-CWT. Overview. 

After having the coefficients associated with MRA of 
the two input images, it is necessary to build a new image 
that contains both a high-spatial resolution coupled with 
multi-spectral information. Since spectral information is 
present only in the MS image, the approximation coeffi­
cients to be retained should be precisely those of the latter, 
without taking into account the corresponding PAN coef­
ficients. Mathematically, using the GIF model (Wang et al., 
2005) we have: 

(6) 
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Here, F denotes the new fused image, MSr the resam-
pled multi-spectral image, A the approximation coeffi­
cients, W the wavelet coefficients (in direction 9), —m 

represents the spectral bands, a and f> denote the weight 
variables for the MS and PAN details, respectively. 

For the spatial information, the first approach is to 
retain only the detail coefficients of the PAN band, this 
implies that the weight variables a = 0 and f$ — 1 in Eq. 
(7), resulting in the panchromatic details injected in each 
band of the new fused image. 

Since the high-frequency components of the MS image 
include not only spatial information but also spectral infor­
mation, the high-frequency components should not be 
taken directly from PAN band. Therefore PAN detail coef­
ficients will be injected into MS multiplied by a given 

weight, so we will show how to inject the high frequency 
information (details) extracted from the PAN into resam-
pled versions of the MS. 

Given that the detail information may include coeffi­
cients either MS or PAN, it is necessary to define a model 
for comparison in order to generate a fusion map to deter­
mine which coefficients are extracted from the MS and 
which of the PAN. Map-fusion elements, which are noth­
ing more than a logical matrix, will depend on which coef­
ficient best represents the signal at a specific point. 

The fusion map can be given by similarity measures such 
as correlation. In this case, it is necessary to calculate the 
degree of correlation between each MS and PAN detail 
bands, and also from a broader perspective to determine 
the correlation between same-level MS and PAN approxi­
mations. Therefore, we calculate the local correlation p 
(within a neighborhood) between the MS and PAN 
approximation for each scale, i.e. 

/_-//> Z_/£j C — C 
^pq ^pq 

DPq-D'pq 

(8) 

Z-~ip,q\^Pq ^pq) ¿-*>p,q[ P9 Dp 

where ' denotes the mean, C and D are the MS and PAN 
approximations in a given scale, p and q the size of the win­
dow (neighborhood). Accordingly, to obtain the fusion 
map, the local correlation value will be compared against 
a threshold (x) determined by the overall correlation (P) be­
tween each MS band and the PAN, which gives an over­
view of the spectral content of the PAN. 

T = 1 - P. 

Finally the fusion map, Gcorr, is given by 

1, if p > x, 
0, else. 

Ga 

(9) 

(10) 

Since the map is calculated using the approaches of each 
level, it will be applied to all six DT-CWT subbands. 



The map fusion gives us the locations where PAN 
details will be injected. After having defined the map fusion 
elements, it's necessary to determine how to combine them, 
therefore we must determine the weights a and f$ in Eq. (7). 
Regarding a, this weight is used where PAN details are no 
injected, in these locations MS details will be retained, so a 
is given by 

a = 1 - Ga 
(11) 

The local correlation coefficient takes into account the 
degree of spectral content of the PAN with respect to MS 
allowing you to define what factors are to be removed from 
the PAN. For the injection of these details the gain factor f> 
is defined locally by the ratio of standard deviation of MS-
bands and PAN approximation for each scale: 

P mm 
aAu 

GAP 

n*Ga (12) 

where t, is a constant used to avoid numerical instabilities, 
and in this work | = 2.5 as suggested by Aiazzi et al. 
(2002). The advantage of this model is to adjust the injec­
tion of details into MS bands with the objective of minimiz­
ing the spectral distortion. This minimization is equivalent 
to applying a radiometric correction on information from 
the PAN to be injected into the MS bands. 

After having defined the new coefficients, it is necessary 
to return to the image domain. This is achieved by applying 
the inverse DT-CWT to these new coefficients, with the 
same number of decomposition levels. The full fusion pro­
cess is showed in Fig. 3. 

3.1. Quality assessment 

Quality assessment implies a comparison between the 
fused product, its properties or some derived quantities, 
and a reference. A good quality is obtained if the product 
is close to this reference. The major problem here is the 
selection of the reference. If it does not exist yet, it should 
be constructed. Then, the comparison may be performed 
using qualitative (e.g. visual analysis) and quantitative 

criteria. Since in practice the image does not exist it is nec­
essary to create it from the original PAN image, with high 
spatial resolution h (PANh) and MS image, with low spatial 
resolution / (MS¡). 

For quantitative evaluation we follow the protocol pro­
posed by Thomas and Wald (2005). This protocol allows to 
assess the quality of any fused product, provided the aim of 
the user is to handle fused images of higher spatial resolu­
tion h that are as identical as possible to the image MSh 

that the corresponding sensor would observe with the high­
est spatial resolution h, if existent. The first to take into 
account, is that the protocol considers the mono-modality 
(spectral band) and the multi-modality (multi-spectral) 
aspects. The mono-modality aspect considers each modal­
ity separately, i.e. each fused band is compared to the cor­
responding reference band and the assessment is done 
independently. The multi-modality aspect considers the 
whole set of modalities and assesses whether its multi-
modality properties are close to those of the reference 
ensemble. Likewise, this protocol takes into account two 
properties that should be checked for individual modality 
as well as for the multi-modality set: 

1. The consistency property: any fused image FUSh once 
degraded to its original resolution /, should be as identi­
cal as possible to the original image (MSi). 

