
Building ontologies from folksonomies and linked

data: Data structures and Algorithms

Technical Report - 22 May 2012

Andrés García-Silva1, Jael García-Castro2, Alexander García3, Oscar Corcho1,
Asunción Gómez-Pérez1

1 Ontology Engineering Group,
Facultad de Informática, Universidad Politécnica de Madrid, Spain

{hgarcia,ocorcho,asun}@fi.upm.es,
2 E-Business & Web Science Research Group,

Universitaet der Bundeswehr, Muenchen, Germany
w31blega@unibw.de,

3 Biomedical Informatics,
Medical Center, University of Arkansas, USA

agarcia@uams.edu,

Abstract. We present the data structures and algorithms used in the
approach for building domain ontologies from folksonomies and linked
data. In this approach we extracts domain terms from folksonomies
and enrich them with semantic information from the Linked Open Data
cloud. As a result, we obtain a domain ontology that combines the emer-
gent knowledge of social tagging systems with formal knowledge from
Ontologies.

1 Introduction

In this report we present the formalization of the data structures and algorithms
used in the approach for building ontologies from folksonomies and linked data.
In this approach we use folksonomies to gather a domain terminology. First
in a term extraction activity we represent folksonomies as a graph which is
traversed by using a spreading activation algorithm (see section 2.1). Next in
a semantic elicitation activity we identify classes and relations among terms on
the terminology relying on linked data sets (see section 2.2). During this activity
terms are associated with semantic resources in DBpedia by means of a semantic
grounding algorithm. Once terms are grounded to semantic entities we attempt
to identify which of those resources correspond to classes in the ontologies that
we are using. Finally we search for semantic relations between the previously
identi�ed classes on the ontologies. The classes and relations among them are
used to create a draft version of a domain ontology.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148660172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

2 From Folksonomies to Ontologies

We obtain domain knowledge from a general purpose folksonomy. Our approach
uses pertinent domain resources (i.e. web pages) to de�ne the search within
the folksonomy. Those resources are called seeds; they are used in two ways:
i) as starting points to traverse the folksonomy structure, and ii) as reference
resources to search for similar resources in the folksonomy. Our approach takes
as input a set of seeds in the form of appropriate domain resources and produces
as output the corresponding domain ontology (see �gure 1). More speci�cally,
we are tapping into a convergent terminology obtained from folksonomies; we
are making the semantics of this terminology explicit by associating them with
linked data entities.

Terminology Extraction Semantic Elicitation

Grounding

terms to

DBpedia

Getting

ontology

classes

Finding

relations and

new classes

Obtaining the

one mode

graph

Spreading

activation

Folksonomy

Linked Data
User-defined

seeds (URL)

Ontology

Fig. 1. Eliciting knowledge from folksonomies

We start identifying the appropriate terminology by traversing the graph
de�ned by the folksonomy resources and tags. We use seeds to �nd similar folk-
sonomy resources. From this process we obtain a set of relevant terms that are
grounded to DBpedia. Then we look for classes that are related to those DBpedia
resources. In addition, we look for relationships among those classes identi�ed in
the linked data set, i.e. existing ontologies in the linked data cloud from which
we also discover new classes. As output we produce an ontology consisting of lo-
cal classes that are directly linked to classes in the linked data set; these classes
are related by relationships obtained from the linked data set.

2.1 Terminology Extraction

In social tagging systems (STS) users assign tags to resources. Thus, a folkson-
omy can be understood as a set of annotations A ⊆ U × T ×R where U , T and,
R are sets whose members are users, tags and resources, respectively. A folk-
sonomy can be represented as an undirected tri-partite hyper-graph G = (V,E)
where V = U ∪ T ∪R, and E = {(u, t, r)|(u, t, r) ∈ A}. This hyper-graph can be
reduced to two and one mode graphs [7].

We are particularly interested in the one mode graph G′ = (V ′, E′) whose
vertices V ′ are the set R of resources, and for which there is an edge between two
resources ri and rj if there is at least a common tag assigned to both resources

Technical Report 3

regardless of the user. Formally, E′ = {(ri, rj)|∃((u, tm, ri) ∈ A ∧ (u, tn, rj) ∈
A ∧ tm = tn)}4. We have chosen this graph because previous studies such as [5]
showed that tags tend to converge around resources in folksonomies.

By browsing the graph G′, we look for domain relevant resources and collect
the tags used to annotate those resources as valid terms within the domain at
hand. Our approach requires a set S ⊂ R of user-speci�ed seeds. A seed is a
folksonomy resource considered highly pertinent to the domain. Thus, we can
compare resources in G′ with a seed in terms of shared tags; tags of highly similar
resources are added to the domain terminology.

