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Most fusion satellite image methodologies at pixel-level introduce false spatial details, i.e. artifacts, in 
the resulting fused images. In many cases, these artifacts appears because image fusion methods do 
not consider the differences in roughness or textural characteristics between different land covers. They 
only consider the digital values associated with single pixels. This effect increases as the spatial resolution 
image increases. To minimize this problem, we propose a new paradigm based on local measurements of 
the fractal dimension (FD). Fractal dimension maps (FDMs) are generated for each of the source images 
(panchromatic and each band of the multi-spectral images) with the box-counting algorithm and by 
applying a windowing process. The average of source image FDMs, previously indexed between 0 and 1, 
has been used for discrimination of different land covers present in satellite images. This paradigm has 
been applied through the fusion methodology based on the discrete wavelet transform (DWT), using the 
a trous algorithm (WAT). Two different scenes registered by optical sensors on board FORMOSAT-2 and 
IKONOS satellites were used to study the behaviour of the proposed methodology. The implementation 
of this approach, using the WAT method, allows adapting the fusion process to the roughness and shape 
of the regions present in the image to be fused. This improves the quality of the fused images and their 
classification results when compared with the original WAT method. 

1. Introduction 

Recent improvements in technologies of Earth observation from 
space have resulted in a wide range of commercial satellites that 
offer a new generation of images. Among them, FORMOSAT-2 with a 
spatial resolution of 2 m in the panchromatic and 8 m in multispec-
tral bands; IKONOS and KOMPSAT-2 with 1 m (panchromatic) and 
4 m (multispectral bands) respectively; QUICKBIRD with 0.61m 
and 2.44 m; and GEOEYE-1 with 0.41 m and 1.65 m, can be men­
tioned. Additionally, third generation satellites will be capable of 
discriminating objects on the Earth's surface with sizes close to 
0.25 m (GEOEYE-2). Considering the existence of a wide range of 
spatial resolutions, it is possible to establish that images with a 
spatial resolution of less than lm are considered very high reso­
lution images, as is the case for most of the panchromatic images 
mentioned before, and images with spatial resolution ranging from 
4 m to 1 m are considered high resolution images. 

Even when an increase in spatial resolution simplifies the prob­
lem of mixing pixels, other problems emerge due to the greater 
spatial variability for each spectral class present in the image; fur­
thermore, the limited number of spectral bands of high and very 
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high spatial resolution images produces low separability between 
land covers (Bruzzone and Carlin, 2006; Huang et al., 2008). 

Today, a plethora of image fusion algorithms is available 
(Mitchell, 2010), most of them based on the use of different types 
of transforms. Some are very simple from a conceptual point of 
view, such as methods based on Brovey transform (Hallada and Cox, 
1983), or IHS transform (Intensity, Hue, Saturation) (Chavez et al, 
1991). These type of methodologies have been shown to provide 
fused images with considerable colour distortions when compared 
to the colour of the original multi-spectral image (Choi, 2006; Tu 
etal , 2001). 

Fusion methods based on multi-resolution analysis techniques 
produce fused images with higher colour quality. Most of these 
techniques use the Discrete Wavelet Transform (DWT), both in its 
pyramidal and redundant versions (Gonzalez-Audicana et al., 2005; 
Gonzalo and Lillo-Saavedra, 2008; Li et al., 2010; Mallat, 1989; 
Pohl and Van Genderen, 1998; Zhou et al., 1998). Since the appear­
ance of new transforms, such as Curvelets (Candes and Donoho, 
2000; Do and Vetterli, 2001), Ridgelets (Candes and Donoho, 1999) 
and Contourlets (Do and Vetterli, 2005), new fusion methodologies 
based on these approaches have been proposed (Lillo-Saavedra and 
Gonzalo, 2007; Nencini et al., 2007; Qu et al., 2008; Yang et al., 
2009; Zhang and Guo, 2009). Even though these methods increase 
the spatial resolution of multi-spectral images to the spatial reso­
lution levels of panchromatic images, maintaining their spectral 
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characteristics, they tend to accentuate even more the problem 
of injecting false details into the fused images (artifacts) (Gonzalo 
et al., 2008; Toet et al., 2010; Zribi, 2010). Thus, new strategies to 
process these kinds of satellite images are required. 

