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Abstract—Learning the structure of a graphical model from 
data is a common task in a wide range of practical applications. 
In this paper, we focus on Gaussian Bayesian networks, i.e., on 
continuous data and directed acyclic graphs with a joint prob­
ability density of all variables given by a Gaussian. We propose 
to work in an equivalence class search space, specifically using 
the fe-greedy equivalence search algorithm. This, combined with 
regularization techniques to guide the structure search, can learn 
sparse networks close to the one that generated the data. We pro­
vide results on some synthetic networks and on modeling the gene 
network of the two biological pathways regulating the biosynthesis 
of isoprenoids for the Arabidopsis thaliana plant. 

Index Terms—Equivalence class, gene networks, graphical 
Gaussian model, fe-greedy equivalence search (GES), Lasso, 
microarrays, network induction, regularization. 

I. INTRODUCTION 

A GAUSSIAN Bayesian network (GBN) [1] is a prob­
abilistic graphical model that encodes a joint Gaussian 

density [f(X)] on a p-dimensional random variable X = 
(Xi , . . .,XP) 

Í{X) = (2^/2|S|V2 e x p ( 4 ( * - MfS"1^ - A*)) 
(1) 

where /LX = (/x1;..., ¡J,P)T is the vector of means and S is the 
p x p covariance matrix. In a GBN, the density function of the 
joint distribution can be expressed as the product ofp univariate 
normal densities defined as 

fi (xi\pa(xi)) = N \mi+ J ^ Pji{xj ~ mj), vi • 

(2) 

The variance is vi7 and the mean is composed of subparameters 
m¡ and ¡3i = ( /? l i ; . . . , /3;J)T , where / is the number of parents 
of variable Xi7 denoted by Pa(Xi). ¡3ji is the linear regres­
sion coefficient of Xj in the regression of X¿ on Pa(Xi). It 
represents how strong the relationship between X¿ and Xj is; 
if f3ji = 0, then Xj will not be a parent of X¿. Multivariate 

normal density and the product of normal densities given in (2) 
are alternative and interchangeable representations [2]. 

There are two basic approaches to GBN structure learn­
ing from data: algorithms based on constrained methods and 
score+search methods. Constraint-based approaches build net­
works that fulfill the conditional independences estimated from 
data [3]. The conditional independences between variables are 
checked by means of statistical tests. A recent method of this 
kind was developed by Margaritis [4]. 

On the other hand, score+search algorithms are founded on 
a scoring function for network evaluation in an attempt to find 
the model that best fits the data. The methods suggested in 
[5] and [6] are two examples of score+search algorithms. A 
representation, a scoring function, and a search strategy have to 
be defined. 

First, to represent the solutions and move in the search space, 
we typically choose between directed acyclic graphs (DAGs), 
partial DAGs (PDAGs), or variable orderings. Variable order-
ings are an intermediate representation that must be mapped 
to a graph to be meaningful. An equivalence class, modeled 
by a PDAG [2], is the set of graphs with the same conditional 
independences, encoding a unique probability density. Equiv­
alence classes are often the preferred representation. They are 
the only representation that is capable of meeting the inclusion 
boundary (IB) requirement [7], [8] described hereinafter. In the 
PDAG, compelled arcs (arcs with the same orientation for all 
the members in the class) are modeled by directed arcs; the 
others are represented by undirected edges. 

Second, assuming that we have a data set V of size n, to 
measure how well the model fits the data, the likelihood of the 
model given the data is defined as 

L (D;v, m) 

=nn 1
 c-^(a*--m<-£»,e..ar»,i ft-^>-"b-))2

 (3) 
AA11 V^^¡ 
i=lr=l v 

A penalized scoring criterion, made up of the likelihood 
function and a penalization term that favors simple models, is 
usually employed. An example of such a criterion is minimum 
description length (MDL), which is defined in Section III. A 
scoring criterion is score equivalent if it returns the same value 
for all the members inside the class. Sometimes, a unique 
orientation for all arcs is needed to provide an exact causal se­
mantic to the network. When the density function itself, without 
causality implications, is of interest, to be score equivalent is a 
positive property. 

Finally, the third element is the search strategy. Whether it 
is better to search in equivalence class spaces or, alternatively, 
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Fig. 1. Equivalence class for three nodes. Around it, its inclusion boundary, 
(top) dropping an arc and (bottom) adding an arc. 

in DAG spaces is still an open question. Some researchers 
think that it is not always worthwhile to work with equivalence 
classes because it is more complex. Gillispie and Perlman [9] 
analyzed the expected number of DAGs inside an equivalence 
class. They found that, on average, this number is not big. This 
could be an argument in favor of DAG spaces. However, the 
variance is high, and potentially, there could be a huge number 
of DAGs inside some equivalence classes, even when we are 
trying to achieve sparse graphs. For example, a tree of p vertices 
gives rise to a class of size p, whereas the equivalence class 
contains p\ DAGs in the case of the complete DAG (worst 
case) [10]. For this reason, it is often a good idea to work with 
equivalence classes because they are a more efficient and robust 
representation. This representation is more able to deal with 
situations involving equivalence classes of high cardinality. 

Three main problems arise when working in the DAG space 
rather than with equivalence classes. First, some operators 
defined to move between DAGs may operate between graphs 
in the same equivalence class. This is a waste of time, unless it 
is checked by the algorithm. Therefore, if we work with a score-
equivalent criterion, these moves do not change the overall 
network fitness. Second, the move from the current equivalence 
class might not be the best if we ignore the equivalence class 
space and analyze only the neighborhood of just one of its 
DAGs. Given that all members of a class score the same value 
(assuming a score-equivalent criterion), there is no reason other 
than randomness to prefer a specific DAG member. The third 
problem is related to how likely the final DAG is to belong to 
a specific equivalence class. If all DAGs in the same class are 
interpreted as different models, it is reasonable to expect the 
final output to be an equivalence class covering many rather 
than just a few DAGs. This makes it unpredictable. 