2. The synthesis property: any synthetic image FUSh should 
be as identical as possible to the image MSh that the cor­
responding sensor would observe with the highest spa­
tial resolution h, if existent. 

The protocol comprises five operations. See Fig. 4. 

First operation. Perform the fusion process on the data 
sets PANh and MS¡, obtaining a new image, FUSh. 
Second operation. Resample the set FUSh down to spatial 
resolution /. Check the consistency property by compar­
ing MS, and FUS,. 
Third operation. Resample the data sets PANh and MS¡ 
down to respectively PAN¡ and MSV, where v — 1(1/h). 

o: local standard deviation 
P: global correlation, p: local correlation 

W: Wavelet coeffs, A: Approximation coeffs. 
x,y: inputs to the block 

Fig. 3. Image fusion with DT-CWT. Full outline. 
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Fig. 4. Quality assessment for image fusion. 

Perform the fusion process on these new data sets, 
obtaining an image FUSi. 
Fourth operation. Check the synthesis property by com­
paring MSi and FUSi. 
Fifth operation. Assuming that the synthesis quality 
assessed with FUSi is equivalent to that of FUSh, com­
pletes the quality assessment. 

For assessment of the fusion process results we use the 
following metrics (Alparone et al., 2007; Thomas and 
Wald, 2007; Wald, 2002): 

Multi-modality: (1) relative dimensionless global error 
(ERGAS), used to estimate the overall spectral quality of 
fused images. (2) Spectral angle mapper (SAM), which 
determines the degree of spectral similarity of an image 
against a known or reference image, expressed in terms 
of the average angle between the two spectra. 

Mono-modality: (3) Variance difference (VD) for esti­
mating the change in variance during the enhancement of 
the spatial resolution. (4) Standard deviation difference 
(SDD), which provides a global indication of the level of 
error at any pixel. (5) Correlation coefficient (CC), which 
shows the similarity in small size structures between the ori­
ginal and fused images. 

4. Results 

4.1. Dataseis 

MS and PAN Spot 5 images were used in this study. The 
images have a spatial resolution of 10 and 2.5 m, respec­
tively. Two sets, 26.2 km2 in area, was extracted from scene 
033-268 acquired on June 28, 2005 by the Spot Image cor­
poration. The scene includes partially degraded natural 
mediterranean forest, vegetation crop areas and urban 
areas. The two sets of images are displayed in Figs. 5 and 6. 

MS SPOT 5 image includes the following bands, Bl: 
green, B2: red, B3: NIR (near infrared) and B4: SWIR 
(short-wave infrared). In this work we used only the first 
3 bands since the SWIR band has lower resolution than 
the other three. Because the blue band is absent, it is com­
mon to display SPOT images in false color. A typical false-
color composition put NIR band in the red channel, mak­
ing vegetated areas appear red; red band will be in the 
green channel and green band in the blue channel. So, tar­
gets with high near-infrared reflectance appear red, those 
with a high red reflectance appear green, and those with 
a high green reflectance appear blue, thus giving us a 
"false" presentation of the targets relative to the color we 
normally perceive them to be. 

The idea was to compare the scheme shown in this paper 
with alternative fusion schemes aimed to minimizing spec­
tral distortion; these fusion approaches were applied to 
bands 1-3 (green, red, NIR) and PAN band. The used 
fusion-approaches were: (i) One classical fusion technique, 
standard IHS merger (Gonzalez-Audicana et al., 2004). (ii) 
DT-CWT basic model (DT-B), i.e. a = 0 and /? = 1 (Ioan-
nidou and Karathanassi, 2007). (iii) DT-CWT basic model 
with previous histogram matching (HM) between PAN 
and each of the MS bands (DT-HM). (iv) DT-CWT mod­
ified injection (DT-MI), i.e. a and f$ defined as in Eqs. (11) 
and (12). DT-CWT based models were applied with three 
decomposition levels. 

4.2. Visual analysis 

An apparent improvement in spatial quality compared 
to the original PAN image is perceptible in the resulting 
fused images shown in Figs. 7 and 8. Visually, it is possible 
to see slight variations between the resulting images, but in 
general all algorithms meet the requirement of improving 
the spatial quality. Display in false-color allows visual eval­
uation of the spectral quality. For example, when the 
fusion process kept properly spectral information, 
vegetated areas in fused images will take a similar red tone 
of the original image; otherwise it will degrade into lighter 

(a) MS (b) PAN 

Fig. 5. Image Set 1. (a) MS (512 x 512 pixels false color NIR, red and 
green composition), (b) PAN (2048 x 2048). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 



(a) MS (b) PAN 

Fig. 6. Image Set 2. (a) MS (512 x 512 pixels false color NIR, red and 
green composition), (b) PAN (2048 x 2048). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

(a) MS Original (b) P A N Image 

(e) DT-HM (f) IHS 

Fig. 7. Image Set 1. A fragment of the original MS (10 m), PAN (2.5 m) 
and fused images (2.5 m) (400 x 400 pixels false color NIR, red and green 
composition). The upper left corner of the full scene is placed at 489330 E 
and 4444560 N (UTM geographic coordinates, zone 30, WGS-84). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

(a) MS Or ig ina l (b) P A N Image 

(e) DT-HM (f) IHS 

Fig. 8. Image Set 2. A fragment of the original MS (10 m), PAN (2.5 m) 
and fused images (2.5 m) (400 x 400 pixels false color NIR, red and green 
composition). The upper left corner of the full scene is placed at 410525 E 
and 4512525 N (UTM geographic coordinates, zone 30, WGS-84). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

(pink) or darker hues when spectral quality decreases. By 
comparing the resulting images, is also seen that fused 
images retain a high degree of spectral fidelity, demon­
strated by the red tones of vegetation in these images. 
However, traditional fusion approaches focused on the 
preservation of spectral information such as histogram-
matching based and IHS-based methods have a significant 
color distortion, especially noticeable in the river (Fig. 7(e) 
and (f)) and in water reservoir (Fig. 8(e) and (f)). Therefore, 
visually the best spectral results were obtained with DT-B 
and DT-MI schemes. 