Different approaches have been identified in the literature to 
handle this problem: some are based on the use of new classifica­
tion techniques that are especially adapted to these types of images 
(Alonso et al., 2007; Bruzzone and Carlin, 2006; Huiping et al., 
2003) and others are oriented to image processing. Grazzini et al. 
(2005) suggests a solution of smoothing heterogeneous areas while 
preserving the main edges of the images by using a multi-fractal 
reconstruction method. 

These aspects have not been thoroughly investigated with 
fusion image techniques. However, a few works are found in the 
literature. Huang et al. (2008) offer a fusion method based on the 
extraction of characteristics at different scales, using the DWT, in 
order to improve the classification results of the fused images. 
Gonzalo et al. (2008) have proposed an improved version of the 
generalized IHS fusion algorithm (Tu et al., 2001) considering the 
roughness of the land covers. Even though the generalized IHS algo­
rithm (Choi, 2006; Tu et al., 2004) is quite limited regarding the 
spectral quality of fused images, the results produced have been 
auspicious. 

The fusion methodology proposed by Gonzalo et al. (2008), pre­
serves the high frequency information of the panchromatic image 
in areas with high detail, while in homogeneous areas the low fre­
quency information from the multi-spectral image is conserved. 
Thus, if the area corresponds to homogeneous coverage, such as 
full cover crops or prairies, a small amount of spatial informa­
tion should be incorporated from inside this area, maintaining a 
more homogeneous spectral response, closer to the original multi-
spectral image. Moreover, if the coverage is not very homogeneous 
(i.e. urban areas and partial crop coverage), more spatial informa­
tion, from the panchromatic image, should be integrated into the 
fused image. 

Some studies (Arduini et al., 1991; Karathanassi et al., 2007; Li 
et al., 2008; Myint, 2003; Sun et al, 2006) have shown the abil­
ity of fractal geometry to describe irregular forms and complex 
objects present in natural surfaces, making it especially adequate 
to analyze these surfaces. 

The majority of fractal geometry applications for image analysis 
are based on the calculation of the fractal dimension (FD). This indi­
cator provides a measurement of irregularity for complex objects as 
well as the homogeneity of uniform surfaces. Rougher surfaces have 
a higher fractal dimension in comparison with more homogeneous 
surfaces (Pentland, 1984). 

The present paper proposes a new image fusion paradigm 
based on local measurements of the FD. It will be applied to the 
Discrete Wavelet Transform fusion methodology, implemented 
through the á trous algorithm (WAT) (Lillo-Saavedra and Gonzalo, 
2006). This paradigm will be called fractal dimension maps fusion 
(FDMF), where the fractal dimension maps (FDMs) are estimated 
by the box-counting algorithm (Conci and Nunes, 2001; Parrinello 
and Vaughan, 2002; Sun, 2006), using a windowing process (see 
Appendix A). 

2. Methods and materials 

2.1. Weighted WAT fusion through FDMs 

As mentioned above, the fusion methodology proposed in this 
paper is based on the discrete wavelet transform (DWT) fusion 
methodology, calculated by the á trous algorithm (WAT) (Lillo-
Saavedra and Gonzalo, 2006). Eq. (1) includes the definition of the 

ith band of the fused image (PFUS(x, y)) through the WAT method: 

w 

k=\ 

where the indices i and j represent the number of bands and the 
degradation level of the multi-spectral image, respectively; W cor­
responds to the number of wavelet planes to be integrated from the 
panchromatic image into the last degradation level of the multi-
spectral image {FMUL.)', and CPANk corresponds to the panchromatic 
wavelet coefficients. This fusion strategy does not consider spectral 
differences between bands and cannot control the inherent trade­
off between spatial-spectral quality in the fused image (Choi, 2006; 
Garzelli et al., 2004; Lillo-Saavedra and Gonzalo, 2006). 