A model is defined as inclusion optimal with regard to a 
density f(X) if it is able to represent the density with a 
minimum number of arcs. The IB concept [7] is defined as a 
neighborhood of a model where the search strategy selects new 
models. Intuitively, the IB can be defined as the union set of 
equivalence classes that can be reached from each DAG inside 
the current class by single arc addition or deletion (see Fig. 1). 
The greedy equivalence search (GES) algorithm for Bayesian 
network learning [11] uses the IB. It has appealing theoretical 
properties for finding inclusion optimal models (see [8] and 
[12] for more details). The /c-GES (KES) algorithm [13] gener­
alizes GES and respects the IB too. Hence, it retains the same 
theoretical properties. KES features a stochastic factor. This 

way, multiple runs can be made to extract common patterns in 
the solutions, whereby the final model includes just the arcs that 
showed up in most of the runs. 

In this paper, we extend the KES algorithm to continuous 
(Gaussian) densities and learn sparser models based on regular-
ization techniques. By definition, a GBN defines a regression 
for each variable X¿ over its parents [see (2)]. Supposing 
standardized data (so that ra¿ = 0 and Vi = 1), it is defined as 

Xj<Epa(xi) 
+ ^i (4) 

where Wi is the Gaussian noise term. Thus, it makes sense to ap­
ply a regularization technique to these regressions, linking the 
variable selection task to the neighborhood selection process 
in network structure learning. Here, we use the least absolute 
shrinkage and selection operator, commonly named Lasso [14]. 
Lasso has been widely used for simultaneous variable selection 
and regression because of its capacity to move many regression 
coefficients to zero. 

The key idea is to use Lasso regression in the equivalence 
class space (prior to the learning stage) for each variable X¿ on 
the remaining variables, discarding variables whose coefficients 
have been moved to zero as possible parents of X¿ in the GBN. 
This produces simple models that properly fit the available data. 
We keep the set of parents that yields the best MDL score. As an 
additional contribution, to reduce the computational burden, we 
also take advantage of the "approximate" convexity of the MDL 
score for each separate variable against the remainder. This 
makes it possible to stop the Lasso algorithm before it ends. 

Lasso has already been employed in the literature for some 
sorts of probabilistic graphical model learning, taking ad­
vantage of its ability for variable selection (neighborhood 
selection). 

Li and Yang [15] performed neighborhood selection by using 
Lasso to estimate a DAG from a given ordering, and then 
transformed the DAG into an undirected graph, which is the 
final aim of their algorithm. Under a Bayesian perspective, they 
used a Wishart prior distribution for the precision matrix. The 
DAG prior is derived from this precision matrix prior, and such 
a DAG prior turns out to be equivalent to a Laplace prior. 
Because the objective is learning the undirected graph, they 
used an arbitrary ordering. Hence, this method cannot be used 
to estimate a final directed graph. 

Meinshausen and Bühlmann [16] carried out neighborhood 
selection also in an undirected Gaussian graphical model set­
ting. They used Lasso regressions individually with every vari­
able against the rest, in such a way that an edge is created 
when the regression coefficient is not zero. With an appropriate 
selection of the penalization parameter, the method is proved to 
be consistent for sparse high-dimensional graphs under certain 
assumptions. However, the Lasso estimate is based only on 
individual regressions and ignores the overall likelihood of 
the network. This may entail some problems. For example, 
the regression coefficient of a given variable X¿, when Xj 
is the response, may (and probably will) be different from the 
regression coefficient of Xj, when X¿ is the response; it means 
that it is possible that only one coefficient is shrunk to zero. In 



such a case, it is not clear whether the undirected edge must be 
present or not in the learned graph. 

Recently, Banerjee et al. [17] presented two new effi­
cient algorithms to estimate the (sparse) covariance matrix 
that exactly maximizes the LI-penalized maximum likelihood. 
Friedman et al. [18] developed an even faster algorithm for this 
task, called graphical Lasso. Both papers state that the method 
of Meinshausen and Biihlmann [16] is an approximation, as, in 
general, it does not reach the maximum likelihood. 

The use of Lasso directly to learn a graphical model entails an 
important drawback: It fails to recover the true sparsity pattern 
when variables are highly correlated, in particular when there 
exists high correlation between relevant and irrelevant variables 
[19]. This could be the case in some real-world scenarios. Thus, 
as proposed in our paper, it is reasonable to use additional 
heuristics instead of employing Lasso directly for network 
induction. 

There has been less work focusing on (directed) GBNs, but 
we claim that the orientation is semantically useful in some 
problems like gene network analysis. Undirected graphs also 
imply a high complexity (NP-hard) in the estimation of parame­
ters when the distribution is not Gaussian. Schmidt et al. [20] 
worked alternatively on the DAG space and the variable or­
dering space using Lasso to restrict both search spaces. The 
drawbacks of their method are those commented earlier for 
greedy searching in the DAG space. In this paper, instead 
of directly creating an arc when the corresponding regression 
coefficient is not zero, as in [16], we employ Lasso as aprevious 
neighborhood selector working in the equivalence class space. 
The regression is also carried out for every variable against 
the rest, as in [20]. Therefore, Lasso is viewed as a variable-
filtering first step and not as a direct model selection method. 
Afterward, we employ the greedy algorithm KES in the GBN 
training scenario. 

The rest of this paper is organized as follows. Section II 
describes the KES algorithm and sets out basic notions on 
regularization. Section III introduces the proposed method, 
detailing how KES and regularization have been combined in 
a new algorithm. Section IV outlines the set of experiments 
used to test the algorithm to learn three synthetic data sets and 
a real genetic regulatory network for isoprenoid biosynthesis 
in Arabidopsis thaliana. Finally, in Section V, we outline 
conclusions and future work. 

II. BACKGROUND 

A. KES Algorithm 

The concept of equivalence for Bayesian networks [8] has 
been widely discussed in the literature: Two DAGs are Markov 
equivalent (just equivalent from now on) if they represent the 
same set of conditional independences. 