In order to traverse the graph G′ we use spreading activation [3] in combina-
tion with a breadth-�rst search strategy. Spreading activation is a graph search
method initiated by a set of seed nodes weighted with an activation value. Each
seed's activation value spreads through the linked nodes in the graph by means
of an activation function. The spreading stops when a node activation value is
below a speci�ed threshold. When a node is activated more than once, i.e. it
is reached by the spreading of di�erent seeds, the node activation value can be
added up.

The activation value for a node rj (see equation 1) is calculated by estimating
the rate of shared category names with ri, being ri the previous visited node
from which we reached rj .

a(rj) =
|{cn ∈ CN |(u, rj , cn) ∈ CI} ∩ {cn ∈ CN |(u, ri, cn) ∈ CI}|

|{cn ∈ CN |(u, ri, cn) ∈ CI}|
(1)

The activation function also depends on the activation value of the previously
activated node ri. Thus, a(rj) = a(rj) + a(ri) ∗ λ where 0 ≤ λ ≤ 1 is a real
number representing a decay factor. If a(rj) is greater than a threshold h, then
it is marked as activated and the search continues; otherwise the search stops.

Once all the seeds are processed we calculate weights for the category names
of those activated nodes. We multiply the frequency of each category name by
the node activation value (see equation 2). Then we gather all distinct category
names used to classify the activated nodes and added up their weights. Finally
the list of category names is sorted in descending order according to the aggre-
gated weight. As output of this task we created a set of terms from the list of
category names representing a valid domain terminology.

w(rj , cnk) = |{(u, rj , cnk)|(u, rj , cnk) ∈ CI}| × a(rj) (2)

The spreading activation algorithm for collecting domain terms is presented
in section 3.1.

2.2 Semantic Elicitation

We rely on linked data to identify the semantics of those terms extracted from
the folksonomy. Linked data are published using RDF and typed links between

4 Note that annotations can be made by di�erent users u, however, to keep the notation
simple we don't show this in the formalization.

4

data from di�erent sources [1]. Throughout this report we refer to linked data
o�ered by DBpedia [2], OpenCyc5, UMBEL6 and YAGO[9]. DBpedia contains
knowledge from Wikipedia for close to 3.5 million resources; 1.6 million resources
are classi�ed in a cross domain ontology containing 272 classes. OpenCyc is a
general purpose knowledge base; it has nearly 500.000 concepts, around 15.000
types of relationships, and approximately 5 million facts relating these concepts.
UMBEL is a vocabulary and reference concept ontology designed to help content
to interoperate on the Web. This ontology has 28.000 concepts and 38 types of
relationships. YAGO is a knowledge base derived from Wikipedia and Word-
Net; its core version has over 2.6 million entities and around 33 million facts.
These datasets are interlinked among them. DBpedia resources, and classes are
connected to OpenCyc concepts using owl:sameAs, to UMBEL concepts using
umbel#correspondsTo, and to YAGO concepts using rdf:type and owl:sameAs.

We are grounding the terminology to DBpedia resources; in this way we
are leveraging the high degree of interconnection o�ered by DBpedia. Once the
terms are grounded to DBpedia resources, we then tap into the DBpedia ontology
and interconnected data sets together with their corresponding ontologies. By
doing so, we are identifying terms corresponding to ontology classes. Similarly,
we query the linked data set to look for relationships among the previously
identi�ed classes by browsing across the links between data sets. New classes
can arise from relationships expanding throughout intermediate classes.

Grounding terms to DBpedia Associating the terminology with DBpedia
resources is not a trivial task. A term can be used to refer to one or more
DBpedia resources7. Thus, for terms associated with more than one DBpedia
resource the grounding process requires disambiguating the meaning of the term
in order to select the appropriate resource. In our case, terms are tags extracted
from a folksonomy; thus, we can use tagging information as context to �nd the
intended meaning of the tag. The fact that DBpedia resources are directly re-
lated to Wikipedia articles gives us, in addition to semantic information, textual
information that can be consumed during the grounding process8.