Lillo-Saavedra and Gonzalo (2006) proposed a modification of 
the á trous algorithm, establishing a mechanism that controls this 
trade-off by introducing a wavelet coefficient weighting factor (a1) 
for the panchromatic wavelet coefficients. The proposed fusion 
algorithm is formally represented in (2): 

w 
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FUs(x> y) = 'MI/I/** y) + o¡l^2cPANk(x, y) (2) 
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Despite the previously mentioned advantage of this fusion 
algorithm, the method is not capable of discriminating between 
different land covers present in images (Gonzalo et al., 2008). In 
that sense, the same value of a1 is used to weigh the information 
coming from the panchromatic wavelet coefficients for all spectral 
bands. This is the main cause of the artifacts in the fused images. To 
overcome this problem, in this work, a' will be an array with same 
source image size, rather than a single number. Therefore, Eq. (2) 
can be rewritten as: 

w 

!FUS(
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k=\ 

where al
0). (x,y) has been estimated through the FDMs of the 

source images to be fused, that is each spectral band of the mul-
tispectral image and the panchromatic image. These FDMs are 
generated for each source image by a sliding window processing. 
Through this process, a FD value, associated with the window cen­
tral pixel, is determined for each position. Obtaining, in this way, a 
FDM with the same size as the original image. It is important to note 
that even when a different weighting value is found for each pixel, 
this value depends on the pixel grey levels in its neighbourhood. 
Therefore, the window size, újsizes, has an influence on the FDMs 
values (Gonzalo et al., 2008). Each element in these maps provides 
a different weighting value for each pixel and each band. 

In this work, al, (x,y) has been defined as the average value of 
°-'sizesv J ' ° 

both dimensions, previously indexed between 0 and 1 as formalized 
in (4). This approach increases the detail information in the fused 
image, avoiding the artifacts that occur when one considers only 
the FDM of the panchromatic image. 

,- {FD(¡i
MUL(x,y),(,)5ize5)) + {FD{¡pAN(x,y),(í)size5)) 
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where (•> represents the indexed fractal dimension values. These 
values are obtained by dividing the original fractal dimension val­
ues by the maximum value. This definition ensures that for rough 
coverages, characterized by a high fractal dimension value in at 
least one of source images, a large amount of spatial information 
will be integrated into the fused image. Whereas when the fractal 
dimension of coverage under analysis is low in both source images, 
the integration of spatial information will be low. 



Table 1 
Fused images quality indices. 

Index Equation Ideal value Reference 

CC 

ERGAS 

SAM 

SSIM 
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Vijayaraj et al. (2004) 

Wald(2002) 

Wang and Bovik (2002) 

Kruseetal.(1993) 

Wang et al. (2004) 

Zhou et al. (1998) 

2.1.1. Quality evaluation of fused images 
Different metrics have been proposed in the literature in order 

to measure the quality of fused images. There exists a wide range 
of statistical indices for that purpose (e.g. mean, correlation, covari-
ance matrix, standard deviation). The two indices of this group most 
extensively used are: the spectral correlation (CC) (Vijayaraj et al., 
2004), which estimates the spectral quality of the fused images, 
disregarding the spatial characteristics; and the spatial correlation 
(Z) (Zhou et al., 1998), which evaluates spatial quality without eval­
uating spectral characteristics. The main problem of using metrics 
based on correlations is the low sensitivity of these indices to qual­
ity variations (saturation effect). In other words, large differences 
in the fused image features do not correspond with very different 
values in the metrics. 

Another extensively used quality index is the spectral angle 
mapping (SAM) (Kruse et al, 1993), which maps spectral similarity, 
using the cos -1 of the dot products of image and reference images 
as n-dimensional vectors (where n is the number of bands) and 
computes the spectral angle between them. 