Likewise, visual inspection of the two cases also guess a 
good performance for fusion algorithms based on DT-
CWT, as well as a trade-off between spatial and spectral 
quality of the schemes DT-B (Figs. 7(d) and 8(d)) and 
DT-MI (Figs. 7(c) and 8(c)). 



4.3. Consistency property (first and second operation) 

According to the above, the source PANh and MS¡ 
images are fused to obtain a new multi-spectral fused image 
with spatial resolution h, FUSh. To evaluate the consis­
tency property, FUSh is resampled down to spatial resolu­
tion / obtaining FUS¡. Then the quality can be assessed 
comparing FUS¡ against the source, MS image (MS¡). See 
block 1 in Fig. 4. The results are showed in Tables 1 and 3. 

4.4. Synthesis property (third and fourth operation) 

Although verification of the property of consistency 
shows results that support the quality of the methods, it 
should be noted that verification of this property is a nec­
essary but not sufficient condition, therefore to verify com­
pliance with the second property is required. To check the 
synthesis property, PAN image is degraded to the low spa­
tial resolution / and the MS image is degraded to the spatial 
resolution 1(1/h). The fusion process is applied to new 
degraded images and the quality can be assessed using as 
a reference image the original MS image. See block 3 in 
Fig. 4. The results are showed in Tables 2 and 4. 

4.5. Analysis of results 

The ERGAS values in Tables 1-4 were acceptable (<3) 
(Wald, 2002) for DT-MI case in both images. If we com­
bine these results with the angles obtained by the SAM 
metric, preservation of spectral information is confirmed, 
taking into account that this parameter is calculated for 
three bands (NIR-red-green). Indeed, these metrics cor­
roborate the observed spectral distortions for the histo-
gram-matching-based and IHS- based approaches (Figs. 
7(e) & (f) and 8(e) & (f)), being the worst the IHS-based 
approach, according to visual assessment. Similarly, one 
can conclude that the best spectral results are obtained 
for the scheme based on DT-CWT with modified injection 
(DT-MI). 

VD, an indicator of spatial quality, suggests a slight dis­
advantage for modified injection method (DT-MI) com­
pared to the direct-injection method (DT-B), which 
should result in a slightly higher spatial-information pres­
ervation. This index confirms the visual difference between 
Figs. 7(c) & (d) and 8(c) & (d) where you can see that the 
DT-MI images, Figs. 7(c) and 8(c) are slightly blurred com­
pared with Figs. 7(d) and 8(d), so the above results imply a 
trade-off between spatial and spectral quality. 

SDD shows similar results for the four schemes, with 
acceptable values (nearly 0). In this case, the best results 
are obtained for the modified injection model (DT-MI). 

As for the overall correlation between the reference 
image and the merged image, again the best results are 
obtained with the DT-MI fusion scheme. One thing to 
highlight is the CC value for the NIR band, which, as high­
lighted above, falls outside the scope of the PAN. In partic­
ular, DT-B, DT-HM and IHS schemes have a CC value for 
the NIR band much lower than the corresponding value to 
R and G bands while in DT-MI scheme, CC values for all 
three bands are similar. 

By comparing the outcomes of the consistency property 
with the results of the synthesis property, one can see that 
these results have been consistent with each other, i.e. the 
above analysis can be inferred both based on the consis­
tency tables as in synthesis tables, confirming that the syn­
thesis quality assessed with FUS¡ is equivalent to that of 
FUSh, i.e. the fifth operation. However, in the outcomes 
presented in Figs. 7 and 8 you can see significant spectral 
distortions particularly noticeable in the fusion method 
based on IHS and especially in regions such as bodies of 
water. 

The spectral distortion for the IHS method can be cor­
roborated with consistency and synthesis tables (Tables 
1-4), particularly with ERGAS index. However, these 
differences are more apparent in consistency tables, for 
example in the case of Image Set 1 show a ratio of 1:2 
for ERGAS index between DT-MI and IHS-based meth­
ods. Anyway, the big difference in spectral quality dis-

Table 1 
Image Set 1. Consistency property metrics for fused images showed in Fig. 7. The full scenes have a size of 2048 x 2048 pixels. Bands: NIR (N), red (R) 
and green (G). 

Index (ideal value) Fusion approach 

DT-B DT-HM DT-MI IHS 

ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

N 
R 
G 

N 
R 
G 

N 
R 
G 

1.0524 

0.0111 

-0.0368 
-0.0068 
0.0060 

0.0424 
0.0474 
0.0357 

0.9743 
0.9938 
0.9942 

0.8973 

0.0107 

0.0125 
-0.0032 
0.0032 

0.0254 
0.0437 
0.0362 

0.9905 
0.9947 
0.9940 

0.8127 

0.0117 

0.0093 
0.0032 
0.0034 

0.0075 
0.0426 
0.0360 

0.9992 
0.9950 
0.9941 

1.5859 

0.0038 

0.2704 
0.0208 
0.0106 

0.0614 
0.0634 
0.0652 

0.9478 
0.9889 
0.9805 



Table 2 
Image Set 1. Synthesis property metrics for fused images showed in Fig. 7. The full scenes have a size of 2048 x 2048 pixels. Bands: NIR (N), red (R) and 
green (G). 