Our approach to ground tags, uses a vector space model representation
to model an ambiguous tag as well as candidate DBpedia resources. By con-
text we mean other tags used together with the ambiguous tag when annotat-
ing resources that have been activated in the spreading activation process. In
other words, the context of an ambiguous tag ti is the set {t ∈ T |(u, t, rm) ∈
A ∧ (u, ti, rn) ∈ A ∧ rm = rn}. The components of the vectors are the most
frequent terms of the Wikipedia articles related to each candidate DBpedia re-
source. Term Frequency and Inverse Document Frequency (TF-IDF) [8] is used
as term weighting scheme to populate the vectors. Then we compare the vector
representing the ambiguous tag with each of the vectors representing candi-

5 OpenCyc home page: http://sw.opencyc.org/
6 UMBEL home page: http://www.umbel.org/
7 DBpedia encode this information using dbpedia-owl:wikiPageDisambiguates
8 DBpedia resources and Wikipedia articles are associated with the foaf:page

Technical Report 5

rdf:type

rdf:type

owl:SameAs

owl:SameAs

owl:SameAs rdf:type rdf:type

dbpr:University
umbel:

University
dbpo:University

owl:Class

ocyc:University dbpr:Technical_University_

of_Madrid

yago:Public_

Universities

rdf:type rdf:type

rdf:type

rdf:type

owl:SameAs

owl:SameAs

owl:SameAs

dbpr:University
umbel:

University
dbpo:University

owl:Class

ocyc:University

rdf:type

Fig. 2. RDF graph of data linked to dbpr:University. Bold edge nodes represent classes
that are reachable following owl:sameAs relationships

date resources by using the cosine as similarity function. The candidate whose
vector is the most similar to the ambiguous tag is the correct sense for that
tag. Details of this procedure can be found in [4]. This grounding produces a
set Grounding of tuples relating terms with DBpedia resources. The output of
this task is the set of unique DBpedia resources identi�ed in the grounding:
D = {dbpr|(termi, dbpr) ∈ Grounding}.

The semantic grounding algorithm for anchoring terms to DBpedia resources
is presented in section 3.2.

Getting ontology classes At this point we have connected terms to the linked
data cloud using DBpedia resources. We aim at bene�ting from the DBpedia
ontology as well as from linked ontologies to extract semantic information related
to resources in D. However, there is not a direct way to know whether a resource
is equivalent to an ontology class.

For instance, the resource dbpr:University9 is not directly related to the class
dbpo:University10 (see �gure 2). In order to understand this equivalence we ought
to navigate through linked data sets following the next path: dbpr:University
owl:sameAs ocyc:University11 owl:sameAs dbpo:University. We can also iden-
tify ocyc:University as a class from the OpenCyc dataset. Moreover, if we con-
tinue exploring the linked data set we �nd that ocyc:University owl:sameAs

umbel:University12, and that umbel:University is also a class in the UMBEL
ontology. For identifying classes we query the linked data set in order to �nd
paths of equivalent relationships13 and of variable length connecting the source
resource with a target entity de�ned as a class.

Following a similar approach to [6] we use SPARQL queries to look for rela-
tionships linking the source resource s and a class c. We de�ne the path length L
as the number of relationships found in the path linking s with c. For L = 1 we

9 The dbpr pre�x refers to http://dbpedia.org/resource/
10 The dbpo pre�x refers to http://dbpedia.org/ontology/
11 The pre�x ocyc refers to http://sw.opencyc.org/2009/04/07/concept/en/
12 The pre�x umbel refers to http://umbel.org/umbel/sc/
13 We are using the phrase 'equivalent relation' in a broad sense of similarity.

6

look for a relationship relationi linking s with c. As we do not know the direction
of relationi, we search in both directions: 1) s relationi c, and 2) c relationi s.
For L = 2 we look for a path containing two relationships and an intermediate
resource node such as: s relationi node, and node relationj c. Note that each
relationship may have two directions and hence the number of possible paths is
22 = 4. For L = 3 we have three relationship placeholders and the number of
possible paths is 23 = 8. In general, for a path length L we have n =

∑L
l=1 2

l

possible paths that can be traversed by issuing the same number of SPARQL
queries on the linked data set.

We ensure that the relationships in the path will be relationships such as
owl:sameAs or umbel:correspondsTo. In order to guarantee that c is a class, we
make sure its type is owl:Class. An example query is shown next:

SELECT ?class
WHERE{<dbpr:University> ?relation1 ?node1. ?node1 ?relation2 ?class.

?class <rdf:type> <owl:Class>
FILTER(?relation1=<owl:sameAs>||?relation1=<umbel:correspondsTo>

Listing 1.1. SPARQL query

Thus for each dbpr in D and a given value of L we pose n SPARQL queries
following the above pattern to �nd related classes. As a result a set of tuples as-
sociating DBpedia resources dbpr with ontology classes oc are created. We create
a local class lc for each DBpedia resource dbpr related to at least one class oc.
Each local class lc is associated, by means of a owl:sameAs relationship, with
the classes oc identi�ed for the DBpedia resource. Hence, in this task we create
an ontology O and then add the local classes lc along with their relationships
with the classes oc to O. From the example, we create a local class University
and assert that it is owl:sameAs to dbpo:University, ocyc:University and um-

bel:University. Henceforth, when a oc class is related to a local class lc by means
of a owl:sameAs relationship, it is called a member class.