None of the metrics mentioned above can be used to simultane­
ously evaluate different features of the source images, such as the 
spatial and radiometric characteristics, and in this sense they are 
not considered to be global indices. 

Global metrics have been proposed in several works (Alparone 
et al, 2004; Wald, 2002; Wang and Bovik, 2002). Wald (2002) 
was the first author to propose an index to measure the global 
quality of the products resulting from the image fusion process. 
This index was called Erreur Relative Globale Adimensionalle de Syn­
thase (ERGAS). Another global metric was proposed by Wang and 
Bovik (2002); it was called the Quality Universal Index (Q), which 
is based on different statistical properties of the fused and multi-
spectral original images. All indices mentioned above are based 
on error sensitivity, which relies on a number of strong assump­
tions and generalizations not always completely true (Wang et al., 
2004), such as a high correlation between image fidelity and image 

quality. Wang et al. (2004) proposed a new index (SSMI) based on 
structural similarity. They show that this new approach can correct 
some of sensitivity-based indices limitations. Morever, experimen­
tal results have shown that this index behaves in a similar way as 
global indices: ERGAS and Q,Table 1 summarizes the quality indices, 
sorted alphabetically, that have been used in this work, including 
the symbols, their equations, ideal values and references. 

All quality indices included in Table 1 have a common feature: 
the fused image quality is evaluated by a unique value for the whole 
image (scalar index). However, due to the different coverages pre­
sented in an image, and their different responses to a particular 
fusion method, it is more convenient to measure the quality of the 
fused images using a map index rather than a scalar index. There­
fore, in this paper, maps of the Q_ quality index have been calculated 
(Wang and Bovik, 2002). These quality maps have been obtained 
using a sliding window process with a window size of 11. The val­
ues of Q. have been estimated in the neighbourhood of each pixel 
of the fused images. 

2.2. Data set 

In order to analyze the behaviour of the proposed method, two 
kinds of satellite images, with different spatial resolution and simi­
lar spectral resolution, were used: FORMOSAT-2 and IKONOS. Both 
images present the same relation (1/4) between the spatial reso­
lution of the panchromatic and the multi-spectral images. Table 2 
presents their characteristics. 

Fig. 1 (a) and (b) shows colour compositions of the multi-spectral 
images, while Fig. 1(c) and (d) presents the respective panchro­
matic images for FORMOSAT-2 and IKONOS. 

The FORMOSAT-2 scene corresponds to an area of the Uni­
versity of Concepción, Chile (72°3'11"W, 36°49'23"S) recorded 
on April 28, 2008. Fundamentally, two coverage types appear in 
the image: urban and forest areas. The IKONOS scene presents a 
crop area located in the Maipo Valley, Metropolitan Region, Chile 

Table 2 
Spatial and spectral characteristics of the source images. 

Band FORMOSAT-2 IKONOS 

Spatial resolution Spectral resolution (|xm) Spatial resolution Spectral resolution (|xm) 

Bl 
B2 
B3 
B4 

8m 

0.450-0.520 
0.520-0.600 
0.630-0.690 
0.760-0.900 

4m 

0.445-0.516 
0.506-0.595 
0.632-0.698 
0.757-0.853 

PAN 2m 0.450-0.900 l m 0.450-0.900 
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Fig. 1. Multi-spectral colour compositions (Nir-G-B) and panchromatic source images for FORMOSAT-2 (a) and (c) and IKONOS (b) and (d). 

(70°33'39"W, 33°39'11"S) and was recorded on March 10, 2000. 
Both scenes have a size of 1024 x 1024 pixels, with a coverage 
area of 2.05 x 2.05 km2 for FORMOSAT-2 and 1.05 x 1.05 km2 for 
IKONOS. 

