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ABSTRACT

We present a non-conformal metric that generalizes the
geodesic active contours approach for image segmentation.
The new metric is obtained by adding to the Euclidean met-
ric an additional term that penalizes the misalignment of the
curve with the image gradient and multiplying the resulting
metric by a conformal factor that depends on the edge inten-
sity. In this way, a closer fitting to the edge direction results.
The provided experimental results address the computation
of the geodesics of the new metric by applying a gradient
descent to externally provided curves. The good performance
of the proposed techniques is demonstrated in comparison
with other active contours methods.

Index Terms— Active contour, calculus of variations,
Riemannian metric, edge detection, image segmentation.

1. INTRODUCTION

In the context of active contours [1, 2], an initial curve is
driven toward the boundaries (i.e., edges) of desired objects
in the image by means of a PDE derived from the optimality
conditions defined by an energy functional. Without consid-
ering a-priori information of the shape of the objects to be de-
tected, energies can be broadly classified as edge-based [2, 3]
or region-based [4], although, in some cases, the divergence
theorem blurs the line between them [5]. In edge-based ap-
proaches, the evolution of the curve (i.e. contour) is driven by
an edge detector of the image. In region-based approaches,
the evolution of the curve is governed by a flow that attempts
to partition the image into statistically distinct regions. Edge-
based energies depend on local features of the image, whereas
region-based energies respond better to global characteristics.

Although the topic of active contours is well known, there
is still room for improvement. Here, we focus our attention
in the design of an edge-based energy that is motivated by the
geometry of local goodness of fit of a contour to the edges of
the objects in the image.
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In this paper we propose a technique to augment the con-
formal geodesic active contour (GAC) framework [2] with
directional information by taking into account not only the
magnitude but also the direction of the gradient of the image.
The key point is the replacement of the conformal Euclidean
arc-length with a non-conformal metric dependent on image
information. This defines a Riemannian metric in the image
domain, where the boundaries of the target objects to be seg-
mented appear as closed geodesic curves. Related previous
works on adding directional information are [6, 5, 3].

The paper is organized as follows: In section 2, we moti-
vate the design of a target energy functional based on a non-
conformal arc-length. In section 3, we derive the curve evo-
lution gradient flow to optimize the energy. We show the per-
formance of the segmentation technique in section 4. Finally,
we discuss the results and point out future research directions
in section 5.

2. PROPOSED ENERGY FUNCTIONAL

Our goal is to design an energy functional for the segmenta-
tion problem based on a geometric interpretation in a Rieman-
nian framework. The target boundary of the object to be seg-
mented is the minimizer of some anisotropic length measure
that combines image information and curve regularization.

Given an image I : Ω → R, where Ω is an open subset
of R2, suppose that, at a point x = (x, y)> ∈ Ω there is an
edge, signaled by a large value of the magnitude of the image
gradient vector field ∇I pointing in the direction perpendic-
ular to the edge. Also, suppose that a regular curve C(p) =
(x(p), y(p))> passes through x with tangent and inward nor-
mal directions given by T = Cp/‖Cp‖ (with ‖Cp‖ 6= 0 ∀p)
and N, respectively (see Fig. 1). A word about notation: we
use bold-face symbols such as T to represent vectors, type-
writer fonts such as G to denote matrices, and, in general,
subscripts to denote derivatives (e.g., Cp := ∂C/∂p).

We propose to replace the conformal arc-length dsφ :=
φ‖Cp‖dp, φ(x) being a positive differentiable function
known as edge indicator [2], with dsM := g1/2(Cp,Cp)dp,
where g defines a Riemannian metric on Ω, hence it is a
bilinear form g(u,v) = u>Gv with G = (gij) being a sym-
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Fig. 1. Configuration of a curve passing near an edge in a
grey-scale image I . The value |∇I ·T| is a possible measure
of the misalignment between the contour and the edge. This
quantity vanishes if the contour is perpendicular to the edge.

metric positive definite matrix. Furthermore, let g1/2 = φf ,
with φ(x) as before and f = f(∇I,Cp). The corresponding
energy functional that measures the goodness of fit between
the contour and the edge is

LM =

ˆ
g(Cp,Cp)