A DAG G' is said to include a graph G, G c G', if, for 
all the models M(G, 6) parameterized by 0 whose structure 
is represented by G, there exists a second model M'(G', 6') 
parameterized by 0' with a structure G' that represents the same 
density function, i.e., 

G c G ' i f f W 39' | f(xM(G,8))=f(xM>(G>,e>))- (5) 

Two DAGs G and G' are said to be equivalent if 

G c G' A G' c G. (6) 

For example, the DAG A —> B —> C is equivalent to the 
DAG A <— B <— C because all the joint density functions (or 
probability functions) that can be encoded by the first DAG can 
also be encoded by the second, and vice versa. The equivalence 
relationship is reflexive, symmetric, and transitive and hence 
gives rise to the concept of equivalence class. The equivalence 
class definition is the same for GBNs. A v-structure, also called 
immorality, is induced when two disconnected vertices are 
parents of a third vertex. G and G' are equivalent if they have 
the same skeletons and the same v-structures [21]. A covered 
arc is an arc that is not part of any v-structure. Thus, it is 
possible to move across all the individuals inside an equivalence 
class just by covered-arc reversing. 

A formal definition of inclusion boundary can be presented 
on the basis of the DAG inclusion concept. Letting G and G' be 
two DAGs, we denote G -< G' to mean that G c G', and there 
is no DAG G" such that G c G" C G'. The IB of G is then 
defined as 

IB{G) = {G'|G' -<G}U{G"|G-<G"}. (7) 

The set of DAGs defined by the first term of the union is 
called the lower IB, and the set of DAGs defined by the second 
term is called the upper IB. The set of operators defined by 
a neighborhood is said to satisfy the IB condition if, for a 
DAG G, the induced neighborhood includes IB(G)[7]. The 
two neighborhoods satisfying this condition are as follows: 

1) Equivalence-class-based No-arc Reversals (ENR), which 
considers all simple edge additions and deletions from all 
the DAGs belonging to the equivalence class. 

2) Equivalence-class-based Non-Covered-arc Reversals 
(ENCR), which considers all simple edge additions, 
deletions, and non-covered-arc reversals from all the 
DAGs belonging to the equivalence class. 

The ENR neighborhood exactly matches, and the ENCR 
neighborhood includes the inclusion boundary, but they are 
computationally complex to calculate. As we will note here­
inafter, these neighborhoods may be somehow approximated. 

The so-called Meek conjecture [11] essentially claims that if 
a DAG G includes another DAG G', then G is reachable from 
G' through a finite sequence of edge additions and covered-arc 
reversals. An important conclusion of this premise is drawn: 
In the limit of large data sets, if the probability distribution 
(density function) has a perfect map in a DAG, a greedy 
search algorithm is suitable for finding the optimal solution 
after a finite set of edge additions and covered-arc reversals. 
Chickering [8] presented a proof of the Meek conjecture. 

Basing on this, the GES algorithm [11] starts with the empty 
graph and greedily explores the equivalence class space, mov­
ing at each iteration to the state where score improvement is 
the greatest, and stopping the search when a locally optimal 
model is reached. It does so in two phases, considering different 
neighborhoods in each one. In the first phase, the neighborhood 
is based on edge addition, whereas in the second phase, the 



neighborhood contains the networks obtained by deleting a 
single edge. Chickering [8] presented a version of GES where 
the entire IB is examined at each step, removing the separation 
into two phases. In [22], six operators were introduced to enrich 
the search space: insert undirected arc, delete undirected arc, 
insert directed arc, delete directed arc, reverse directed arc, and 
create v-structure. 

Because of the high computational cost of working with 
neighborhoods (specifically ENR and ENCR) that satisfy the 
IB condition, mainly to enumerate all the DAGs of the class, 
Castelo and Koka [23] defined an approximate approach. The 
strategy is to somehow simulate the class by performing a 
sufficient number of covered-arc reversals. At each individual 
or set of covered-arc reversals, we get a DAG member of the 
class, and we explore some neighborhood of this member in a 
cheaper DAG space. It is shown that the number of covered-arc 
reversals does not need to be large because the average size of a 
class is bounded by a constant [9]. The number of covered-arc 
reversals should depend on the size of the true equivalence class 
if we have any idea of its cardinality [24]. 

The stochastic equivalence search (SES) algorithm intro­
duces a modification in the GES search strategy. It does not 
select the best member of the IB at each step but randomly picks 
any of the models that improve the score. 

In search of a tradeoff, GES and SES are generalized in the 
KES algorithm [13], controlling the degree of randomness ver­
sus greediness by a parameter 0 < k < 1. In a nutshell, KES is 
an iterative algorithm that extracts an uninformed k proportion 
(at least one model) of the IB at each step, selecting the best 
model in this set. GES corresponds to the k = 1 case; SES is the 
k = 0 case. Nielsen et al. [13] presented a theoretical analysis 
of KES, supported on known results about GES. We will work 
here with the KES algorithm, performing the IB neighborhood 
approximation proposed in [13] and already suggested in [23]. 

B. Lasso Regularization 

Regularization techniques (see a review in [25]) have been 
attracting the attention of many researchers lately and have 
been successfully employed in many fields related to statistics, 
machine learning, and signal processing. The key idea is to add 
a penalty term to the usual least squares linear regression with 
the aim of reducing the variance of the estimates, preventing 
overfitting, and improving the interpretation of the model. 
Although other regularization methods have been proposed, 
regularization with the ¿4-norm (called Lasso [26]) has been 
particularly popular due to its ability to move the regression 
coefficients of irrelevant variables to zero, thereby doing para­
meter estimation and variable selection simultaneously. 

Let y G R be the response variable to be predicted from a 
p-dimensional variable X = ( X i ; . . . , Xp). The linear regres­
sion model has the form 

v 

g(x) = f30 + YJ
xiPi- (8) 

¿ = 1 

Parameters /3 = (/30, • • •, f3p)
T are estimated from a set of 

training data, denoted by V = {(xi,yi),..., (xn,yn)},~by the 

least squares method. Each xr = (xlr,..., xpr)
T is a vector 

of measurements for the rth instance. The Lasso formulation 
shrinks the regression coefficients by imposing a penalty on 
their size. Thus, the Lasso estimate minimizes a penalized 
residual sum of squares 

n i v \ 2 

0s = arg min V " \yr - f30 - V " xir/3¿ (9) 

subject to 

v 

£|AI<*. d°) 
¿ = 1 

We can omit the intercept f30 from the model by standardiz-
~ s 

ing the predictors, p depends on the value of s > 0, the penalty 
parameter: The greater the value of s, the greater the number of 
(3¡ that are not zero. The regularization path is composed of the 
values of coefficients (3¡ across the range of s. In Lasso, as we 
increase the value of s, one ¡3¡ at a time is made different from 
zero. This allows us to pay attention only to the finite set of s 
values where a new (3¡ is driven to a nonzero value. Between 
two of these values, the changes in coefficients (3¡ are linear. 

