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Abstract:
In this paper the m-powers with m > 2 included in the Lucas sequences when

the index satisfies some conditions are found.
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1. Introduction
The Lucas and companion Lucas sequences have been widely studied in the

scientific literature as a natural extension of the so called Fibonacci sequence. They are
defined inductively by: U;"® =0, U/® =1, U9 =PU”? -QU/Y and V,? =2,
Vi =P, V" =PV"?-QV/"? respectively, where P,Q are integer numbers (the
Fibonacci sequence is the particular case of U™ with P =1, Q=-1. The indices
P, Q will be omitted when they are not necessary).

Concretely, the search of the powers included in these sequences has deserved a special
attention by the number theorist. The main results at this respect for U are:

- For odd relative primes P, Q, the only square in U, with n>2, n#6 is U;;™" =144
(see Ribenboim, Bremner&Tzanakis)

- For P divisible by 4, there is no squares in U ™ for positive, even numbers n when
additional conditions on P are considered (Kagawa)

- The only powers in U~ with n>2 are Uy ™" =8 and U, =144 (Bugeaud)

- The only power in U >~ with n>1is U>™ =169 (Cohn)

In this paper the case P >0, Q =-1 is studied: it is proved that, for n divisible by
three and satisfying some extra conditions, the powers in U are always attained for
P=1 and they are U; " =8 and U;;" =144. To do this, the diophantine equation
UP™ =u™ with unknowns (n, P,u,m), m>2, is related with these diophantine
equations according to the different cases:

- The Catalan equation x™ —y* =1

- The Thue equation 2 x™ —y™ =1

- The equation 2 x* —y* =1

The following notation applies in the paper:

- N for the set of natural numbers

- GCD(a, b) for the greatest common divisor of the integer numbers a, b

- a| b if the integer number a divides to the integer number b

-a=b (mod m) if a is congruent with b modulus m (that is to say, m| b-a)



i @ for the binomial coefficient.

- ep(n) for the exponent of the prime p in the factorization in prime numbers of the
integer number n (if p is not a prime factor of n, it is assumed that ep(n): 0).

The following two identities for U, V., U,, V, are used along the paper (see

Kagawa):

2216/n +U +P? +4)= (\/k +U, VP? +4)E when k| n and k, n are positive numbers
(1)

v, J - (P* +a)u, ] =a(-af @

The paper is structured as follows: in section 2 the main result is stated and in section 3
some concluding remarks are given. Along section 2, k and n are positive integer

numbers.

2. Development
To prove the result mentioned in the introduction, a lemma is needed:

Lemma

If k| n, then GCD[B“,Uk]

k

n
k

Proof

First it is noted that if k| n, then Uk|Un (see for example Ribenboim), so B” is an
k

integer number and the statement makes sense. Now, the following cases appear:

1) If V, is an odd number, then by expanding (1) it is obtained that:

n n N} n n_
2k1un:Evkk1uk+ K vkk3u§(P2+4)+...=Uk(£vkk1+f(uk)j,where
3



U,

f(x) is a polynomial without independent term. Now, since GCD[S” ,Ukj
k

Nyt
Evk +fU,) U
N = , then GCD U”,Uk dividesto U,

n
-1 ‘

k 2k

U

Gca(ﬁ,ukj
U

k

Evkk’l 1 £(U,), so it divides to Evkk‘l L fU,)- f(uk)zgvkk‘l

Since V, is an odd number, it is satisfied that GCD(V, ,U, )=1 by identity (2) and then

GCD[ﬁ,ukj
u

n as desired.
. k

2) If V, and P are even numbers, then (1) and (2) yield respectively:

n. n N3 n,

n(v, )« — (v, )k P2 +4 n(V,

Un:E[éJ Uk+ k (?kj UI? 4 +"'=Uk E[?kj +g(Uk)
3

vV, P2+4 ‘
ML - U2=(-1
() -5t -

Where g(x) is a polynomial with integer coefficients and without independent term.

The last identity implies that GCD(\Q, U k} =1.
2

Now, since GCD[%, Ukj

k

u,, cco| ey, |Yn
U U
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E—l —1
GCD[B—”,U,( divides  to E(\%]k +9(U,)-9(U,)= [V_kjk’ s0
k

GCD[ﬁ,
U

N \Y
U, E also in this case because GCD(;k, Ukj =1.

k

3) If V, is an even number and P is an odd number, then (2) implies that U, is an even

H Vk i 2 Uk i k Vk Uk
number, so (2) can be rewritten as > ~(P? +4) - =(-1)" and > have

different parity. Identity (1) can be expressed in this case as:



V7”+U2” P2+4=(\%+%\/P2+4]k. (3)

U
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In an analogous way to case 1), it can be seen that GCD