Index (ideal value) Fusion approach 

DT-B DT-HM DT-MI IHS 

ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

N 
R 
G 

N 
R 
G 

N 
R 
G 

1.9579 

0.0313 

-0.1920 
-0.0109 
0.0178 

0.1010 
0.0711 
0.0561 

0.8670 
0.9861 
0.9856 

1.6164 

0.0261 

0.1319 
0.0151 
0.0193 

0.0706 
0.0663 
0.0562 

0.9241 
0.9878 
0.9855 

1.4000 

0.0244 

0.1483 
0.0186 
0.0332 

0.0575 
0.0583 
0.0520 

0.9508 
0.9906 
0.9876 

1.8703 

0.0225 

0.3083 
0.0793 
0.0688 

0.0784 
0.0756 
0.0700 

0.9086 
0.9844 
0.9775 

Table 3 
Image Set 2. Consistency property metrics for fused images showed in Fig. 
and green (G). 

. The full scenes have a size of 2048 x 2048 pixels. Bands: NIR (N), red (R) 

Index (ideal value) Fusion approach 

DT-B DT-HM DT-MI IHS 

ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

N 
R 
G 

N 
R 
G 

N 
R 
G 

2.4246 

0.0284 

-0.0252 
0.0113 

-0.0566 

0.0803 
0.1074 
0.1011 

0.9357 
0.9536 
0.9171 

2.2051 

0.0302 

0.0124 
0.0088 
0.0285 

0.0703 
0.1084 
0.0815 

0.9498 
0.9528 
0.9437 

1.9543 

0.0303 

0.0245 
0.0030 
0.0171 

0.0152 
0.1072 
0.0812 

0.9977 
0.9539 
0.9443 

3.0999 

0.0104 

0.4060 
0.0748 
0.0259 

0.1174 
0.1260 
0.1278 

0.8534 
0.9347 
0.8616 

Table 4 
Image Set 2. Synthesis property metrics for fused images showed in Fig. 
green (G). 

. The full scenes have a size of 2048 x 2048 pixels. Bands: NIR (N), red (R) and 

Index (ideal value) Fusion approach 

DT-B DT-HM DT-MI IHS 

ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

N 
R 
G 

N 
R 
G 

N 
R 
G 

3.9761 

0.0631 

-0.1054 
0.0729 

-0.2251 

0.1712 
0.1587 
0.1463 

0.7197 
0.8961 
0.8433 

3.5508 

0.0654 

0.0402 
0.1090 
0.1518 

0.1512 
0.1559 
0.1155 

0.7644 
0.8986 
0.8821 

2.7871 

0.0500 

0.1834 
0.1220 
0.1588 

0.0831 
0.1392 
0.1049 

0.9279 
0.9194 
0.9032 

3.7376 

0.0570 

0.4008 
0.2680 
0.2170 

0.1512 
0.1596 
0.1366 

0.7347 
0.8931 
0.8311 

played by the visual results can not be captured totally by a given region can be minimized by small differences in 
the metrics showed in these tables. The reason is that we another region. Accordingly, we propose an optional step 
evaluate the whole image, therefore, major differences in in the quality assessment protocol, which is to study the 



quality of the merger by regions, where each region repre­
sents a specific feature of the image. This will be the subject 
of the next section. 

5. Quality assessment by region (QAR) 

In order to apply more localized quality indices, is pro­
posed in this paper divide the image into regions that are 
representative of a specific feature of the image, i.e. the 
quality indices can be applied individually to a segment 
that contains only one coverage such as vegetation. So, 
you can apply the above quality indices but for each of 
the regions defined in the image, thus facilitating the anal­
ysis of the impact of fusion methods in different coverages. 

With this goal, the first step was to segment the original 
MS image in a small number of representative segments of 
the existing land covers. For each segment binary masks 
are extracted, which will be applied to both the reference 
image (source MS) and the resulting fused images. See block 
2 in Fig. 4. After extracting the image regions corresponding 
to each segment, we proceed to apply the quality indexes. 

The segmentation algorithm used was described in our 
previous work (Sanchez et al., 2010). The method involves 
obtaining the objects by means an unsupervised method 
based on a self-calibrating multi-band region growing 
approach. An adaptive Canny edge detection algorithm is 
applied to obtain a calibration map. Next, the starting points 
of the segmentation, often referred to as seed pixels, have to 
be identified. The seeds are selected according to a scan of the 
image by rows without taking into account the edge infor­
mation. The regions are built around these pixels by joining 
the similar neighboring pixels to them. To compute the sim­
ilarity the Euclidean distance is used. Once the regions have 
been obtained, a merging process is performed in order to 
eliminate small regions. The automatically generated map 
prior to segmentation, is a calibration edge map that can 
be used to obtain the optimal region maps by means a dispar­
ity measure. To obtain the disparity measure, the maps of 
distances associated with edges of each region maps from 
the segmentation process are compared with the map of dis­
tances from the calibration edge map. Finally, the obtained 
segments are classified and labeled by a minimum distance 
supervised method. 

5.1. QAR in Image Set 1 

After applying the segmentation process on the Image 
Set 1 (Fig. 5(a)), we obtained the results shown in Fig. 9, 
which shows the segmented image and masks for each of 
the segments associated with the land cover types. 

The masks for the six segments allowed to extract 
regions of interest in the original MS image and the fused 
images, thus applying the quality indices only in pixels 
associated with the respective segment. In this way we 
obtained the results shown in Tables 5 and 6. The Table 
5 shows the results of the property of consistency, while 
the Table 6 shows the fulfillment of the synthesis property. 