Computing the regularization path is a quadratic program­
ming problem with linear inequality constraints. However, it 
can be efficiently solved by the least angle regression (LARS) 
algorithm in 0(p3 + np2) computations [27] (the same cost of 
a least squares fit on p variables). 

Lasso has proven to have interesting theoretical properties 
for variable selection in the literature, showing its capacity to 
deal with high-dimensional data (very much present in real 
domains). Specifically, to hold these properties, Meinshausen 
and Biihlmann [28] showed that the data-set cardinality has to 
grow at no more than a logarithmic rate against the number of 
variables. This turns out to be a clear advantage when working 
with biological data, where the amount of training samples 
is usually small compared with the number of variables. The 
consistency of Lasso for variable selection (determination of the 
true model) is demonstrated for underlying models that fulfill 
certain conditions [16], [19]. Zhao and Yu [19] introduced the 
term "irrepresentable condition," meaning that the correlation 
between the relevant (nonzero coefficients) and irrelevant vari­
ables (zero coefficients) must be limited; otherwise, spurious 
variables may be included in the selected variable set. 

III. KES COMBINED WITH LASSO 

We propose a Lasso-based previous step to preselect a set of 
potential parents for each variable on which the KES algorithm 
will work greedily. Arcs corresponding to zero coefficients in 
the penalized regression are discarded. The sparse candidate 
algorithm [29] also performs a preselection phase. This algo­
rithm needs the user to set the maximum number of parents per 
node in advance. The sparse candidate algorithm restricts the 
search space so that there is only one set of possible parents for 
each variable in the subsequent maximization step (typically 
a greedy algorithm). These sets are constructed by including 
the variables that are most closely associated with the target 



variable; this is usually quantified with a pairwise measure like 
mutual information. 

Alternatively, we employ Lasso with each variable on the 
rest, discarding as parents the variables whose regression coef­
ficients become zero. Afterward, we launch the KES algorithm 
on the equivalence class search space. Thus, unlike the sparse 
candidate algorithm, we do not need to establish a maximum 
number of parents in advance. 

The pseudocode of our proposal is shown in Algorithm 1, 
illustrating the two phases of the algorithm. Parent restriction 
appears in the for loop, calculating for each variable the set of 
coefficients that yields the best MDL score in the regularization 
path (represented by a matrix with p columns and a variable 
number of rows—one for each point in the regularization path 
where a coefficient vanishes or reappears into the model). The 
score+search KES algorithm, restricted by the previous step, is 
enclosed in the repeat loop. Notice that MDL is used in both 
phases. 

Algorithm 1 Lasso embedded in KES 
Input: data set V with p variables and n cases, k e [0,1] 
Output: partially DAG G 
for i = 1 to p do 

Path(i) := matrix containing the LI-regularization path 
of variable Xi 
Bet a (i) := row of p coefficients with the best MDL score 
in Path(i) 
Potential Par ents(i) := set of variables such that 
Beta(i)(j) ^ 0, for j = 1 . . .p 

end for 
Initialize G := empty or randomly generated model 
minimum := false 
repeat 

K := max(/c • size(IB(G, Potential Parents)), 1) 
where IB(G, Potential Parents) is the IB(G) 
constrained by Lasso 
S := set of K models drawn from 
IB(G, Potential Parents) 
G' := the model from S with the best MDL score 

if MDL(G') < MDL(G) then 
G:=G' 

else 
minimum := true 

end if 
until minimum is true 

Note that not all variables have to share the same value 
of s when carrying out their regression against the rest of 
variables, as some nodes in the true structure may have stronger 
connectivity than others. A stronger regularizer (smaller s) 
would be required for these nodes so that more regression 
coefficients ¡3f will be driven to zero. A common strategy for 
selecting s is to choose it by cross-validation from a grid of 
values. However, it would have to be applied individually for 
each variable and could hence introduce a heavy computational 
load in high-dimensional problems. 

TABLE I 
MEAN AND STANDARD DEVIATION (IN SECONDS) OF TEN RUNS 

MEASURING THE RUN TIME FOR SOME NETWORK SIZES OF THE FACTOR 

STRUCTURE (SEE SECTION IV). ALL DATA SETS HAVE 1000 INSTANCES 

No. variables 
20 
50 
100 

KES 
3.08(±0.22) 
84.68(±13.28) 
1145.3(±28.11) 

KES + Lasso 
1.75(±0.06) 
27.57(±0.82) 
259.0(±9.90) 

Lasso 
0.25(±0.06) 
1.77(±0.05) 
16.3(±0.84) 

Instead, Schmidt et al. [20] took advantage of the piecewise 
constant nature of the number of nonzero coefficients against 
parameter s and suggested to take for each variable the best set 
of "parent candidates" from such regularization path according 
to some criterion, which has a finite and reduced number of 
solutions. That is the approach that we use in this paper. Hence, 
we do not estimate an explicit value of s. We employ the (score-
equivalent) MDL criterion, which is defined as 

MDL(Xi) =m\og{n)/2^NLL{Xl\Pa{Xi)) (11) 

where m is the number of parameters different from zero 
and NLL(Xi\Pa(Xi)) is the negative log-likelihood of the 
network made up of this node and its parents. 

In short, we evaluate all the points (all the sets of p coeffi­
cients) where a new coefficient vanishes (or appears) in each 
variable's regularization path, and choose the set of coefficients 
that minimizes the MDL score. The chosen set of penalized 
regression coefficients is not used again beyond the parent 
preselection stage, and the GBN parameters will be learned 
later, irrespective of these coefficients. 

In the second phase, we must choose between two strategies. 
The first is that a variable Xj is included as a possible parent of 
Xi if Xj is selected by Lasso when the response variable is Xi 
or if Xi is selected by Lasso when the response variable is Xj. 
The second is if both conditions are fulfilled. We have tested the 
two strategies, which we will call OR-Lasso and AND-Lasso, 
respectively. 