,U, | divides to E o)

in order to prove that GCD(S—”,UkJ

k

n .
—, i

" t is sufficient to see that

e{GCD(%, U, n < ez(gj . Three new cases appear:

k
- If E is an odd number, then expanding the right side of (3) and equaling the terms
with vP? + 4, it is obtained that:

ny ﬂ LI 2 U] n )1
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U, k2 2 2 2 U

k

. V, .
an odd number regardless U—Zk is an odd number or — is an odd number and then

ol o)

n . VvV, . u, . )
-If M is an even number and ?" is an odd number, then —% is an even number and it
is obtained in an analogous way than in the previous case that:
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n
Now, it is a known fact that kK k |, so e,
GCD(n,ij i
k
: u, . S U, n
number. Since - is an even number, this implies that e, 0. =€, — |, SO

ez[GCD(U U kn < ez(ﬂj as desired.
U, k

-If E and \%k are even numbers, then

ez(GCD[U .U kD <1< ez(ﬂj, as desired.
U, k

Now the theorem is stated:

Pl

> ez[Ej when i is an odd

—% is an odd number, so

Theorem
If GCD(P, gj =1 when n is an even number, n has not prime factors congruent with
1 modulus 4 and it has the factor three, then the only powers included in U, are

Ug'=8and U, " =144

Proof

It is satisfied that U, =U, Y, :(P2 +1)$,with GCD[S” , P? +1j

n by the lemma.
U3 U3 3 3

u : . :
Hence GCD[Un , P? +1j has not prime factors congruent with 1 modulus 4 since n
3

has not prime factors congruent with 1 modulus 4 by hypothesis. It is also satisfied that

GCD[Un , P? +1j has not prime factors congruent with 3 modulus 4 (otherwise, —1

3

would be a quadratic residue modulus a prime number that is congruent with 3 modulus

4). Therefore, GCD(ﬂ” , P? +1j:10r2 (since P? +1=2(mod4) when P +1 is an

3
even number). So, if U, =u™ with u,me N, m> 2, then the following cases must be

considered:



1) If GCD[B” , P? +1J=l, then U, = (P2 +1)3” =u™ implies that P* +1=v" with

3 3

ve N, so the Catalan equation x™ —y® =1 has a solution in positive integers: (v, P), a

contradiction (see Mihailescu)

2) If GCD[B”,P2+1J:2, then n must be an even number because

3

GCD[U—”, P’ +1j: 2
U

3

Y _p(p? 1)

Ebythelemma,so u,=U,U, .
3 U, Uy, u,u,

Now, Un:P(P2+1)UUl”J =u" implies that P=w" with we N, P?+1=2V"
2 3

with ve N, because GCD[B” , P? +1J =2 and GCD[P, 3” j =1 by the lemma and

3 2

the hypothesis GCD(P,gjzl. Then it is satisfied that 2v'“—(w2)m =1, so the

diophantine equation 2 x™ —y™ =1 has a solution in positive integers: (v, wz). But for
m > 3 the only solution in positive integers to this equation is x =y =1 (see Darmon).
This implies that w> =1 and then P =w™ =1 (P is a positive number). But in this case
the only m -power with m >3 in U, for the required conditions on n is Uy ™ =8=2°,
as stated in the introduction.

For m=2 it is satisfied that 2v> —w* =1, so the diophantine equation 2 x* —y* =1
has a solution in positive integers: (v, w). But the only solution in positive integers to
this equation is x = y =1 (see M. Le). This implies that P =w™ =1. But in this case the
only square in U for the required conditions on n is U}, =144 =127, as stated in the

introduction and the proof is finished.

3. Concluding remarks

A result about the powers in the Lucas sequences U, has been stated for indices n
divisible by three and satisfying certain conditions. This result is very general in the
sense that it has been stated for m-powers for every m > 2, and without restrictions on

the parameter P when n is an odd number. Therefore this paper complements previous



studies of Kagawa, Ribenboim about the squares in the Lucas sequences and of Bennett
about the m-powers with m > 3 in the Lucas sequences.

A future line of work could be to relax the conditions on the index n in the theorem of
section 2

References

1. M. A. Bennett, Powers in recurrence sequences: Pell equations, Transactions of the

American Mathematical Society, 357 (2004), 1675-1691

2. A. Bremner and N. Tzanakis, Lucas sequences whose 12th or 9th term is a square, J.
Number Theory, 107 (2004), 215-227.

3. Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to
exponential Diophantine equations, I. Fibonacci and Lucas perfect powers. Annals
of Math. 163 (2006), 969-1018.

4. Cohn, J. H. E. (1996). Perfect Pell powers. Glasgow Mathematical Journal 38 (1):
19-20.

5. H. Darmon and L. Merel, Winding quotients and some variants of Fermat’s Last
Theorem, J. Reine Angew. Math. 490 (1997), 81-100.

6. Kagawa, T. and Terai, N.: Squares in Lucas sequences and some Diophantine
equations. Manuscripta Math. 96, 195-202 (1998).

7. M. Le. On the diophantine equation (x'“ +1)(x”+1)=y2. Acta arithmetica,

LXXXII.1, 17-26, 1997.

8. Mihailescu, P. Primary ciclotomic units and a proof of Catalan’s conjecture; J.
Reine angew.Math. 572, 167-195, 2004.

9. P. Ribenboim and W. L. McDaniel, The square terms in Lucas sequences. J.

Number Theory 58 (1996), 104-122.



