Powers in the Lucas sequence when the index is divisible by three

M^{a} Dolores López ${ }^{\mathrm{a}}$, Javier Rodrigo ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Departamento de Matemática e Informática Aplicadas a la Ingeniería Civil de la E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid marilo.lopez@ upm.es
${ }^{\text {b }}$ Departamento de Matemática Aplicada, E.T.S. de Ingeniería, Universidad Pontificia Comillas de Madrid
*Corresponding author: M^{a} Dolores López, Departamento de Matemática e Informática Aplicadas a la Ingeniería Civil de la E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, c/ Profesor Aranguren s/n, Madrid 28040, Spain

Tf: 34- 913366669; Fax: 34-913366782

Abstract

: In this paper the m-powers with $m \geq 2$ included in the Lucas sequences when the index satisfies some conditions are found.

Keywords: Number theory, Lucas sequences, Diophantine equations.

1. Introduction

The Lucas and companion Lucas sequences have been widely studied in the scientific literature as a natural extension of the so called Fibonacci sequence. They are defined inductively by: $U_{0}^{P, Q}=0, U_{1}^{P, Q}=1, U_{n}^{P, Q}=P U_{n-1}^{P, Q}-Q U_{n-2}^{P, Q}$ and $V_{0}^{P, Q}=2$, $V_{1}^{P, Q}=P, V_{n}^{P, Q}=P V_{n-1}^{P, Q}-Q V_{n-2}^{P, Q}$ respectively, where P, Q are integer numbers (the Fibonacci sequence is the particular case of $U_{n}^{P, Q}$ with $P=1, Q=-1$. The indices P, Q will be omitted when they are not necessary).

Concretely, the search of the powers included in these sequences has deserved a special attention by the number theorist. The main results at this respect for U_{n} are:

- For odd relative primes P, Q, the only square in U_{n} with $n>2, n \neq 6$ is $U_{12}^{1,-1}=144$ (see Ribenboim, Bremner\&Tzanakis)
- For P divisible by 4, there is no squares in $U_{n}^{P,-1}$ for positive, even numbers n when additional conditions on P are considered (Kagawa)
- The only powers in $U_{n}^{1,-1}$ with $n>2$ are $U_{6}^{1,-1}=8$ and $U_{12}^{1,-1}=144$ (Bugeaud)
- The only power in $U_{n}^{2,-1}$ with $n>1$ is $U_{7}^{2,-1}=169$ (Cohn)

In this paper the case $P>0, Q=-1$ is studied: it is proved that, for n divisible by three and satisfying some extra conditions, the powers in U_{n} are always attained for $P=1$ and they are $U_{6}^{1,-1}=8$ and $U_{12}^{1,-1}=144$. To do this, the diophantine equation $U_{n}^{P,-1}=u^{m}$ with unknowns $(n, P, u, m), m \geq 2$, is related with these diophantine equations according to the different cases:

- The Catalan equation $x^{m}-y^{2}=1$
- The Thue equation $2 x^{m}-y^{m}=1$
- The equation $2 x^{2}-y^{4}=1$

The following notation applies in the paper:

- N for the set of natural numbers
- $\operatorname{GCD}(a, b)$ for the greatest common divisor of the integer numbers a, b
- $a b$ if the integer number a divides to the integer number b
$-a \equiv b(\bmod m)$ if a is congruent with b modulus m (that is to say, $m \mid b-a$)
$-\binom{n}{k}$ for the binomial coefficient.
- $e_{p}(n)$ for the exponent of the prime p in the factorization in prime numbers of the integer number n (if p is not a prime factor of n, it is assumed that $e_{p}(n)=0$).

The following two identities for $U_{n}, V_{n}, U_{k}, V_{k}$ are used along the paper (see Kagawa):
$2^{\frac{n}{k}-1}\left(V_{n}+U_{n} \sqrt{P^{2}+4}\right)=\left(V_{k}+U_{k} \sqrt{P^{2}+4}\right)^{\frac{n}{k}}$ when $k \mid n$ and k, n are positive numbers
$\left(V_{k}\right)^{2}-\left(P^{2}+4\right)\left(U_{k}\right)^{2}=4(-1)^{k}$

The paper is structured as follows: in section 2 the main result is stated and in section 3 some concluding remarks are given. Along section $2, k$ and n are positive integer numbers.