The algorithm for identifying classes in linked data sets out of DBpedia
resources is presented in section 3.3.

Finding relationships and new classes In order to look for relationships
among the local classes lc, we take advantage of their member classes oc to
search for relationships among them in the linked data set. We propose to carry
out a pairwise search for relationships among the member classes of all local
classes. In order to bene�t the most from the linked data graph, we need to look
for variable length paths of relationships. Thus, we follow a similar strategy to
the one mentioned above for �nding classes for DBpedia resources. The only
di�erence is that in this case we have a concrete source and target of the path;
the source oci and the target ocj are such that both classes are members of
di�erent local classes lci and lcj . Classes found in a path linking oci and ocj are
added as local classes to the ontology O. In addition, for each relationship found
between oci and ocj we create relationships between lci and lcj and add them
to the ontology O .

Technical Report 7

rdf:type

rdf:type

owl:SameAs

owl:SameAs

owl:SameAs rdf:type rdf:type

dbpr:University
umbel:

University
dbpo:University

owl:Class

ocyc:University dbpr:Technical_University_

of_Madrid

yago:Public_

Universities

rdf:type rdf:type

rdf:type

rdf:type

owl:SameAs

owl:SameAs

owl:SameAs

dbpr:University
umbel:

University
dbpo:University

owl:Class

ocyc:University

rdf:type

dbpo:

University

umbel:

University

dbpo:Educational

Institution

umbel:

Organization

dbpo:

Organization

rdfs:

subClassOf

rdfs:

subClassOf

rdfs:

subClassOf

Local Class:

University

Local Class:

Organization

umbel:

University

umbel:

Organization

dbpo:

University

dbpo:Educational

Institution

dbpo:

Organisation

Local Class:

University

Local Class:

Organization

Fig. 3. Searching for relationships among members classes of University and Organi-
zation. Bold edge node represents a new class discovered in the process.

Figure 3 shows existing relationships between member classes of two lo-
cal classes: University and Organization. The University class is de�ned as
in the previous example. The Organization class has umbel:Organization and
dbpo:Organisation as members. Looking for a path of length 1 between members
of both local classes in the dataset we �nd: umbel:University rdfs:subClassOf um-
bel:Organization. Therefore we can assert, by creating a local relationship, that
University is rdfs:subClassOf of Organization. Moreover, if we extend our search
to paths of length 2 we �nd that dbpo:University rdfs:subClassOf dbpo:Educatio-

nalInstitution, and dbpo: Educational Institution rdfs:subClassOf dbpo:Organisa-

tion. In this case we have discovered a new class named dbpo:EducationalInstitution
that we add to our ontology as a local class EducationalInstitution. Then we
assert that University is rdfs:subClassOf EducationalInstitution, and that Edu-
cationalInstitution is rdfs:subClassOf Organization.

The algorithm for �nding relations between classes in linked data sets is
presented in section 3.4.

3 Algorithms

In this section we present the algorithms for each of the activities involved in the
approach for building ontologies from folksonomies and linked data sets. We use
pseudo-code for describing the algorithms and present the details of the main
procedures and functions. Please note that the procedures and functions of each
algorithm are presented in order of dependency. Non-dependent procedures and
functions appears on top of the algorithm description while dependent ones are
on the bottom part. When describing each algorithm we make clear the main
procedure from which the reading of code can be started.

3.1 Algorithm for term selection

In this section we present the algorithm to collect the terms relevant to the
domain. This algorithm consists of a main function collectTerms which uses a
breath �rst search (BFS) and spreading activation over the graph. BFS is in
charge of traversing the graph G′ starting from an user-de�ned seed. Recall that
G′ is a graph whose vertices are resources, and there exists an edge between two

8

resources if they share at least a category name. Vertices in this graph have as
attributes the category names under which they have been classi�ed. For each
visited vertex the activation value is calculated using the activationFunction. We
collect category names as relevant terms for those vertices with an activation
value over a prede�ned threshold. The activation value depends on the rate of
shared categories between the vertices, and on the activation value of the source
vertex from which we reached the current vertex.