(a) Segmented Image (b) Region 1 - Soil 1 

(e) Region 4 - Soil 3 (f) Region 5 - Crops 

(g) Region 6 - Soil 4 

Fig. 9. Image Set 1. Segmented image and regions. 

The tables show both individual modality as multi-modal­
ity set. 

5.2. QAR in Image Set 2 

Quality assessment by region in Image Set 2 (Fig. 6(a)) 
began with the segmentation process, resulting in the seg­
mented image and masks showed in Fig. 10. The land cover 



Table 5 
Image Set 1. Consistency property metrics for regions showed in Fig. 9. 

Index (ideal value) Fusion approach 

DT-B DT-HM DT-MI 

Region 1 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

Region 2 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

1.6028 

0.0182 

-0.0863 
-0.1025 
-0.0505 

0.0718 
0.0684 
0.0499 

0.9077 
0.9391 
0.9401 

1.3209 

0.0133 

-0.1999 
-0.1087 
-0.0305 

0.0583 
0.0558 
0.0432 

0.9088 
0.9294 
0.9336 

1.3778 

0.0179 

0.0046 
-0.0903 
-0.0543 

0.0482 
0.0651 
0.0503 

0.9560 
0.9442 
0.9394 

1.0586 

0.0123 

0.0002 
-0.0756 
-0.0327 

0.0287 
0.0515 
0.0436 

0.9747 
0.9385 
0.9324 

1.178 

0.0186 

0.0188 
-0.0774 
-0.0571 

0.0132 
0.0624 
0.0508 

0.9967 
0.9483 
0.9384 

0.9659 

0.0153 

0.0162 
-0.0679 
-0.0404 

0.0091 
0.0497 
0.0438 

0.9974 
0.9423 
0.9321 

IHS 

Table 5 (continued) 

Index (ideal value) Fusion approach 

DT-B DT-HM DT-MI IHS 

2.6142 

0.0056 

0.2866 
0.1185 
0.1986 

0.0835 
0.0786 
0.0808 

0.8586 
0.9103 
0.8256 

1.6911 

0.0040 

0.2054 
0.0221 

-0.0951 

0.0683 
0.0663 
0.0671 

0.8455 
0.8918 
0.8455 

Region 5 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

Region 6 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

0.8588 

0.0092 

-0.0485 
-0.1081 
-0.0878 

0.0214 
0.0484 
0.0271 

0.9541 
0.9572 
0.9622 

1.0477 

0.0109 

-0.2158 
-0.0993 
0.0357 

0.0489 
0.0422 
0.0321 

0.9103 
0.9390 
0.9310 

0.8684 

0.0100 

-0.0149 
-0.1283 
-0.0968 

0.0204 
0.0493 
0.0277 

0.9575 
0.9564 
0.9609 

0.8310 

0.0088 

-0.0571 
-0.0339 
0.0005 

0.0303 
0.0376 
0.0307 

0.9615 
0.9492 
0.9378 

0.7833 

0.0083 

0.0127 
-0.0985 
-0.0883 

0.0038 
0.0467 
0.0274 

0.9985 
0.9599 
0.9615 

0.7105 

0.0112 

0.0173 
-0.0611 
0.0100 

0.0100 
0.0370 
0.0303 

0.9957 
0.9520 
0.9390 

1.4702 

0.0039 

0.4930 
-0.1353 
-0.2840 

0.0490 
0.0564 
0.0515 

0.7091 
0.9429 
0.8797 

1.2932 

0.0048 

-0.0004 
-0.0124 
-0.0022 

0.0512 
0.0510 
0.0470 

0.8854 
0.9058 
0.8545 

Region 3 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

Region 4 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

3.4231 

0.0572 

-0.1218 
-0.2441 
-0.0097 

0.1901 
0.0707 
0.0401 

0.8895 
0.8303 
0.8837 

0.8128 

0.0077 

-0.1436 
-0.0846 
-0.0236 

0.0368 
0.0332 
0.0266 

0.9299 
0.9505 
0.9639 

3.6589 

0.0621 

-0.2020 
-0.2532 
-0.0231 

0.2029 
0.0730 
0.0412 

0.8807 
0.8199 
0.8777 

0.6455 

0.0072 

0.0035 
-0.0574 
-0.0378 

0.0186 
0.0298 
0.0276 

0.9802 
0.9594 
0.9614 

1.4767 

0.0228 

-0.0039 
-0.2426 
-0.0080 

0.0426 
0.0766 
0.0413 

0.9940 
0.7997 
0.8766 

0.5901 

0.0088 

0.0120 
-0.0599 
-0.0301 

0.0070 
0.0298 
0.0270 

0.9972 
0.9594 
0.9628 

Table 6 
14.0082 Image Set 1. Synthesis property metrics for regions showed in Fig. 9. 