3. Results 

Before applying the proposed fusion methodology, FDMs of 
source images have been obtained for different values of újsizes 

(7, 15, 31, 63, 127). Fig. 2 displays these maps for multispectral-
band 3 (first row) and panchromatic (second row) images of the 
FORMOSAT-2 scene. It can be appreciated, for multispectral as well 
as for panchromatic images, that increasing the újsizes value pro­
duces a smoothing effect in the characterization of the land cover 
roughness. On the other hand, FDMs obtained using the same újsizes 

value show a similar smoothing effect when the spatial resolution 
decreases (e.g. Fig. 2(a) 4 m with respect to (f) 1 m). 

a\) • (Xy) maps have been obtained through Eq. (4). These 
maps have been used to obtain the fused images through the FDMF 
method. 

From the perspective of the proposed fusion methodology, the 
results shown in Fig. 2 indicate that for újsizes = 7, the al

0). (x,y) 
resulting will have a quasi-binary behaviour. The strong transitions 
between different roughness areas provide fused images with poor 
visual quality. At the opposite end, a value of újsizes = 127 gives high 
a\) • (X y) values, independent of the land cover type. That implies 
almost all information coming from panchromatic wavelet coeffi­
cients is injected into the fused image. Therefore, fused images have 
been obtained only for újsizes = 15, 31 and 63. 

In this paper, the WAT fusion algorithm has been used as a ref­
erence to show that the proposed fusion paradigm reduces the 
artifacts introduced by the WAT fusion algorithm, in areas originally 
with low variability. 

Colour compositions of the fused images obtained with the WAT 
and FDMF (wsizes = 15,31 and 63) methods, for the FORMOSAT-2 and 
IKONOS scenes are located at the top of the Figs. 3 and 4 (a)-(d), 
respectively. No appreciable differences in colour characteristics 
between images are observed when they are visually compared. 

Table 3 
Quality index values for FORMOSAT-2 scene. 

Fusion strategy 

WAT 
FDMF ojslzes = 1 
FDMF&>S|ZK = 15 
FDMF&>S|ZK=31 
FDMF&>S|ZK = 63 
FDMF ojslzes = 127 

CC 

0.91 
0.92 
0.92 
0.92 
0.91 
0.91 

Z 

0.91 
0.89 
0.89 
0.90 
0.90 
0.91 

SAM 

2.76° 
2.59= 
2.62c 

2.65c 

2.67= 
2.69c 

ERCAS 

1.14 
1.07 
1.08 
1.09 
1.09 
1.10 

a 
0.41 
0.57 
0.56 
0.54 
0.51 
0.48 

SSIM 

0.62 
0.71 
0.69 
0.68 
0.67 
0.63 

Table 4 
Quality index values for IKONOS scene. 

Fusion strategy CC SAM ERCAS SSIM 

WAT 
FDMF a ) ^ = 7 
FDMF «sizes = 15 
FDMF arizes =31 
FDMF «sizes = 63 
FDMF «sizes = 127 

0.64 
0.74 
0.72 
0.70 
0.69 
0.68 

1.00 
0.94 
0.97 
0.98 
0.99 
1.00 

2.91 = 
2.52c 

2.55c 

2.61 = 
2.72c 

2.72c 

1.17 
0.89 
0.96 
1.01 
1.05 
1.07 

0.14 
0.21 
0.19 
0.17 
0.16 
0.16 

0.42 
0.56 
0.52 
0.49 
0.47 
0.46 
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Fig. 2. FORMOSAT-2. FDMs of multi-spectral image (band 3) for: (a) «sizes = 7, (b)«slzes = 15, (c) «S|ZK=31, (d)«slzes = 63 and(e)«slzes = 127. FDMs of panchromatic image for: 
( f ) («sizes = 7. (g ) («sizes = 15, ( l l ) «sizes = 3 1 , ( i ) «sizes = 6 3 a n d ( j ) «sizes = 1 2 7 . 

The results of the scalar quality indices evaluation are presented 
in Table 3 for the FORMOSAT-2 scene, and Table 4 for the IKONOS. 