Even restricted to the aforementioned subset of potential par­
ents, the KES algorithm does not lose the theoretical properties 
that we described earlier if we assume LI regularization to 
be an ideal variable selector (specifically if it does not miss 
true relations). As noted previously, this applies under certain 
conditions. In this case, it will find a set of variables with all 
the parents, children, and coparents: the Markov blanket [20]. 
Hence, ideally, Lasso only discards false parents. 

We use a DAG to represent the current equivalence class 
in our implementation. Therefore, we need a method to ap­
proximate the IB from a DAG representation. We do not cal­
culate the complete IB neighborhood at each step; rather, we 
approximate its size from the total number of possible parents 
(taking the Lasso restriction into account). Then, we derive a 
/c-proportional number of models of this estimated size and 
keep the best one. Thus, we are not actually drawing a k propor­
tion from the set of models that is better than the current one, 
but an approximate k proportion from the total (approximate 
because the size of the IB has been approximated), keeping the 
best model from this set. 

The worst case computational cost of the algorithm is equiv­
alent to KES. This would be the unlikely situation where the 
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Fig. 2. At the top, the MDL curve along the regularization path for two variables of the Alarm network (see Section IV-A). At the bottom, two variables of 
isoprenoid biosynthesis for Arabidopsis thaliana (see Section IV-B). The solid line represents MDL, the dotted line is the negative log-likelihood, and the dashed 
line is the penalization term in MDL [the first term in (11)]. Therefore, the solid line is the sum of the other two lines. 

best Lasso preselection yields that all variables can be parents 
of all variables. However, Lasso is proved to hold a parsimo­
nious property [30]. Thus, the variable selector nature of Lasso 
usually restricts the search space quite a lot and makes the mean 
computational cost of the proposed approach definitely lower 
than that of the KES algorithm alone. Some run times are shown 
in Table I to illustrate this issue. 

Moreover, this paper introduces a simple but useful heuristic 
on the LARS algorithm when used in the parent restriction 
phase. As noted before, we must search for the MDL-optimal 
^ s 

(3 for each and every variable in the regularization paths. The 
MDL score along the regularization path of each Lasso with 
each variable as the response (starting with all ¡3f = 0 and 
ending with all ¡3f ̂  0) often follows a convex curve with only 
one minimum [see Fig. 2(a)]. The reason is that the MDL score 
is the sum of two terms [see (11)]. The first term penalizes 
networks that contain many parameters. It strictly increases 
when parameters are added to the model. The second term is 
the negative log-likelihood, and it strictly decreases as more 
coefficients are made different from zero. The addition of a 
strictly increasing function and a strictly decreasing function 
is a convex function with only one global minimum. In some 
cases, however, the regularization path for Lasso may have 
more than p steps, i.e., at some steps, a variable may become 
zero as s is increased, and be added again to the model later. 
In such a situation, the MDL function along the regularization 
path is not convex anymore. 

These irregularities are the source of our heuristic, as more 
than one local minimum is sometimes present [Fig. 2(b)-(d)]. 

For this reason, the whole curve should be inspected to be sure 
of getting the global minimum. However, the global minimum 
is usually reached at an early phase [an exception is shown in 
Fig. 2(c)]. Even more importantly, when the MDL curve has 
grown for long enough, it normally never decays significantly 
again. This leads us to stop LARS if the MDL curve has grown 
for a number of steps, e.g., equal to 20% of the full model 
variables, where we can be reasonably sure of having obtained 
the global minimum. In this way, we are saving a great deal of 
computational cost. 

In some cases, some local minima are reached later on 
[Fig. 2(c) and (d), particularly Fig. 2(d)], but they are far 
from the global minimum and should be ignored. To make our 
stopping method robust to these minor slumps and preserve 
its efficiency, instead of checking punctual MDL values, we 
calculate the mean in a certain window of MDL values. This 
way, we only keep searching if the decay is relevant, i.e., we 
stop LARS when the MDL mean of this window has been 
growing for enough iterations. If the number of values to be 
included in this mean is too small (or is just one), we are being 
conservative and will probably advance along the regularization 
path further than necessary. On the other hand, if we take 
many values, we risk stopping early and missing the real global 
minimum. Empirically, we have found that taking the last five 
values leads to good results, although this point should be 
further researched. 

In Table II, we show the iteration number where the al­
gorithm stops using different window sizes for each vari­
able against the rest in the Arabidopsis thaliana isoprenoid 