0.0157 Index (ideal value) 

-0.3058 
-0.7757 
-3.5945 

Fusion approach 

0.1316 
0.1315 
0.1470 

0.9591 
0.5332 
0.5723 

1.1235 

0.0026 

0.1077 
-0.0451 
-0.1645 

0.0451 
0.0435 
0.0440 

0.8787 
0.9122 
0.9102 

DT-B DT-HM DT-MI 

Region 1 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

Region 2 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 
N 
R 
G 

2.9259 

0.0475 

-0.486 
-0.2146 
-0.0774 

0.1587 
0.0987 
0.0756 

0.6297 
0.8814 
0.8645 

2.3284 

0.0346 

-0.9596 
-0.2614 
-0.0686 
0.1218 
0.0819 
0.0664 

2.5002 

0.0403 

0.0629 
-0.1264 
-0.0296 

0.1223 
0.0928 
0.0741 

0.7089 
0.8885 
0.8661 

1.7722 

0.0271 

0.0461 
-0.0636 
0.0216 
0.0729 
0.0737 
0.0645 

2.1964 

0.0396 

0.0983 
-0.0555 
0.0498 

0.1012 
0.0829 
0.0706 

0.7977 
0.9071 
0.8737 

1.6124 

0.0281 

0.1671 
-0.0118 
0.0874 
0.0668 
0.0652 
0.0604 

IHS 

3.3144 

0.035 

0.3673 
0.2777 
0.3482 

0.1131 
0.0941 
0.0878 

0.7229 
0.8678 
0.7865 

1.9010 

0.0228 

0.1855 
0.1899 
0.0818 
0.0798 
0.0751 
0.0711 

(continued on next page) 



Table 6 (continued) 

Index (ideal valu 

CC(1) 

Region 3 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

Region 4 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

Region 5 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

Region 6 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

e) 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

Fusion approach 

DT-B 

0.7313 
0.8613 
0.8464 

12.1761 

0.2216 

0.2948 
-0.6163 
-0.0031 

0.4352 
0.1012 
0.0620 

0.2738 
0.7135 
0.7213 

1.4804 

0.0206 

-0.6227 
-0.2170 
-0.0666 

0.0772 
0.0507 
0.0426 

0.7629 
0.8942 
0.9094 

1.8898 

0.0321 

-1.2536 
-0.3611 
-0.2608 

0.0855 
0.0829 
0.0484 

0.5804 
0.8952 
0.8923 

1.7603 

0.0261 

-0.7159 
-0.2171 
-0.1293 

0.0878 
0.0634 
0.0491 

0.7796 
0.8718 
0.8519 

DT-HM 

0.8330 
0.8724 
0.8479 

14.3279 

0.2570 

0.2805 
-1.5941 
-0.3437 

0.4067 
0.1349 
0.0638 

0.3723 
0.6731 
0.7559 

1.1608 

0.0177 

0.1288 
-0.1139 
-0.1249 

0.0483 
0.0462 
0.0440 

0.8599 
0.9055 
0.9075 

1.8857 

0.0268 

-0.4468 
-0.6989 
-0.4752 

0.0651 
0.0981 
0.0538 

0.6531 
0.8890 
0.8885 

1.3563 

0.0180 

0.1016 
0.0361 

-0.0782 

0.0547 
0.0549 
0.0476 

0.8637 
0.8879 
0.8568 

DT-MI 

0.8536 
0.8973 
0.8630 

10.0491 

0.1845 

0.0679 
-0.7570 
-0.0283 

0.3460 
0.1026 
0.0626 

0.5930 
0.7293 
0.7191 

1.0974 

0.0187 

0.1268 
-0.0615 
-0.0138 

0.0490 
0.0410 
0.0395 

0.8557 
0.9231 
0.9199 

1.4173 

0.0185 

0.0804 
-0.3384 
-0.2675 

0.0320 
0.0787 
0.0476 

0.8905 
0.9046 
0.8966 

1.4320 

0.0248 

0.1933 
0.0411 

-0.0164 

0.0651 
0.0505 
0.0447 

0.8000 
0.9053 
0.8692 

IHS 

0.7879 
0.8530 
0.8102 

19.3044 

0.1826 

0.2297 
-0.7389 
-1.4923 

0.3822 
0.1130 
0.1077 

0.4612 
0.6596 
0.5713 

1.2703 

0.0132 

0.1332 
-0.0254 
-0.1311 

0.0513 
0.0475 
0.0461 

0.8414 
0.8945 
0.8986 

2.1348 

0.0273 

0.0642 
-0.5885 
-0.5379 

0.0685 
0.1083 
0.0666 

0.4985 
0.8424 
0.8276 

1.5063 

0.0149 

0.2243 
0.2081 
0.0543 

0.0550 
0.0553 
0.0503 

0.8580 
0.8813 
0.8288 

(a) Segmented Image (b) Region 1 - Soil 1 

(c) Region 2 - Soil 2 (d) Region 3 - Water 

(e) Region 4 - Soil 3 (f) Region 5 - Soil 4 

Fig. 10. Image Set 2. Segmented image and regions. 

types associated with the five segments are displayed in the 
same image. With these masks, we extracted regions of 
interest for the original MS image and the fused images. 
The quality indices were applied only in pixels correspond­
ing to each segment. The obtained results for consistency 
and synthesis are shown in Tables 7 and 8, respectively, 
showing both individual modality as multi-modality set. 

5.2.1. Analysis of results for QAR 
Analyzing the results by region, is of great interest the 

region 3, both for the set of images 1 as 2. These two cases 
involve bodies of water, corresponding to a river in the 
Image Set 1 and a reservoir in Image Set 2. Looking at 
the mask of Class 3 in Image Set 1, we see that it contains 
mainly thin features (river), features that may be affected 
by the spatial degradation prior to fusion in synthesis prop­
erty evaluation, degradation applied to the PAN and MS 
images, i.e. as this operation involves a low-pass filtering 
may affect the evaluation of the spectral quality of the 
resulting images. This difference can be seen clearly 



Table 7 
Image Set 2. Co >nsistencv properiv : 

Index (ideal value) 

Region 1 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

Region 2 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

Region 3 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

Region 4 
ERGAS (<3) 

SAM (0) 