2. Development

To prove the result mentioned in the introduction, a lemma is needed:
Lemma
If $k \mid n$, then $\left.G C D\left(\frac{U_{n}}{U_{k}}, U_{k}\right) \right\rvert\, \frac{n}{k}$
Proof
First it is noted that if $k \mid n$, then $U_{k} \mid U_{n}$ (see for example Ribenboim), so $\frac{U_{n}}{U_{k}}$ is an integer number and the statement makes sense. Now, the following cases appear:

1) If V_{k} is an odd number, then by expanding (1) it is obtained that:
$2^{\frac{n}{k}-1} U_{n}=\frac{n}{k} V_{k}^{\frac{n}{k}-1} U_{k}+\left(\begin{array}{c}n \\ k \\ 3\end{array}\right) V_{k}^{\frac{n}{k}-3} U_{k}^{3}\left(P^{2}+4\right)+\ldots=U_{k}\left(\frac{n}{k} V_{k}^{\frac{n}{k}-1}+f\left(U_{k}\right)\right)$, where
$f(x)$ is a polynomial without independent term. Now, since $\left.G C D\left(\frac{U_{n}}{U_{k}}, U_{k}\right) \right\rvert\, U_{k}$, $\operatorname{GCD}\left(\frac{U_{n}}{U_{k}}, U_{k}\right) \left\lvert\, \frac{U_{n}}{U_{k}}=\frac{\frac{n}{k} V_{k}^{\frac{n}{k}-1}+f\left(U_{k}\right)}{2^{\frac{n}{k}-1}}\right.$, then $G C D\left(\frac{U_{n}}{U_{k}}, U_{k}\right)$ divides to U_{k},
$\frac{n}{k} V_{k}^{\frac{n}{k}-1}+f\left(U_{k}\right)$, so it divides to $\frac{n}{k} V_{k}^{\frac{n}{k}-1}+f\left(U_{k}\right)-f\left(U_{k}\right)=\frac{n}{k} V_{k}^{\frac{n}{k}-1}$.
Since V_{k} is an odd number, it is satisfied that $G C D\left(V_{k}, U_{k}\right)=1$ by identity (2) and then $\left.G C D\left(\frac{U_{n}}{U_{k}}, U_{k}\right) \right\rvert\, \frac{n}{k}$ as desired.
2) If V_{k} and P are even numbers, then (1) and (2) yield respectively:
$U_{n}=\frac{n}{k}\left(\frac{V_{k}}{2}\right)^{\frac{n}{k}-1} U_{k}+\binom{\frac{n}{k}}{3}\left(\frac{V_{k}}{2}\right)^{\frac{n}{k}-3} U_{k}^{3} \frac{P^{2}+4}{4}+\ldots=U_{k}\left(\frac{n}{k}\left(\frac{V_{k}}{2}\right)^{\frac{n}{k}-1}+g\left(U_{k}\right)\right)$
$\left(\frac{V_{k}}{2}\right)^{2}-\frac{P^{2}+4}{4} U_{k}^{2}=(-1)^{k}$
Where $g(x)$ is a polynomial with integer coefficients and without independent term.
The last identity implies that $G C D\left(\frac{V_{k}}{2}, U_{k}\right)=1$.
Now, since $G C D\left(\frac{U_{n}}{U_{k}}, U_{k}\right)\left|U_{k}, \quad G C D\left(\frac{U_{n}}{U_{k}}, U_{k}\right)\right| \frac{U_{n}}{U_{k}}=\frac{n}{k}\left(\frac{V_{k}}{2}\right)^{\frac{n}{k}-1}+g\left(U_{k}\right), \quad$ then $\operatorname{GCD}\left(\frac{U_{n}}{U_{k}}, U_{k}\right) \quad$ divides to $\quad \frac{n}{k}\left(\frac{V_{k}}{2}\right)^{\frac{n}{k}-1}+g\left(U_{k}\right)-g\left(U_{k}\right)=\frac{n}{k}\left(\frac{V_{k}}{2}\right)^{\frac{n}{k}-1}, \quad$ so $\left.\operatorname{GCD}\left(\frac{U_{n}}{U_{k}}, U_{k}\right) \right\rvert\, \frac{n}{k}$ also in this case because $\operatorname{GCD}\left(\frac{V_{k}}{2}, U_{k}\right)=1$.
3) If V_{k} is an even number and P is an odd number, then (2) implies that U_{k} is an even number, so (2) can be rewritten as $\left(\frac{V_{k}}{2}\right)^{2}-\left(P^{2}+4\right)\left(\frac{U_{k}}{2}\right)^{2}=(-1)^{k}$ and $\frac{V_{k}}{2}, \frac{U_{k}}{2}$ have different parity. Identity (1) can be expressed in this case as:
$\frac{V_{n}}{2}+\frac{U_{n}}{2} \sqrt{P^{2}+4}=\left(\frac{V_{k}}{2}+\frac{U_{k}}{2} \sqrt{P^{2}+4}\right)^{\frac{n}{k}}$.
In an analogous way to case 1), it can be seen that $G C D\left(\frac{\frac{U_{n}}{U_{k}}}{2^{e_{2}\left(\frac{U_{n}}{U_{k}}\right)}}, U_{k}\right)$ divides to $\frac{n}{k}$, so in order to prove that $\left.\operatorname{GCD}\left(\frac{U_{n}}{U_{k}}, U_{k}\right) \right\rvert\, \frac{n}{k}$, it is sufficient to see that $e_{2}\left(\operatorname{GCD}\left(\frac{U_{n}}{U_{k}}, U_{k}\right)\right) \leq e_{2}\left(\frac{n}{k}\right)$. Three new cases appear:

- If $\frac{n}{k}$ is an odd number, then expanding the right side of (3) and equaling the terms with $\sqrt{P^{2}+4}$, it is obtained that:
$\frac{U_{n}}{U_{k}}=\frac{n}{k}\left(\frac{V_{k}}{2}\right)^{\frac{n}{k}-1}+\binom{\frac{n}{k}}{3}\left(\frac{V_{k}}{2}\right)^{\frac{n}{k}-3}\left(\frac{U_{k}}{2}\right)^{2}\left(P^{2}+4\right)+\ldots+\left(\frac{U_{k}}{2}\right)^{\frac{n}{k}-1}\left(P^{2}+4\right)^{\left(\frac{n}{k}-1\right) \frac{1}{2}}$, so $\frac{U_{n}}{U_{k}}$ is
an odd number regardless $\frac{U_{k}}{2}$ is an odd number or $\frac{V_{k}}{2}$ is an odd number and then $e_{2}\left(G C D\left(\frac{U_{n}}{U_{k}}, U_{k}\right)\right)=0=e_{2}\left(\frac{n}{k}\right)$.
-If $\frac{n}{k}$ is an even number and $\frac{V_{k}}{2}$ is an odd number, then $\frac{U_{k}}{2}$ is an even number and it is obtained in an analogous way than in the previous case that:
$\left.\frac{U_{n}}{U_{k}}=\frac{n}{k}\left(\frac{V_{k}}{2}\right)^{\frac{n}{k}-1}+\binom{\frac{n}{k}}{3}\left(\frac{V_{k}}{2}\right)^{\frac{n}{k}-3}\left(\frac{U_{k}}{2}\right)^{2}\left(P^{2}+4\right)+\ldots+\frac{n}{k}\left(\frac{U_{k}}{2}\right)^{\frac{n}{k}-2}\left(P^{2}+4\right)^{\left(\frac{n}{k}-2\right.}\right)^{\frac{1}{2}}$

Now, it is a known fact that $\frac{\frac{n}{k}}{G C D\left(\frac{n}{k}, i\right)} \left\lvert\,\binom{\frac{n}{k}}{i}\right.$, so $e_{2}\left(\binom{\frac{n}{k}}{i}\right) \geq e_{2}\left(\frac{n}{k}\right)$ when i is an odd number. Since $\frac{U_{k}}{2}$ is an even number, this implies that $e_{2}\left(\frac{U_{n}}{U_{k}}\right)=e_{2}\left(\frac{n}{k}\right)$, so $e_{2}\left(G C D\left(\frac{U_{n}}{U_{k}}, U_{k}\right)\right) \leq e_{2}\left(\frac{n}{k}\right)$ as desired. -If $\frac{n}{k}$ and $\frac{V_{k}}{2}$ are even numbers, then $\frac{U_{k}}{2}$ is an odd number, so $e_{2}\left(G C D\left(\frac{U_{n}}{U_{k}}, U_{k}\right)\right) \leq 1 \leq e_{2}\left(\frac{n}{k}\right)$, as desired.

Now the theorem is stated:
Theorem
If $\operatorname{GCD}\left(P, \frac{n}{2}\right)=1$ when n is an even number, n has not prime factors congruent with 1 modulus 4 and it has the factor three, then the only powers included in U_{n} are $U_{6}^{1,-1}=8$ and $U_{12}^{1,-1}=144$

Proof
It is satisfied that $U_{n}=U_{3} \frac{U_{n}}{U_{3}}=\left(P^{2}+1\right) \frac{U_{n}}{U_{3}}$, with $\left.G C D\left(\frac{U_{n}}{U_{3}}, P^{2}+1\right) \right\rvert\, \frac{n}{3}$ by the lemma. Hence $G C D\left(\frac{U_{n}}{U_{3}}, P^{2}+1\right)$ has not prime factors congruent with 1 modulus 4 since n has not prime factors congruent with 1 modulus 4 by hypothesis. It is also satisfied that $G C D\left(\frac{U_{n}}{U_{3}}, P^{2}+1\right)$ has not prime factors congruent with 3 modulus 4 (otherwise, -1 would be a quadratic residue modulus a prime number that is congruent with 3 modulus 4). Therefore, $G C D\left(\frac{U_{n}}{U_{3}}, P^{2}+1\right)=1$ or $2\left(\right.$ since $P^{2}+1 \equiv 2(\bmod 4)$ when $P^{2}+1$ is an even number). So, if $U_{n}=u^{m}$ with $u, m \in N, m \geq 2$, then the following cases must be considered:

1) If $G C D\left(\frac{U_{n}}{U_{3}}, P^{2}+1\right)=1$, then $U_{n}=\left(P^{2}+1\right) \frac{U_{n}}{U_{3}}=u^{m}$ implies that $P^{2}+1=v^{m}$ with $v \in N$, so the Catalan equation $x^{m}-y^{2}=1$ has a solution in positive integers: (v, P), a contradiction (see Mihailescu)
2) If $G C D\left(\frac{U_{n}}{U_{3}}, P^{2}+1\right)=2$, then n must be an even number because $\left.G C D\left(\frac{U_{n}}{U_{3}}, P^{2}+1\right)=2 \right\rvert\, \frac{n}{3}$ by the lemma, so $U_{n}=U_{2} U_{3} \frac{U_{n}}{U_{2} U_{3}}=P\left(P^{2}+1\right) \frac{U_{n}}{U_{2} U_{3}}$.

Now, $U_{n}=P\left(P^{2}+1\right) \frac{U_{n}}{U_{2} U_{3}}=u^{m}$ implies that $P=w^{m}$ with $w \in N, P^{2}+1=2 v^{m}$ with $v \in N$, because $G C D\left(\frac{U_{n}}{U_{3}}, P^{2}+1\right)=2$ and $G C D\left(P, \frac{U_{n}}{U_{2}}\right)=1$ by the lemma and the hypothesis $G C D\left(P, \frac{n}{2}\right)=1$. Then it is satisfied that $2 v^{m}-\left(w^{2}\right)^{m}=1$, so the diophantine equation $2 x^{m}-y^{m}=1$ has a solution in positive integers: $\left(v, w^{2}\right)$. But for $m \geq 3$ the only solution in positive integers to this equation is $x=y=1$ (see Darmon). This implies that $w^{2}=1$ and then $P=w^{m}=1$ (P is a positive number). But in this case the only m-power with $m \geq 3$ in U_{n} for the required conditions on n is $U_{6}^{1,-1}=8=2^{3}$, as stated in the introduction.
For $m=2$ it is satisfied that $2 v^{2}-w^{4}=1$, so the diophantine equation $2 x^{2}-y^{4}=1$ has a solution in positive integers: (v, w). But the only solution in positive integers to this equation is $x=y=1$ (see M. Le). This implies that $P=w^{m}=1$. But in this case the only square in U_{n} for the required conditions on n is $U_{12}^{1,-1}=144=12^{2}$, as stated in the introduction and the proof is finished.

3. Concluding remarks

A result about the powers in the Lucas sequences U_{n} has been stated for indices n divisible by three and satisfying certain conditions. This result is very general in the sense that it has been stated for m-powers for every $m \geq 2$, and without restrictions on the parameter P when n is an odd number. Therefore this paper complements previous
studies of Kagawa, Ribenboim about the squares in the Lucas sequences and of Bennett about the m-powers with $m \geq 3$ in the Lucas sequences.

A future line of work could be to relax the conditions on the index n in the theorem of section 2

References

1. M. A. Bennett, Powers in recurrence sequences: Pell equations, Transactions of the American Mathematical Society, 357 (2004), 1675-1691
2. A. Bremner and N. Tzanakis, Lucas sequences whose 12th or 9th term is a square, J. Number Theory, 107 (2004), 215-227.
3. Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations, I. Fibonacci and Lucas perfect powers. Annals of Math. 163 (2006), 969-1018.
4. Cohn, J. H. E. (1996). Perfect Pell powers. Glasgow Mathematical Journal 38 (1): 19-20.
5. H. Darmon and L. Merel, Winding quotients and some variants of Fermat's Last Theorem, J. Reine Angew. Math. 490 (1997), 81-100.
6. Kagawa, T. and Terai, N.: Squares in Lucas sequences and some Diophantine equations. Manuscripta Math. 96, 195-202 (1998).
7. M. Le. On the diophantine equation $\left(x^{m}+1\right)\left(x^{n}+1\right)=y^{2}$. Acta arithmetica, LXXXII.1, 17-26, 1997.
8. Mihailescu, P. Primary ciclotomic units and a proof of Catalan's conjecture; J. Reine angew.Math. 572, 167-195, 2004.
9. P. Ribenboim and W. L. McDaniel, The square terms in Lucas sequences. J. Number Theory 58 (1996), 104-122.