TABLE II 
LARS STOPPING ITERATION FOR DIFFERENT WINDOW SIZES, FOR THE 

Arabidopsis thaliana DATA SET. THE SECOND COLUMN REPRESENTS 

THE ITERATION WHEN THE GLOBAL MINIMUM IS REACHED 

Variable 

AACT1 
AACT2 
CMK 
DPPS1 
DPPS2 
DPPS3 
DXPS1 
DXPS2 
DXPS3 
DXR 
FPPS1 
FPPS2 

Optimal 
iteration 
10 
3 
2 
3 
2 
1 
22 
2 
6 
4 
5 
3 

1 
18 
14 
9 
14 
9 
9 
33 
9 
15 
14 
14 
9 

2 
18 
14 
10 
14 
10 
10 
33 
10 
15 
14 
14 
10 

Window 
3 
18 
14 
11 
14 
11 
11 
33 
11 
15 
14 
14 
11 

4 
18 
14 
12 
14 
12 
12 
33 
12 
15 
14 
14 
12 

size 
5 
17 
13 
12 
12 
12 
12 
30 
12 
14 
13 
13 
12 

6 
18 
14 
13 
14 
13 
13 
33 
13 
15 
14 
14 
13 

7 
19 
14 
14 
15 
14 
14 
34 
14 
14 
14 
15 
14 

GGPPS1 
GGPPS2 
GGPPS3 
GGPPS4 
GGPPS5 
GGPPS6 
GGPPS8 
GGPPS9 
GGPPS10 

3 
2 
1 
1 
1 
2 
2 
2 
2 

17 
9 
9 
9 
9 
9 
9 
9 
9 

17 
10 
10 
10 
10 
10 
10 
10 
10 

17 
11 
11 
11 
11 
11 
11 
11 
11 

17 
12 
12 
12 
12 
12 
12 
12 
12 

16 
12 
12 
12 
12 
12 
12 
12 
12 

17 
13 
13 
13 
13 
13 
13 
13 
13 

15 
14 
14 
14 
14 
14 
14 
14 
14 

GGPPS11 
GGPPS12 
GPPS 
HDR 
HDS 
HMGR1 
HMGR2 
HMGS 
IPPI1 
IPPI2 
MCT 
MECPS 
MK 
MPDC1 
MPDC2 
PPDS1 
PPDS2 
UPPS1 

4 
3 
7 
3 
4 
4 
6 
4 
6 
4 
3 
3 
3 
3 
4 
2 
2 
3 

14 
14 
17 
9 
9 
9 
15 
14 
9 
9 
9 
9 
9 
9 
9 
9 
9 
14 

14 
14 
17 
10 
10 
10 
15 
14 
10 
10 
10 
10 
10 
10 
10 
10 
10 
14 

14 
14 
17 
11 
11 
11 
15 
14 
11 
11 
11 
11 
11 
11 
11 
11 
11 
14 

14 
14 
17 
12 
12 
12 
15 
14 
12 
12 
12 
12 
12 
12 
12 
12 
12 
14 

13 
13 
16 
13 
13 
13 
14 
13 
21 
21 
21 
21 
21 
21 
21 
21 
21 
13 

14 
14 
17 
13 
13 
13 
15 
14 
22 
22 
22 
22 
22 
22 
22 
22 
22 
14 

14 
14 
17 
14 
14 
14 
16 
15 
21 
21 
21 
21 
21 
21 
21 
21 
21 
15 

TABLE III 
LARS STOPPING ITERATION FOR DIFFERENT STOPPING RATIOS 

(SEE TEXT), FOR THE Arabidopsis thaliana DATA SET. THE 
SECOND COLUMN REPRESENTS THE ITERATION WHEN 

THE GLOBAL MINIMUM IS REACHED 

Variable 

AACT1 
AACT2 
CMK 
DPPS1 
DPPS2 
DPPS3 
DXPS1 
DXPS2 
DXPS3 
DXR 
FPPS1 
FPPS2 
GGPPS1 
GGPPS2 
GGPPS3 
GGPPS4 
GGPPS5 
GGPPS6 
GGPPS8 
GGPPS9 
GGPPS10 
GGPPS11 
GGPPS12 
GPPS 
HDR 
HDS 
HMGR1 
HMGR2 
HMGS 
IPPI1 
IPPI2 
MCT 
MECPS 
MK 
MPDC1 
MPDC2 
PPDS1 
PPDS2 
UPPS1 

Optimal 
iteration 
10 
3 
2 
3 
2 
1 
22 
2 
6 
4 
5 
3 
3 
2 
1 
1 
1 
2 
2 
2 
2 
4 
3 
7 
3 
4 
4 
6 
4 
6 
4 
3 
3 
3 
3 
4 
2 
2 
3 

0.05 
14 
10 
8 
10 
8 
8 
25 
8 
11 
10 
10 
8 
10 
8 
8 
8 
8 
8 
8 
8 
8 
10 
10 
13 
8 
8 
8 
11 
10 
8 
8 
8 
8 
8 
8 
8 
8 
8 
10 

Stopping i 
0.1 
16 
12 
10 
12 
10 
10 
31 
10 
13 
12 
12 
10 
15 
10 
10 
10 
10 
10 
10 
10 
10 
12 
12 
15 
10 
10 
10 
13 
12 
10 
10 
10 
10 
10 
10 
10 
10 
10 
12 

0.15 
18 
14 
12 
14 
12 
12 
33 
12 
15 
14 
14 
12 
17 
12 
12 
12 
12 
12 
12 
12 
12 
14 
14 
17 
12 
12 
12 
15 
14 
12 
12 
12 
12 
12 
12 
12 
12 
12 
14 

-atio 
0.2 
20 
16 
14 
16 
14 
14 
35 
14 
17 
16 
16 
14 
19 
14 
14 
14 
14 
14 
14 
14 
14 
16 
16 
19 
14 
14 
14 
17 
16 
24 
24 
24 
24 
24 
24 
24 
24 
24 
16 

0.3 
24 
20 
18 
20 
18 
18 
39 
18 
21 
20 
20 
18 
23 
18 
18 
18 
18 
18 
18 
18 
18 
20 
20 
23 
18 
18 
18 
21 
20 
28 
28 
28 
28 
28 
28 
28 
28 
28 
20 

biosynthesis data set (see Section IV-B). The optimal iteration, 
where the global minimum is reached, is depicted in the second 
column; if the stopping iteration is lower than the optimal one, 
we are trapped in a local minimum. Note that the window size 
does not have a big impact on most variables. For example, for 
the first variable, the algorithm always stops around iteration 
18, i.e., beyond the global minimum in iteration 10, regardless 
of the window size. More meaningful is the effect of the number 
of iterations that the MDL mean of the window needs to keep 
increasing to stop. In Table III, we show the ratio of this 
parameter against the number of variables. To simplify, we call 
such ratio "stopping ratio." Note that the difference between 
0.05 and 0.3 is significant. Again, the iteration corresponding 
to the global miminum is depicted in the second column. Note 
that, in both experiments, we always advanced further than the 
optimal iteration and thus covered the global minimum. For 
all variables, the lowest size of the regularization path is over 
60, and the mean size is 82. However, the global minimum is 
usually in the first third of the regularization path. 