According to the ideal values included in Table 1, the analysis 
of the scalar indices was used to detect tendencies in fused images 
quality. Thus, it can observed that the spectral and global qualities 
decrease and the spatial quality increases as the újsizes increases. 
This behaviour is coherent with the FDMs behaviour (discussed 

above and illustrates in Fig. 2). On the other hand, when considering 
the scalar indices, the quality of any of the fused images obtained 
with the FDMF is higher than the image fused by the WAT algo­
rithm. However, it should be noted that all scalar indices exhibit a 
very low sensitivity. 

Q-maps obtained for fused images can be observed at the bot­
tom of Figs. 3 and 4(e)-(h). Fig. 3(e) shows the quality differences 

Fig. 3. FORMOSAT-2. Fused images using: (a) WAT, (b) FDMF «sizes = 15, (c) FDMF «sizes = 31 and (d) FDMF «sizes = 63 and Q-maps to asses images fused quality for: (e) WAT, 
(f) FDMF «sizes = 15, (g) FDMF «sizes = 31, (h) FDMF «sizes = 63. 



Fig. 4. IKONOS. Fused images using: (a) WAT, (b) FDMF « s l 

FDMF ojslzes = 15, (g) FDMF &>S|ZK =31, (h) FDMF «sizes = 63. 
s = 15, (c) FDMF arizes = 31 and (d) FDMF «slzes = 63 and Q-maps to asses images fused quality for: (e) WAT, (f) 

Table 5 
FORMOSAT-2 post-classification index (Kappa and overall accuracy). 

Mahalanobis distance SAM Maximun likelihood SVM 

Original image 
WAT 
FDMF «sizes = 15 
FDMF «sizes =31 
FDMF «sizes = 63 

Kappa 

0.7587 
0.8327 
0.8519 
0.8523 
0.8510 

O.A. (%) 

80.3036 
86.4800 
88.0536 
88.0833 
87.9821 

Kappa 

0.7145 
0.7391 
0.8072 
0.8085 
0.8086 

O.A. (%) 

75.9821 
78.1498 
84.0298 
84.1369 
84.1488 

Kappa 

0.9601 
0.9477 
0.9812 
0.9805 
0.9806 

O.A. (%) 

96.7996 
95.7976 
98.5000 
98.4762 
98.4524 

Kappa 

0.9745 
0.9798 
0.9917 
0.9893 
0.9878 

O.A. (%) 

97.9702 
98.3929 
99.3393 
99.1488 
99.0238 

between the urban and forest coverages. This difference results 
because the WAT method integrates all details contained in the 
panchromatic wavelet coefficients in the entire fused image, inde­
pendent of coverage roughness. Furthermore, there are notable 
differences between these Q-maps (Fig. 3(e)) and the maps shown 
in Fig. 3(f)-(h), where the local (¿values are more homogeneous for 
the whole image. 

With respect to the fusion methodology, the IKONOS Q-maps 
(Fig. 3(e)-(h)) manifest a similar tendency as the FORMOSAT-2 Q-
maps. As expected, when the spatial resolution of source images 
increases, the land cover variability increases. This produces lower 
Q values for all fused images, as can be observed in Fig. 4. Nev­
ertheless, the results show that the proposed fusion paradigm 
provides higher quality fused images than those provided by the 
WAT method (Fig. 3). 

In order to corroborate these results, fused image classification 
results for the FORMOSAT-2 scene were also included using four 
supervised classification methods: Mahalanobis distance, spectral 
angle mapper (SAM), maximun likelihood, support vector machine 
(SVM). 

Ten regions of interest, with a minimum number of pixels above 
1000, were defined in the multi-spectral image. Post-classification 

results have been included in Table 5. From these values, it seems 
that FDMF method provides better post-classification indices than 
WAT, independent of Q values. 