Algorithm 1 Collecting domain relevant terms with spreading activation

. Breadth �rst search over the G' graph using s as a seed to drive the search
1: function BFS(G′, s)
2: actV ertices← Array[] . Array of activated vertices
3: q ← Queue()
4: enqueue(q, s)
5: setState(s, “visited′′)
6: while q 6= empty do

7: v0 ← dequeue(q) . Get vertex to process
8: activationV alue← activationFunction(v0) . Calc Act. Value
9: if activationV alue ≥ threshold then . if the vertex is activated
10: setActV alue(v0, activationV alue)
11: add(actV ertices, v0) . Collect activated vertices
12: for all v ∈ adjacent(G′, v0) do . for each adjacent vertex in G'
13: if state(v) 6= “visited′′ then
14: setState(v, “visited′′)
15: setEdgeSrcV ertex(v, v0) . Save the source vertex of the edge
16: enqueue(q, v) . enqueue the adjacent vertix for activation
17: end if

18: end for

19: end if

20: end while

21: return actV ertices
22: end function

. Calc. activation function of the vertex
23: function activationFunction(vertex)

. Get categories of the source vertex
24: srcV ertex← getEdgeSrcV ertex(vertex)
25: srcCategoryNames← getCategoryNames(srcV ertex) . Array of categories

. Get categories of the current vertex
26: vertexCategoryNames← getCategoryNames(vertex) . Array of categories
27: sharedCategoryNames← 0
28: for all categoryName ∈ vertexCategoryNames do
29: if categoryName ∈ srcCategoryNames then
30: sharedCategoryNames← sharedCategoryNames+ 1
31: end if

32: end for

Technical Report 9

33: actV al← sharedCategoryNames
length(srcCategoryNames[])

+ getActV alue(srcV ertex) ∗ decayFactor
34: return actV al
35: end function

. Assign weights to every category name of each activated vertex
36: procedure calcWeightsForActVertices(actV ertices[])
37: for all vertex ∈ actV ertices do
38: categoryNames← getCategoryNames(vertex)
39: for all category ∈ categoryNames do
40: categoryFreq ← getClassificationFreq(vertex, category)
41: weight← getActV alue(vertex) ∗ categoryFreq
42: setWeight(category, weight)
43: end for

44: end for

45: end procedure

. Get a list of terms from categories of activated vertices
46: function getCategories(actV ertices[])
47: uniqueCategories← Array[]

. Group category names regardless vertices and sum their weights
48: for all vertex ∈ actV ertices do
49: categoryNames← getCategoryNames(vertex)
50: for all category ∈ categoryNames do
51: if category /∈ uniqueCategories then
52: newCategory ← category
53: setWeight(newCategory, getWeight(category))
54: add(uniqueCategories, newCategory)
55: else

56: existingCategory ← getCategory(uniqueCategories, category)
57: weight← sum(getWeight(existingCategory), getWeight(category))
58: setWeight(existingCategory, weight)
59: update(uniqueCategories, existingCategory)
60: end if

61: end for

62: end for

. sort categories in desc. order of weight and discard using the threshold
63: getTerms(sort(uniqueCategories, “desc′′), threshold)
64: end function

. Get relevant terms from the activated vertices
65: function getRelevantTerms(actV ertices[])
66: calcWeightsForActV ertices(actV ertices) . weights per category
67: return getCategories(actV ertices) . group categories
68: end function

10

. Collect domain relevant terms from the G' graph using a list of seeds
69: function collectTerms(G′, seeds[])
70: allActV ertices← Array[]
71: for all s ∈ seeds do . For each seed run the spreading activation
72: actV ertices = BFS(G′, s) . Breath �rst search over G′

73: add(allActV ertices, actV ertices) . List of activated vertices
74: end for

75: terms← getRelevantTerms(allActV ertices)
76: return terms
77: end function

3.2 Algorithm for Semantic Grounding

We present the algorithm 2 where the semantic grounding of contextualized
terms to entities in knowledge bases is described. The main function is Seman-
ticGrounding which receives as input the term to ground as well as the context
where the term appears. The context consists of a list of terms. This function
retrieves from the knowledge base the set of candidate meanings for the term. In
the cases where there are more than one candidate a disambiguation function is
used (disambiguateTerm). This function creates the vector space of candidates
and their terms, as well as a vector for the query which represents the term
context. Then, using the search function, vectors are compared so that the most
similar candidate is retrieved.