IV. EXPERIMENTS 

A. Synthetic Networks 

The Alarm network [31] contains 37 nodes and 46 arcs. The 
Insurance network [32] has 27 variables and 52 arcs. Both are 
commonly used to test Bayesian network learning algorithms. 
Finally, we have generated a synthetic network called Factor, 
with 100 variables and 382 arcs. This holds an arc from variable 
Xi to Xj if i is a divisor of j . Because we need a GBN, we will 
use the dependences of each network to simulate continuous 
Gaussian data sets of 100 samples for Alarm, 1000 samples for 
Insurance, and 50 samples for Factor (testing the p > n case). 
Parameter /3¿ in (2) is generated at random from a standard 
normal distribution. The rest of the parameters of the density 
functions are fixed (ra¿ = 0 and Vi = 1). We run the KES 
algorithm for ten different values offc:0.1,0.2,.. . ,0.9,1.0, 
with and without a previous Lasso step. Here, we illustrate the 
results using the OR-Lasso strategy, as the AND-Lasso strategy 
turned out to be very restrictive in this case, producing networks 
with few arcs. For each fc, we performed ten runs and calculated 
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Fig. 3. Behavior of the KES algorithm for the Alarm network, (a) With Lasso preselection, (b) Without Lasso parent preselection. Total, true, and false arcs are 
shown. 
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Fig. 4. Behavior of the KES algorithm for the Insurance network. Same setting as that in Fig. 3. 

the mean and the standard deviation. Results are shown in Note that our approach (working in the equivalence class 
Figs. 3-5. We also tried the approach proposed in [20], which space) on the whole outperforms the networks obtained work-
works in the DAG space, although we do not show the results in ing in the DAG space. This is particularly notable in the Alarm 
the figures for clarity. Instead, we present means and standard network. For the Factor network, the number of correct arcs 
deviations in Table IV. is equivalent in both spaces, whereas in the equivalence class 
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Fig. 5. Behavior of the KES algorithm for the Factor network. Same setting as that in Fig. 3. 

0.2 0.3 0.4 0.5 0.6 0.7 

parameter k 

(b) 

TABLE IV 
MEAN AND STANDARD DEVIATION OF SOME MEASURES FOR NETWORKS 

OBTAINED BY THE APPROACH PROPOSED IN [20] 

Network No. of arcs False positives Matches 
Alarm 33.50(^1.58) 13.70(±1.70) 19.80(±0.42) 
Insurance 63.80(±4.10) 22.60(^3.03) 41.20(±2.44) 
Factor 168.10(±2.02) 70.50(^2.76) 97.60(^1.17) 

space, the number of false positives is slightly lower. On the 
other hand, for the Insurance network, where n > p, the results 
between the DAG space and the equivalence class space are 
quite similar. Note also that the random generation of the 
network parameters may affect the final output and could be 
the cause of some differences between the learned structures 
and the original network. 

Regarding the comparisons, within the equivalence class 
space, between networks learned with Lasso preselection and 
networks learned without it, the main conclusion that we can 
draw is that the Lasso information makes the output network 
sparser and tends to include fewer false arcs and, encouragingly, 
even more correct arcs. Again, this is more obvious for the 
Alarm network. For the Insurance network, the number of 
correct arcs is not very different, but the Lasso preselection 
yields less false positives (and, therefore, fewer total arcs). The 
same happens for the Factor network, where the number of 
false positives and the number of correct arcs are surprisingly 
alike for the KES algorithm. 

Without Lasso, we also observe that intermediate values of 
k (moderate randomness) result in slightly better networks. 
The Factor network, where k has no influence at all, is an 
exception. When using Lasso, the quality of the networks is 
roughly equivalent in all cases of k. Moreover, the variance of 
the results is lower. Consequently, we could say that, with the 

preselection phase, the algorithm becomes quite robust to k, 
i.e., there is not so much variation on parameter k, and this is no 
longer a cause for concern. Furthermore, as mentioned before, 
the computational cost is significantly lower when Lasso is 
employed. 

B. Pathways of the Arabidopsis thaliana Plant 

Probabilistic graphical models and, specifically, GBNs may 
be used to model genetic networks. In the GBN case, each 
variable represents a continuous gene expression level (see [33] 
for a review). Narrowing the field down to static GBNs (that 
do not model gene coregulation against time), Wu et al. [34] 
defined the GBN by previously determining the conditional 
independence relationships, and Imoto et al. [35] combined 
microarray data and known biological information to train the 
model. 

Next, we will test our method with a real-world data set 
taken from a biological environment: a list of 118 gene 
expression patterns measured under different conditions for 
40 genes that are found to be relevant in isoprenoid biosynthesis 
for Arabidopsis thaliana[36]. Arabidopsis thaliana is the first 
plant whose complete genome has been sequenced. Isoprenoids 
are the largest family of biological substances in nature and 
the oldest known biomolecules; over 30 000 known compounds 
help in a great variety of biochemical processes. Understanding 
the nature of their synthesis is a task with many practical 
pharmaceutical and food applications. It is known that such 
synthesis follows two different gene routes in high-order plants 
like Arabidopsis thaliana: the mevalonate (MVA) pathway and 
the methylerythritol 4-phosphate (MEP) pathway. Of the 40 
measured genes, 16 come from the MVA pathway, 19 are 



Fig. 6. (a) Real isoprenoid biosynthesis network, (b) Network shown in [36]. (c) Network shown in [37]. 

from the MEP pathway, and the remaining 5 are encoding 
proteins located in the mitochondrion. Fig. 6(a) shows the true 
pathways: The MEP pathway is the set of proteins on the left, 
and the MVA pathway is the set on the right; genes related to 
mitochondrial proteins are UPPS1, DPPS2, GGPPS1, GGPPS5, 
and GGPPS9. 

Our aim here is to check if our method is capable of neatly 
separating the two pathways. We train ten networks for each 
k value (k e {0.1,0.2,. . . , 0.9,1.0}), and we only keep those 
arcs that have been repeated with a frequency of at least fr. 
In order to experiment with different degrees of sparseness, we 
examine some values for fr: 0.6, 0.7, 0.8, 0.9, and 1.0. The 
networks obtained in [36] and [37] are shown in Fig. 6(b) and 
(c), respectively. 

It is also interesting to investigate the cross relationship 
between both pathways. One might expect a limited connec­
tivity between the two pathways [37] because they are both 
developed in different parts of the cell [see Fig. 6(a)]. However, 
Wille et al. [36] cited some reports about these interactions, 
showing that cross-link connections do exist under certain 
circumstances. 

