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Abstract: 

In this paper the m-powers with 2≥m  included in the Lucas sequences when 

the index satisfies some conditions are found. 
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1. Introduction 

The Lucas and companion Lucas sequences have been widely studied in the 

scientific literature as a natural extension of the so called Fibonacci sequence. They are 

defined inductively by: 0 ,
0 =QPU , 1 ,

1 =QPU , QP
n

QP
n

QP
n UQUPU  ,

2
 ,
1

 ,   −− −=  and 2 ,
0 =QPV , 

PV QP = ,
1 , QP

n
QP

n
QP

n VQVPV  ,
2

 ,
1

 ,   −− −=  respectively, where QP  ,  are integer numbers (the 

Fibonacci sequence is the particular case of QP
nU  ,  with 1=P , 1−=Q . The indices  

QP  ,  will be omitted when they are not necessary). 

Concretely, the search of the powers included in these sequences has deserved a special 

attention by the number theorist. The main results at this respect for nU  are: 

- For odd relative primes QP  , , the only square in nU  with 2>n , 6≠n  is 1441 ,1
12 =−U  

(see Ribenboim, Bremner&Tzanakis) 

- For P  divisible by 4, there is no squares in 1 , −P
nU  for positive, even numbers n  when 

additional conditions on P  are considered (Kagawa) 

- The only powers in 1 ,1 −
nU  with 2>n  are 81 ,1

6 =−U  and 1441 ,1
12 =−U  (Bugeaud) 

- The only power in 1 ,2 −
nU  with 1>n  is 1691 ,2

7 =−U  (Cohn) 

In this paper the case 0>P , 1−=Q  is studied: it is proved that, for n  divisible by 

three and satisfying some extra conditions, the powers in nU  are always attained for 

1=P  and they are 81 ,1
6 =−U  and 1441 ,1

12 =−U . To do this, the diophantine equation 

mP
n uU =−1 ,  with unknowns ( )muPn ,,, , 2≥m , is related with these diophantine 

equations according to the different cases: 

- The Catalan equation 12 =− yxm  

- The Thue equation 12 =− mm yx  

- The equation 12 42 =− yx  

The following notation applies in the paper:  

- N  for the set of natural numbers 

- ( )baGCD ,  for the greatest common divisor of the integer numbers ba,  

- ba  if the integer number a  divides to the integer number b  

- ( )mba mod≡  if a  is congruent with b  modulus m  (that is to say, abm − ) 
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- ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
n

 for the binomial coefficient. 

- ( )nep  for the exponent of the prime p  in the factorization in prime numbers of the 

integer number n  (if p  is not a prime factor of n , it is assumed that ( ) 0=nep ). 

The following two identities for nU , nV , kU , kV  are used along the paper (see 

Kagawa): 

( ) ( )knkknn
k
n

PUVPUV 4 4 2 221
++=++

−
 when nk  and k , n  are positive numbers  

(1) 

( ) ( )( ) ( )kkk UPV 1 4 4 222
−=+−         (2) 

 

The paper is structured as follows: in section 2 the main result is stated and in section 3 

some concluding remarks are given. Along section 2, k  and n  are positive integer 

numbers. 

 

2. Development 

To prove the result mentioned in the introduction, a lemma is needed: 

Lemma 

If nk , then 
k
nU

U
U

GCD k
k

n  , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

Proof 

First it is noted that if nk , then nk UU  (see for example Ribenboim), so 
k

n

U
U

 is an 

integer number and the statement makes sense. Now, the following cases appear: 

1) If kV  is an odd number, then by expanding (1) it is obtained that: 

( ) ( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=++

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+=

−−−−

k
k
n

kkk
k
n

kk
k
n

kn
k
n

UfV
k
nUPUVk

n
UV

k
nU

123311
  ...4   

3
  2 , where 
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( )xf  is a polynomial without independent term. Now, since kk
k

n UU
U
U

GCD  , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
, 

( )
1

1

2
 ,

−

−
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

k
n

k
k
n

k

k

n
k

k

n
UfV

k
n

U
U

U
U
U

GCD , then ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k

k

n U
U
U

GCD ,  divides to kU ,  

( )k
k
n

k UfV
k
n

+
−1

, so it divides to ( ) ( ) 11 −−
=−+ k

n

kkk
k
n

k V
k
nUfUfV

k
n .  