VD(0) 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 

R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 

G 

N 
R 
G 

metrics for regions showed 

Fusion approacn 

DT-B 

2.0397 

0.0265 

-0.0101 
-0.0832 
-0.311 

0.0637 
0.0958 
0.0817 

0.9093 
0.8862 
0.7956 

2.5662 

0.0301 

-0.2324 

—0.0355 
-0.1537 

0.0969 
0.1037 
0.1068 

0.8142 
0.8867 
0.8334 

3.0565 

0.0176 

-0.4613 
-0.2808 
-0.2494 

0.1636 
0.1096 
0.0764 

0.8804 
0.9117 

0.8810 

2.4645 

0.0310 

-0.0179 
-0.1572 
-0.3804 

DT-HM 

2.0089 

0.0289 

-0.0243 
-0.1288 
-0.1282 

0.0661 
0.1027 
0.0662 

0.9030 
0.8727 
0.8507 

2.2117 

0.0303 

-0.0458 

—0.0246 
0.0252 

0.0752 
0.1021 
0.0855 

0.8750 
0.8893 
0.8820 

3.4535 

0.0355 

-0.7058 
-0.2847 
-0.2077 

0.2004 
0.1088 
0.0649 

0.8447 
0.9135 

0.9125 

2.3832 

0.0324 

-0.0088 
-0.2081 
-0.1506 

DT-MI 

1.6903 

0.0282 

0.033 
-0.1028 
-0.1173 

0.0126 
0.0970 
0.0640 

0.9965 
0.8848 
0.8596 

1.9538 

0.0329 

0.0523 

—0.0463 
-0.0020 

0.0167 
0.1029 
0.0861 

0.9939 
0.8891 
0.8819 

2.2522 

0.0145 

-0.1364 
-0.2792 
-0.2028 

0.0856 
0.1117 
0.0662 

0.9593 
0.9080 

0.9085 

2.1288 

0.0314 

0.0539 
-0.1771 
-0.1455 

in Fig. 10. 

IHS 

2.7454 

0.0098 

0.4687 
-0.2721 
-0.638 

0.0991 
0.1074 
0.1042 

0.7473 
0.8742 
0.7201 

2.7123 

0.0108 

0.3663 

0.1964 
0.1691 

0.1043 
0.1101 
0.1109 

0.7166 
0.8606 
0.7894 

11.5368 

0.0077 

-2.2761 
-3.4765 
-7.3220 

0.3445 
0.3438 
0.3230 

0.7737 
0.7896 

0.7490 

3.4574 

0.0112 

0.4909 
-0.2465 
-0.5792 

Table 7 (continued) 

Index (ideal value) 

SDD (0) 

CC(1) 

Region 5 
ERGAS (<3) 

SAM (0) 

VD (0) 

SDD (0) 

CC(1) 

Table 8 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

Image Set 2. Synthesis 

Index (ideal value) 

Region 1 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

Region 2 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

Fusion approach 

DT-B 

0.0618 
0.1223 
0.1006 

0.8678 
0.8349 
0.7440 

2.5633 

0.0248 

-0.5704 
-0.1938 
-0.2261 

0.1112 
0.0902 
0.1024 

0.7918 
0.8633 
0.8229 

DT-HM 

0.0609 
0.1290 
0.0816 

0.8709 
0.8218 
0.8085 

2.0238 

0.0216 

-0.1475 
-0.1448 
-0.0265 

0.0695 
0.0845 
0.0833 

0.8957 
0.8765 
0.8682 

property metrics for regions 

Fusion approach 

DT-B 

3.3079 

0.0544 

-0.1247 
-0.112 
-0.7769 

0.1375 
0.1387 
0.1177 

0.6010 
0.7641 
0.6607 

4.1773 

0.0678 

-0.9631 
-0.0548 
-0.4988 

0.1879 
0.1507 
0.1537 

0.4874 
0.7625 
0.7133 

DT-HM 

3.2232 

0.0586 

-0.1745 
-0.2362 
-0.2257 

0.1395 
0.1456 
0.0923 

0.5991 
0.7577 
0.7232 

3.4553 

0.0652 

-0.2085 
0.0977 
0.1900 

0.1449 
0.1430 
0.1185 

0.5722 
0.7700 
0.7568 

DT-MI 

0.0124 
0.1230 
0.0794 

0.9948 
0.8349 
0.8182 

1.9263 

0.0300 

-0.0485 
-0.2258 
-0.0981 

0.0323 
0.0923 
0.0875 

0.9762 
0.8601 
0.8603 

; showed in 

DT-MI 

2.4099 

0.0448 

0.1991 
-0.0333 
-0.0531 

0.0698 
0.1258 
0.0816 

0.8837 
0.7978 
0.7626 

2.7779 

0.0532 

0.2897 
0.1114 
0.1999 

0.0886 
0.1295 
0.1089 

0.8037 
0.8106 
0.7952 

IHS 

0.1014 
0.1100 
0.1043 

0.5538 
0.8752 
0.7557 

3.8701 

0.0075 

-0.0520 
0.0244 

-0.0098 

0.1163 
0.1152 
0.1200 

0.6880 
0.7464 
0.7240 

Fig. 10. 