4. Conclusions 

A new fusion image paradigm based on fractal dimension maps 
(FDMs), reified through the WAT method, has been proposed. This 
method reduces the problem of false detail (artifacts) injected into 
fused images by fusion methods based on pixel-level. 

It has been demonstrated that the FDMs depend on újsizes 

values. An increase in újsizes results in smoother transitions in 
the FDMs. A low value of újsizes < 15 implies a quasi binary 
behaviour of FDMs. This has a direct impact on fused image qual­
ity. Specifically, the spatial quality of the fused images increases 
according with the újsizes, while the spectral quality has an inverse 
behaviour. 

The Q-maps and classification results have shown that the stan­
dard WAT method does not give homogeneously quality results. In 
this sense, this paper shows the inability of a single value (scalar 
index) to estimate the quality of the entire fused image. Conse­
quently, fused images will be better evaluated through quality 



index maps, which have the ability to show the variability of spatial 
and/or spectral quality. 

From these results, it can be concluded that the images fused by 
the FDMF, as well as their classifications, present a higher quality 
than images fused through the standard WAT method, used as a 
reference in this paper. 

Finally, it should be noted that the new paradigm based on FDMs 
can be included in any image fusion method that considers sepa­
rately the low and high frequency information coming from the 
multi-spectral and panchromatic image, respectively. 
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Appendix A. 

A. 1. Definition of the fractal dimension 

Natural surfaces tend to present complex characteristics that 
do not always adjust to a deterministic pattern or Euclidean form. 
Consequently, traditional Euclidean geometry is not adequate for 
its analysis (Parrinello and Vaughan, 2006). The Euclidean dimen­
sion of an object is related to the measurement unit used with the 
measured geometric value and can be obtained with (5): 

where N¿ represents an object of Ni parts scaled down by a ratio of 
L; and D is an indicator relative to the complexity of the shape. It 
takes a value of 1 for a straight line, 2 for a surface and 3 for a vol­
ume in the case of Euclidean geometry. The generalization of this 
concept to fractional numbers provides the idea of fractal dimen­
sion. Thus, fractal geometry is presented in a mathematically formal 
framework that is capable of describing different types of complex 
structures with irregular forms and different scales (Mandelbrot 
andMaione, 1982). 

The fractal dimension provides the magnitude of irregularity 
and/or complexity of the structure being analyzed. In the case of 
images (two dimensions), it is an ideal tool that can be used to 
determine the roughness for each type of texture (Sun et al., 2006). 
Different methods can be used to estimate FD. The criterion used to 
select the method can be based on the type of data to be processed, 
and on the computational complexity of algorithms (Myint, 2003; 
Parrinello and Vaughan, 2002). 

A.2. The box-counting algorithm 

One of the simplest methodologies to implement the calcula­
tion of the FD is the box-counting algorithm. This method is widely 
used because it offers a good trade-off between computer time 
and measurement exactness (Falconer, 1990). It defines the frac­
tal dimension in the following terms: If a set AeRn is covered by 
just-touching boxes of side with length L = (l/2)n and if the limit 
exists, the box-counting dimension (DB) is (6): 

DB = liml0*Nff» (6) 

Mi) 
where Ni(A) denotes the number of boxes of side length L = (l/2)n 

that intersect the set A (Conci and Nunes, 2001). The DB of a plane 
is reduced to counting the number of boxes within which the set 
has no null measurements. Therefore, if the limit exists, the DB will 

be defined by (7): 

DB = h m ^ W (7) 

Mr) 
In contrast with (6), (7) is only appropriate for square coverage 

rather than coverage in any form. Operatively, the algorithm con­
sists in the consecutive partition of a binary image into cells of size 
L, where Lisa series of values whose minimum value would be lim­
ited by the studied image's spatial resolution. Thus, for each value 
of L, there is a number of cells (Ni) that cover the studied object. 
Finally, the fractal dimension is estimated as the slope of the line 
that is obtained from the linear regression log(N¿) vs. log(l/L). 
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