Since kV  is an odd number, it is satisfied that ( ) 1, =kk UVGCD  by identity (2) and then 

k
nU

U
U

GCD k
k

n  , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 as desired. 

2) If kV  and P are even numbers, then (1) and (2) yield respectively: 

( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛=+

+
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛=

−−−

k

k
n

k
kk

k
n

k
k

k
n

k
n Ug

V
k
nUPU

V
k
n

U
V

k
nU

12
3

31

2
  ...

4
4  

2
 

3
 

2
  

( )kk
k UPV

1
4

4
2

2
22

−=
+

−⎟
⎠
⎞

⎜
⎝
⎛  

Where ( )xg  is a polynomial with integer coefficients and without independent term. 

The last identity implies that 1,
2

=⎟
⎠
⎞

⎜
⎝
⎛

k
k U

V
GCD . 

Now, since kk
k

n UU
U
U

GCD  , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
, ( )k

k
n

k

k

n
k

k

n Ug
V

k
n

U
U

U
U
U

GCD +⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −1

2
 , , then 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k

k

n U
U
U

GCD ,  divides to ( ) ( )
11

22

−−

⎟
⎠
⎞

⎜
⎝
⎛=−+⎟

⎠
⎞

⎜
⎝
⎛ k

n

k
kk

k
n

k V
k
nUgUg

V
k
n , so 

k
nU

U
U

GCD k
k

n  , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 also in this case because 1,

2
=⎟

⎠
⎞

⎜
⎝
⎛

k
k U

V
GCD .  

3) If kV  is an even number and P is an odd number, then (2) implies that kU  is an even 

number, so (2) can be rewritten as ( ) ( )kkk U
P

V
1

2
 4

2

2
2

2

−=⎟
⎠
⎞

⎜
⎝
⎛+−⎟

⎠
⎞

⎜
⎝
⎛  and 

2
kV

,  
2

kU
 have 

different parity. Identity (1) can be expressed in this case as: 
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k
n

kknn P
UV

P
UV

⎟
⎠
⎞

⎜
⎝
⎛ ++=++ 4 

22
4 

22
22 .       (3)  

In an analogous way to case 1), it can be seen that 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ k

U
U

e

k

n

U
U
U

GCD
k

n
,

2
2

 divides to 
k
n , so 

in order to prove that 
k
nU

U
U

GCD k
k

n  , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
, it is sufficient to see that 

⎟
⎠
⎞

⎜
⎝
⎛≤⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
neU

U
U

GCDe k
k

n
22 , . Three new cases appear: 

- If 
k
n  is an odd number, then expanding the right side of (3) and equaling the terms 

with 42 +P , it is obtained that: 

( ) ( ) 2
1 12

1
2

231

4 
2

...4 
2

 
2

 
32

 ⎟
⎠
⎞

⎜
⎝
⎛ −

−−−

+⎟
⎠
⎞

⎜
⎝
⎛+++⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛= k

nk
n

kk
k
n

k
k
n

k

k

n P
U

P
UV

k
n

V
k
n

U
U

, so 
k

n

U
U

 is 

an odd number regardless 
2

kU
 is an odd number or 

2
kV

 is an odd number and then 

⎟
⎠
⎞

⎜
⎝
⎛==⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
neU

U
U

GCDe k
k

n
22 0, . 

-If 
k
n  is an even number and 

2
kV

 is an odd number, then 
2

kU
 is an even number and it 

is obtained in an analogous way than in the previous case that: 

( ) ( ) 2
1 22

2
2

231

4 
2

 ...4 
2

 
2

 
32

 ⎟
⎠
⎞

⎜
⎝
⎛ −

−−−

+⎟
⎠
⎞

⎜
⎝
⎛+++⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛= k

nk
n

kk
k
n

k
k
n

k

k

n P
U

k
nP

UV
k
n

V
k
n

U
U

 



 7

Now, it is a known fact that 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ i

k
n

i
k
nGCD

k
n

 ,
, so ⎟

⎠
⎞

⎜
⎝
⎛≥

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

k
ne

i
k
n

e 22  when i  is an odd 

number. Since 
2

kU
 is an even number, this implies that ⎟

⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
k
ne

U
U

e
k

n
22 , so 

⎟
⎠
⎞

⎜
⎝
⎛≤⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
neU

U
U

GCDe k
k

n
22 ,  as desired. 