IHS 

3.4584 

0.0515 

0.3988 
-0.112 
-0.5385 

0.1327 
0.1396 
0.1125 

0.5221 
0.7613 
0.6494 

3.3470 

0.0590 

0.3420 
0.4334 
0.4279 

0.1326 
0.1405 
0.1236 

0.5313 
0.7588 
0.7174 

(continued on next page) 



Table 8 (continued) 

Index (ideal value) Fusion approach 

DT-B DT-HM DT-MI IHS 

Region 3 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

Region 4 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

Region 5 
ERGAS (<3) 

SAM (0) 

VD(0) 

SDD (0) 

CC(1) 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

N 
R 
G 

6.1566 

0.0451 

-2.6930 
-0.5516 
-0.4633 

0.3626 
0.1703 
0.1182 

0.7956 
0.8138 
0.7414 

4.1223 

0.0748 

-0.2591 
-0.2678 
-0.9781 

0.1456 
0.1786 
0.1455 

0.3461 
0.6652 
0.5890 

4.6489 

0.0723 

-1.9696 
-0.5059 
-0.8433 

0.2082 
0.1471 
0.1677 

0.5557 
0.6882 
0.6484 

9.3408 

0.1013 

-5.9987 
-0.7277 
-0.4267 

0.6048 
0.1803 
0.0987 

0.6521 
0.8142 
0.8203 

3.9460 

0.0768 

-0.1656 

-0.4377 
-0.3102 

0.1412 
0.1864 
0.1153 

0.3572 
0.6667 
0.6463 

3.7729 

0.0633 

-0.2004 
-0.0862 
0.0942 

0.1368 
0.1288 
0.1264 

0.5995 
0.7006 
0.6781 

5.4559 

0.0417 

-2.0385 
-0.5819 
-0.3634 

0.3105 
0.1684 
0.0956 

0.8145 
0.8227 
0.8244 

3.0592 

0.0559 

0.3379 
-0.1359 
-0.0741 

0.0751 
0.1607 
0.1024 

0.7790 
0.7097 
0.6848 

3.3884 

0.0526 

0.1855 
-0.2363 
0.0128 

0.1108 
0.1287 
0.1214 

0.6830 
0.7245 
0.7142 

11.4491 

0.0335 

-4.0109 

-3.7185 
-7.0872 

0.4605 
0.3647 
0.3227 

0.7535 
0.7631 
0.7200 

4.0399 

0.0698 

0.3804 
-0.1514 
-0.4725 

0.1334 
0.1642 
0.1203 

0.2384 
0.6991 
0.6461 

4.7074 

0.0478 

0.1239 
0.2995 
0.3133 

0.1260 
0.1173 
0.1207 

0.6005 
0.7058 
0.6790 

between consistency and synthesis results obtained for 
region 3. 

Taking the region 3 in the Image Set 1, the DT-MI and 
IHS-based fusion methods and reviewing ERGAS index is 
observed that in the metrics for synthesis property evalua­
tion, there is a ratio of 1:2, while in the metrics of consis­
tency, the ratio is close to 1:10. The latter describes a 
more significant spectral differences in the river shown in 
Fig. 7 for the two methods mentioned. 

As for the region 3 of Image Set 2, significant distortions 
are seen again, particularly for the method based on IHS. 
In this case the ERGAS index for DT-MI and IHS-based 
fusion methods show a ratio close to 1:2 in synthesis met­
rics, while the consistency metrics ratio is close to 1:5. 

Again the consistency metrics confirm that they are needed, 
showing results according with visual inspection 
and describing the reservoir spectral differences shown in 
Fig. 8. 

6. Conclusion 

Quality assessment by region was proposed, facilitating 
the analysis of the impact of fusion methods in different 
coverages and confirming the need to evaluate the proper­
ties of synthesis and consistency. DT-CWT being an over-
sampled transform reduce aliasing and shift dependence, so 
DT-CWT-based fusion method offers good spatial quality 
while retaining the spectral information of original images, 
in particular sensors which have spectral bands that fall 
outside the PAN spectrum, case Spot 5 sensor. Both visual 
inspection and quality indexes were used, to confirm the 
good overall results for the DT-CWT-based fusion schemes 
and the trade-off between spectral quality and spatial 
quality. 

This finding is supported by a case study with typical 
Spot 5 images (MS and PAN). Four approaches were used 
for the injection of PAN image details into the MS image, 
with the aim of minimize the degradation of the spectral 
information from original multi-spectral image: IHS (stan­
dard IHS merger Gonzalez-Audicana et al., 2004), DT-B 
(DT-CWT basic model Ioannidou and Karathanassi, 
2007), DT-HM (DT-B with previous histogram matching 
between PAN and each of the MS bands), DT-MI (pro­
posed method defining an injection model). Regarding spa­
tial quality of the fused images, the list from best to worst is 
as follows: DT-MI, DT-B, DT-HM and IHS. To note is the 
superior ability of injecting high frequency components 
taken from the PAN band into MS resampled bands, and 
in particular MRA-based mergers. Also, the definition of 
an injection model can imply a trade-off between spectral 
quality and spatial quality. 

Since the main restriction was to minimize the degrada­
tion of the spectral information from original multi-spec­
tral image, it is interesting to compare the spectral 
quality results. From best to worst the results were: DT-
MI, DT-B, DT-HM and IHS. Even the quality metrics 
are better for DT-HM compared with DT-B, the visual 
analysis show radiometric distortions for DT-HM. These 
radiometric distortions are higher for IHS-based fusion 
specially for some land covers. The superiority in spectral 
results of DT-MI lies in the injection model, which 
improves the spectral fidelity for bands with spectral 
response outside the scope of PAN spectral response. 

Future work could use the directional information given 
by the DT-CWT, while taking into account the computa­
tional cost required to process wavelet subbands in six 
directions for each level. The proposed approach can be 
applied and evaluated in another areas, such as medical 
imaging, where lower time image capture and image sizes 
may allow applications in (near) real time. 
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