Both the method suggested in [36] and the threshold gra­
dient method (TGD) proposed in [37] identify a separation 
of both pathways. Note that undirected networks are used in 
both papers, whereas we train directed networks. The simpler 
method shown in [36] trained a dense network. Although this 
network, in essence, owns many true arcs and distinguishes the 
two pathways, it connects many genes that are independent in 
the true network, with relatively dense cross-link connections. 
On the other hand, TGD, using bootstrap and keeping only 
the arcs that appear in at least 50% of the obtained networks, 
reached a sparse network, and no cross-link between pathways 
was drawn. However, there are some connections between the 
MEP pathway and mitochondrial proteins (located at the center 
of the network) that do not exist in the true-pathway diagram. 
Furthermore, this network misses many true edges. For ex­
ample, DXPS1, DXPS2, and DXPS3 appear to be completely 
independent, as do all GGPPS genes. 

We have built different networks, depending on the parent 
preselection strategy used (no preselection, AND-Lasso, and 

OR-Lasso) and on the fr and k values. Except for the net­
works trained without Lasso preselection, parameter k has little 
influence. If we do not employ Lasso [Fig. 7(a)], the KES 
algorithm outputs very dense networks where we can barely 
distinguish the two pathways. Only when fr is set to a high 
value that sparser networks are reached, but it is not yet possible 
to appreciate the two pathways. For example, there are no arcs 
connecting genes inside the MVA pathway in Fig. 7(a). Note 
that this network has an equivalent number or even fewer arcs 
than the others; this is because of the higher variability of the 
networks trained without constraints: There are many arcs, but 
they differ from one run to another. 

AND-Lasso networks [Fig. 7(b)] turn out to be the most 
interesting because they identify two interconnected modules 
in the network with relatively few arcs. The MVA pathway 
is specially well connected as compared with the real one in 
Fig. 6(a), and the DXPS, DXR, MCT, CMK, MECPS, and HDS 
set is also connected in the MEP pathway except for the missing 
CMK—MECPS arc. Moreover, most AND-Lasso networks dis­
cover a relation between IPPI1 and some MVA pathway genes, 
which, as noted in [36], could have an interesting biological 
interpretation. 

When using an OR-Lasso [Fig. 7(c)], there are many arcs 
that appear in at least 80% of the trained networks. Although 
we find some cross-link connections, we also find a higher arc 
density in each pathway. For instance, in the MEP pathway, 
DXPS, DXR, MCT, CMK, MECPS, HDS, and HDR are closely 
connected. Again, we find an interaction of IPPI1 with elements 
of the MVA pathway. 

Table V shows a quantitative comparison among the net­
works in Figs. 6(b) and (c) and 7(a)-(c). We score each pathway 
using a simplified version of the structural Hamming distance 
(SHD) [38]. This measure is defined by the number of operators 
(add or delete an undirected edge, and add, remove, or reverse a 
directed arc) that are different in the PDAG to be scored and in 
the real PDAG. Because we want to evaluate also the undirected 
networks shown in Fig. 6(b) and (c), we will ignore the arc 
orientation and will not count reversal operators. 

We also measure the rate between the number of arcs 
within the pathways and the number of arcs crossing between 
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Fig. 7. (a) Network trained without Lasso preselection (fr = 0.8, k • 
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TABLE V 
SHD AND SEPARABILITY MEASURES FOR THE NETWORKS 

SHOWN IN FIGS. 6(b) AND (C) AND 7(a)-(c). SHD 

ASSESSES INDEPENDENTLY EACH PATHWAY 

Network 

Wille et al. 's 
TGD [37] 
KES 
AND-Lasso 
OR-Lasso 

method [36] 

SHD in pathway 
MEP MVA 
16 
14 
15 
11 
15 

22 
21 
16 
20 
17 

Total SHD 

38 
35 
31 
31 
32 

Separability 

1.52 
5.66 
0.50 
3.75 
1.60 

pathways and linking with mitochondrial genes. This value 
might be considered as a measure of the ability to separate the 
pathways, and will be denoted as separability. 

Roughly speaking, the networks of Figs. 6(c) and 7(b) (cor­
responding to TGD and AND-Lasso methods) appear to be the 
best. Whereas TGD presents the best separability, AND-Lasso 
gives good SHD results and could produce the most refined 
pathways at some extent. 

In summary, we have built networks that can compete with 
state-of-the-art methods, showing a very good computational 
performance. This has been shown with some synthetic data 
sets and a real biological network. 

V. CONCLUSION 

We have presented a procedure for learning the structure of 
GBNs based on a well-known regularization method for parent 
filtering and on the KES algorithm, a greedy algorithm working 
on the equivalence class space. As discussed previously, there 
are theoretical properties that support both methods. To the best 
of our knowledge, this is the first time that regularization has 
been employed in equivalence class searching. 

One advantage of our method is its computational efficiency. 
It is known that LARS solves Lasso with a reduced computa­
tional burden. Also, with parent restriction, the KES algorithm 
is significantly faster than ordinary KES while offering better 
results. This means that several executions or bootstrapping, 
trying to extract common patterns, can be run in situations 
where this would normally be infeasible. With the aim of 

0.2). (b) Network trained with AND-Lasso preselection (fr = 0.7, k = 0.7). 

improving efficiency, we have developed a simple but useful 
MDL-based method for stopping LARS in advance when it is 
used for parent preselection. 

We have applied our approach with good results to three 
synthetic databases and a real biological data set, the isoprenoid 
biosynthesis pathways of Arabidopsis thaliana. Our results 
are successfully backed by previous domain knowledge, even 
though the available data offer just gene coexpression levels, 
not always directly related to regulatory patterns, i.e., it does 
not always exactly reflect regulatory dependences. Previous 
work on building graphical models for this data set used undi­
rected Gaussian networks. We think that our link orientation 
could supply useful information on the underlying biological 
processes in some situations. In fact, the original biological 
network that we are trying to model is also directed. 

For future research, it would be interesting to evaluate the 
different varieties of Lasso (fused, group, elastic net, etc.) for 
parent preselection, depending on the nature of the biological 
domain. We think that the combination of the KES algorithm 
with an appropriate Lasso extension may be a useful tool that 
deserves further investigation. We may also intend to refine 
our LARS stopping method to save computation resources and 
make sure that we will find the true global minimum of the 
MDL curve. 
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