-If 
k
n  and 

2
kV

 are even numbers, then 
2

kU
 is an odd number, so 

⎟
⎠
⎞

⎜
⎝
⎛≤≤⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
neU

U
U

GCDe k
k

n
22 1, , as desired. 

 

Now the theorem is stated: 

Theorem 

If 1
2

, =⎟
⎠
⎞

⎜
⎝
⎛ nPGCD  when n  is an even number, n  has not prime factors congruent with 

1 modulus 4 and it has the factor three, then the only powers included in nU  are 

81 ,1
6 =−U  and 1441 ,1

12 =−U   

Proof 

It is satisfied that ( )
3

2

3
3  1

U
U

P
U
U

UU nn
n +== , with 

3
 1, 2

3

nP
U
U

GCD n
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+  by the lemma. 

Hence ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+1, 2

3

P
U
U

GCD n  has not prime factors congruent with 1 modulus 4 since n  

has not prime factors congruent with 1 modulus 4 by hypothesis. It is also satisfied that 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+1, 2

3

P
U
U

GCD n  has not prime factors congruent with 3 modulus 4 (otherwise, 1−  

would be a quadratic residue modulus a prime number that is congruent with 3 modulus 

4). Therefore, 2or  11, 2

3

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+P

U
U

GCD n  (since ( )4mod 212 ≡+P  when 12 +P  is an 

even number). So, if  m
n uU =  with Nmu ∈ , , 2≥m , then the following cases must be 

considered: 
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1) If 11, 2

3

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+P

U
U

GCD n , then ( ) mn
n u

U
U

PU =+=
3

2  1  implies that mvP =+12  with 

Nv∈ , so the Catalan equation 12 =− yxm  has a solution in positive integers: ( )Pv, , a 

contradiction (see Mihailescu)  

2) If 21, 2

3

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+P

U
U

GCD n , then n  must be an even number because 

3
21, 2

3

nP
U
U

GCD n =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+  by the lemma, so ( )

32

2

32
32  1

UU
U

PP
UU

U
UUU nn

n +== . 

Now, ( ) mn
n u

UU
U

PPU =+=
32

2  1  implies that mwP =  with Nw∈ , mvP 212 =+  

with Nv∈ ,  because 21, 2

3

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+P

U
U

GCD n  and 1,
2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
U
U

PGCD n  by the lemma and 

the hypothesis 1
2

, =⎟
⎠
⎞

⎜
⎝
⎛ nPGCD . Then it is satisfied that ( ) 12 2 =−

mm wv , so the 

diophantine equation 12 =− mm yx  has a solution in positive integers: ( )2, wv . But for 

3≥m  the only solution in positive integers to this equation is 1== yx  (see Darmon). 

This implies that 12 =w  and then 1== mwP  ( P  is a positive number). But in this case 

the only m -power with 3≥m  in nU  for the required conditions on n  is 31 ,1
6 28 ==−U , 

as stated in the introduction. 

For 2=m  it is satisfied that 12 42 =− wv , so the diophantine equation 12 42 =− yx  

has a solution in positive integers: ( )wv, . But the only solution in positive integers to 

this equation is 1== yx  (see M. Le). This implies that 1== mwP . But in this case the 

only square in nU  for the required conditions on n  is 21 ,1
12 12144 ==−U , as stated in the 

introduction and the proof is finished. 

 

3. Concluding remarks 

A result about the powers in the Lucas sequences nU  has been stated for indices n  

divisible by three and satisfying certain conditions. This result is very general in the 

sense that it has been stated for m-powers for every 2≥m , and without restrictions on 

the parameter P  when n  is an odd number. Therefore this paper complements previous 
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studies of Kagawa, Ribenboim about the squares in the Lucas sequences and of Bennett  

about the m-powers with 3≥m  in the Lucas sequences. 

A future line of work could be to relax the conditions on the index n  in the theorem of 

section 2 
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