Algorithm 2 Semantic Grounding of contextualized terms

. Create the matrix representing the vector space (candidates X allTerms)
1: function createVectorSpace(candidates[], allT erms[])
2: vectorSpaceMatrix←Matrix[length(candidates)][length(allTerms)]
3: i← 0
4: for all candidate ∈ candidates do
5: j ← 0
6: for all term ∈ allTerms do
7: V ectorSpaceMatrix[i][j]← calcTFIDF (term, candidate, candidates)
8: j ← j + 1
9: end for

10: i← i+ 1
11: end for

12: return vectorSpaceMatrix
13: end function

. Create the vector representing the term context
14: function createQueryVector(context[], allT erms[])
15: queryV ector ← Array[length(allTerms)]

Technical Report 11

16: i← 0
17: for all term ∈ allTerms do
18: if term ∈ context then
19: queryV ector[i] = 1
20: else

21: queryV ector[i] = 0
22: end if

23: i← i+ 1
24: end for

25: return queryV ector
26: end function

. Select from the vector space the most similar candidate to the term context
27: function search(vectorSpaceMatrix[][],queryVector[], candidates[])
28: simCandidates← Array[length(candidates)]
29: i← 0
30: for all candidate ∈ candidates do
31: candidateV ector ← vectorSpaceMatrix[i]
32: simV alue← calcCosine(queryV ector, candidateV ector)
33: simCandidates[i]← candidate
34: setSimV alue(simCandidates[i], simV alue)
35: i← i+ 1
36: end for

37: sort(simCandidates, “desc′′) . sort by simValue in descending order
38: if simCandidates[0] ≥ threshold then

39: return simCandidates[0] . Return the most similar candidate
40: else

41: return “′′

42: end if

43: end function

. disambiguate the term searching over the list of candidate meanings
44: function disambiguateTerm(termContext[], candidates[])
45: allTerms← getTerms(candidates) . Extract terms of the meanings
46: vectorSpaceMatrix← createV ectorSpace(candidates, allT erms)
47: queryV ector ← getQueryV ector(context, allTerms)
48: return search(vectorSpaceMatrix, queryV ector, candidates)
49: end function

. Get the semantic entity for the term meaning in the context
50: function semanticGrounding(term, context[])
51: candidates← knowledgeBase.getMeanings(term) . Array of meanings
52: if length(candidates) = 0 then

53: return “′′

54: else if length(candidates) = 1 then

55: return candidate[0]
56: else

57: return disambiguateTerm(context, candidates)
58: end if

59: end function

12

3.3 Algorithm for identi�cation of classes

In this section we described the algorithm for identifying relevant classes from
the set of semantic entities found in the Semantic Grounding. The main proce-
dure is IdentifyClasses which receives as input the semantic entity and a pre-
di�ned path length used to limit the number of relations in the SPARQL queries.
This procedure uses a procedure (generateQueries) to generate dynamically the
SPARQL queries to be posed against an SPARQL endpoint. Then, these queries
are executed and the classes are extracted from the result sets.

The generateQueries procedure �rst creates the query (ASK) verifying whether
the semantic entity is a class or not. Next it creates the list of queries per each of
the possible values of i (1..PathLength). Recall that for each path length value
i the number of queries to traverse all the possible paths is 2i. The strategy to
generate the queries per each path length value uses a queue of the resources in-
volved in each query. The queue is created by the function getResources, and for
each path length value the number of resources in the queue is pathlength+1. For
instance for i = 2 we have three resources: the semantic entity, an intermediate
node (node1), and the class variable.

The creation of each list of queries is delegated to an overload function cre-

ateQueries. This is a recursive function which creates the queries by adding a
query pattern at a time using a resource extracted from the queue in each re-
cursive call. For instance, for i = 2, in the �rst call of the createQueries function
two resources are dequeue and 22 = 4 queries are created with the following

query patterns: 1) ri
rel1→ rj , 2) ri

rel1← rj , 3) ri
rel1→ rj , and 4) ri

rel1← rj . Note that
the direction of the relations is alternate according to the setRelationDirection
function. In a second recursive call, another resource rk is dequeue, and for each
query already created we add new query patterns relating the last node of the
existing query pattern to rk. This results in the following query patterns: 1)

ri
rel1→ rj

rel2→ rk, 2) ri
rel1← rj

rel2→ rk, 3) ri
rel1→ rj

rel2← rk and 4) ri
rel1← rj

rel2← rk.
Finally the SPARQL query containing these patterns are created by the function
createQuery for which we do not provide more details since it performs a syn-
tactical transformation between the aforementioned patterns and the SPARQL
query syntax.

Algorithm 3 Algorithm for identifying classes using dynamic SPARQL queries.

. Give alternate directions for the relation to be included in the query patterns
1: function setRelationDirection(queryNumber, idRel, currentDirection)
2: if mod(queryNumber, 2idRel−1) = 0 then

3: if currentDirection = “forward′′ then
4: return “backward′′

5: else

6: return “forward′′

7: end if

8: end if

9: end function

Technical Report 13

. Create a query containing a pattern for the input resources
10: function createQuery(resource, nextResource, queryNumber, idRel, direction)
11: direction← setRelationDirection(k, idRel, direction)
12: rel← “?rel′′ + idRel . Name of the variable
13: if direction = “forward′′ then
14: qry ← createQueryPattern(resource, rel, nextResource)
15: else

16: qry ← createQueryPattern(nextResource, rel, Resource)
17: end if

18: return qry
19: end function

. Recursive procedure to create queries for each path length. Queries are created
by adding relations between pair of nodes in each recursive call.

20: procedure createQueries(queries, resourceQueue, currentPathLenght, idRel)
21: if length(resourceQueue) = 0 then . Stop condition of the recursion
22: return queries
23: end if

24: resource← dequeue(resourceQueue) . Get a resource
25: direction← “forward′′ . Relation direction: x→ y
26: if length(queries) = 0 then . Create the initial 2currentPathLenght queries
27: nextResource← dequeue(resourceQueue) . Get another resource
28: for k = 1→ 2currentPathLenght do . For each query to create

. Create a query with a pattern relating both resources in a direction
29: qry ← createQuery(resource, nextResource, k, idRel, direction)
30: add(queries, qry)
31: k ← k + 1
32: end for

33: idRel← idRel + 1
. Recursive call to add another pattern to the queries

34: createQueries(queries, resourceQueue, currentPathLenght, idrel)
35: else . If the initial queries were already created
36: k = 1
37: for all qry ∈ queries do

. Query for relation between the last node of qry and the resource
38: qryPattern← createQuery(lastNode(qry), resource, k, idRel, direction)
39: qry ← mergeQueries(qry, qryPattern)
40: k ← k + 1
41: end for

42: idRel← idRel + 1
. Recursive call to add another pattern to the queries

43: createQueries(queries, resourceQueue, currentPathLenght, idrel)
44: end if

45: end procedure

14

. Create a queue of resources for queries of each path length
46: function getResources(srcResource, targetClass, currentPathLenght)
47: q ← queue()
48: enqueue(q, targetClass)
49: for j = 1→ currentPathLenght− 1 do

50: node← queryPatternV ariable(“node′′ + j) . node1, node2, etc.
51: enqueue(q, node)
52: j ← j + 1
53: end for

54: enqueue(q, srcResource)
55: return q
56: end function

. Start the query generation.
57: function generateQueries(srcResource, targetClass, pathLength)
58: queries← Array[]

. First query if the srcResource is a class
59: queries[0]← “ASK{′′+srcResource+ “rdf : typerdfs : Class}′′
60: relationCounter ← 1 . used to name relations: rel1, rel2, etc.
61: for i = 1→ pathLength do . For each i value generates all the 2i queries

. Get the (i+1) resources to be used in the queries of length i
62: resourceQueue← getResources(srcResource, targetClass, i)

. create queries for the current path length (i) using resources in the queue
63: createQueries(queriesPerLength, resourceQueue, i, relationCounter)
64: add(queries, queriesPerLength) . Add the 2i queries to the �nal lists
65: i← i+ 1
66: end for

67: end function

. Main procedure: given a semantic entity, and path length de�ning the number
of links to traverse in the KB, we produce a set of related classes.

68: procedure identifyClasses(semEntity, pathLength)
69: classes← Array[]
70: srcResource← QueryPatternResource(semEntity) . resource <semEntity>
71: targetClass← queryPatternV ariable(“?class′′) . the class variable
72: queries← generateQueries(srcResource, targetClass, pathLength)
73: for all query ∈ queries do . Every query is executed
74: result← exec(“SPARQLEndPoint′′, query)
75: add(classes, getClasses(result)) . get classes from the resultset
76: end for

77: end procedure

Technical Report 15

3.4 Algorithm for Relation Discovery

We describe the algorithm used to discover relations between two classes from a
knowledge base published as linked data. This algorithm poses SPARQL queries
aiming at traversing all the possible paths (of a prede�ned length) linking the two
input classes inside the knowledge base. The main procedure is relationDiscovery
which receives as input the two classes and the maximum path length limiting
the search of relations linking the two classes. This procedure �rst generate all
the queries, using the function generateQueries, which traverse all the possible
paths (of length lesser or equal to the prede�ned length) linking the classes. Next
this queries are executed against the knowledge base SPARQL endpoint, and the
result of each query is saved as an RDFGraph.

Each RDFGraph is traversed by the BFS function, which implements a
breath �rst search, so that we collect the relations discovered in each query.
The BFS function treats each RDF graph as undirected to reach all the con-
nected nodes, and then obtains each relation, through the getRelation function,
according to the direction of the edges linking the nodes. From the list of rela-
tions we get, using the getClasses function, the classes which are di�erent from
the input classes and collect them.

For the query generation, in the generateQueries function, we use an algo-
rithm similar to the one used in the algorithm for identifying classes. That is
we create the queries to traverse all the possible paths linking the two input
classes using: 1) a queue of resources to be included in each lists of queries of a
given path length, and 2) we use a recursive function which creates the queries
for each path length by adding in each recursive call a query pattern involving
a resource taken from the queue and a relation. In fact within the code of the
generateQueries function we reuse the functions getResources and createQueries.
For details of these algorithms as well as an explanation of how they work the
reader is referred to the algorithm explained in section 3.3.

Algorithm 4 Algorithm for discovering relations using SPARQL queries

. Start the query generation.
1: function generateQueries(srcResource, trgResource, pathLength)
2: queries← Array[]
3: relationCounter ← 1 . used to name relations: rel1, rel2, etc.
4: for i = 1→ pathLength do . For each i value generates all the 2i queries

. Get the (i+1) resources to be used in the queries of length i. This function is
described in algorithm 3.3 line number 46

5: resourceQueue← getResources(srcResource, targetClass, i)
. create queries for the current path length (i) using resources in the queue. This
function is described in algorithm 3.3 line number 20

6: createQueries(queriesPerLength, resourceQueue, i, relationCounter)
7: add(queries, queriesPerLength) . Add the 2i queries to the �nal lists
8: i← i+ 1
9: end for

10: end function

16

. create a relation based on the edge direction linking v0 and v
11: function getRelation(RDFGraph, v0, v)
12: edge← getEdge(RDFGraph, v0, v) .
13: relationName← getEdgeName(edge)
14: subject← getSourceNode(edge)
15: object← getTargetNode(edge)
16: return setRelation(subject, relationName, object)
17: end function

. Traverse the rdf graph as an undirected graph
18: function BFS(RDFGraph, srcClass, trgClass)
19: relations← Array[] . Array of new relations
20: q ← Queue()
21: enqueue(q, srcClass)
22: setState(srcClass, “visited′′)
23: while q 6= empty do

24: v0 ← dequeue(q) . Get vertex to process
25: for all v ∈ adjacent(RDFGraph, v0) do . for each adjacent vertex
26: if state(v) 6= “visited′′ then

. De�ne a relation using the edge direction information
27: add(relations, getRelation(v0, v))
28: setState(v, “visited′′)
29: enqueue(q, v) . enqueue the adjacent vertix for activation
30: end if

31: end for

32: end while

33: return relations
34: end function

. Get a list of rdf graphs containing the relationships of variable length found in
the knowledge base for the two input classes.

35: procedure relationDiscovery(srcClass, trgClass, pathLength)
36: allRelations← Array[]
37: classes← Array[]
38: srcResource← QueryPatternResource(srcClass)
39: trgResource← queryPatternV ariable(trgClass)
40: queries← generateQueries(srcResource, trgResource, pathLength)
41: for all query ∈ queries do . Every query is executed
42: result← exec(“SPARQLEndPoint′′, query)
43: rdfGraph← getGraph(result) . Create an RDF graph from the result
44: relations← BFS(RDFgraph) . BFS to traverse and get relations
45: add(allRelations, rdfGraph)
46: end for

. get the classes from the relations which are di�erent from the input ones
47: classes← getClasses(allRelations)
48: end procedure

Technical Report 17

References

1. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. Interna-
tional Journal on Semantic Web and Information Systems (IJSWIS), 2009.

2. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-
mann. DBpedia - A crystallization point for the Web of Data. Journal of Web
Semantic, 7(3):154�165, 2009.

3. F. Crestani. Application of spreading activation techniques in information retrieval.
Arti�cial Intelligence Review, 11:453�482, 1997.

4. A. García-Silva, M. Szomszor, H. Alani, and O. Corcho. Preliminary results in tag
disambiguation using dbpedia. In Knowledge Capture (K-Cap 2009)-Workshop on
Collective Knowledge Capturing and Representation-CKCaR, 2009.

5. S. A. Golder and B. A. Huberman. Usage patterns of collaborative tagging systems.
Journal of Information Science, 32(2):198�208, 2006.

6. P. Heim, S. Lohmann, and T. Stegemann. Interactive relationship discovery via the
semantic web. In Proceedings of the 7th Extended Semantic Web Conference (ESWC
2010), volume 6088 of LNCS, pages 303�317, Berlin/Heidelberg, 2010. Springer.

7. P. Mika. Ontologies are us: A uni�ed model of social networks and semantics. Web
Semant., 5:5�15, March 2007.

8. G. Salton and M. J. Mcgill. Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., New York, NY, USA, 1986.

9. F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: A Large Ontology from
Wikipedia and WordNet. Elsevier Journal of Web Semantics, 2008.