1/2dp =

ˆ
φ(C(p))f(∇I,Cp)dp. (1)

The term f penalizes the misalignment between the con-
tour and the edge and it is clear that not any f defines a Rie-
mannian metric g. For adequate functions f , the minimizing
curve can be interpreted as a geodesic for the corresponding
metric. It is natural to use the inner product Cp · ∇I as a
local measure of the misalignment. Therefore, we consider a
weighted sum of such product and the usual Euclidean arc-
length:

f2 = Cp ·Cp + λq(‖∇I‖)
(
Cp ·

∇I

‖∇I‖

)2

, (2)

where λ ≥ 0, and q(r), with r ≥ 0, is an increasing function
such that q(0) = 0. This yields a well-defined non-conformal
Riemannian arc-length. Observe that f favors the alignment
of the curve perpendicular to the edge while φ enforces pass-
ing through zones with large gradient. The choice q(r) = r2

leads to the simplified expression:

f2 = Cp ·Cp + λ(Cp · ∇I)2. (3)

With this choice, the problem of finding the curve that mini-
mizes the anisotropic length (1) becomes that of minimizing

E(C) =

ˆ
C

φ(C(s))f̃(∇I,T)ds, (4)

where s is the Euclidean arc-length parameter, (ds = ‖Cp‖dp,
hence T = Cs) and, according to (3), we define

f̃(∇I,T) := f(∇I,Cp)‖Cp‖−1 =
(
1 + λ(T · ∇I)2

)1/2
.

Note that the energy (4) is “geometric” (or “intrinsic”), i.e.,
re-parameterization invariant, since it depends only on the
curve C and not on the parameterization. This is a desired
property to define a geometrically meaningful functional.

2.1. Relations with other models

From (3), it is straightforward to note that the Riemannian
metric when φ = 1 is given by G = I+λ∇I∇I> (I being the
identity matrix) since f2 = C>

p (I+λ∇I∇I>)Cp. The term
∇I∇I> arises in the definition of the the structure tensor, or
second-moment matrix, which describes the predominant di-
rections of the gradient of the image I in a neighborhood of
a point. The structure tensor is commonplace in image pro-
cessing and computer vision, for example, in the Harris and
Stephens corner and edge detector [7], in image enhancement
via anisotropic diffusion [8], etc.

The metric (3) can also be interpreted as the one given by
the graph of I . The embedding of the scaled gray-level image
I as a surface S(x, y) = (x, y,

√
λI(x, y)) ⊂ R3, yields the

induced metric G (see [9, 10]). Therefore, the goal of min-
imizing (4) with φ = 1 is that of finding geodesics in the
manifold with the abovementioned metric determined by the
image data

√
λI .

The proposed model (1), (4) becomes the GAC model [2]
in the particular case that λ = 0 (i.e., f̃ = 1). Our model
also differs from previous directional active contour ap-
proaches [6, 5, 3]. For example, the maximization of the
energy in [5],

´
C
|∇I ·N|ds, is equivalent (by decomposition

of ∇I in the Frenet frame {T,N}) to the minimization of´
C
|∇I ·T|ds =

´
|∇I ·Cp|dp, which can be written as (4)

with g = |∇I · Cp|, but this does not define a Riemannian
metric since G = ∇I∇I> is singular. Also, the anisotropic
length in the Finsler active contour model [3] is less restric-
tive than the Riemannian model, hence it may not adopt the
form (4). The choice between the adequacy of the Finsler or
Riemannian framework depends on the application.

3. ENERGY OPTIMIZATION

To minimize the energy (4), we derive the steepest descent
flow that will drive the evolution of the curve. For that, we
compute the first variation of the energy.

Before we work out the general case let us discuss the sim-
pler case where there is no conformal factor (φ = 1). In this
case, letting E1 denote energy (4) with φ = 1, the functional
gradient of E1 in the usual L2 inner product formulation [11]
is given by the formula

∇CE1(s) = −(f̃−1T)s − λ
(
∇I · (f̃−1T)

)
s
∇I, (5)

which can be explicitly written in the normal direction:

∇CE1(s) = −
(
κ+ λ(∇I ·N)(∇I ·T)sf̃

−2
)
f̃−1N, (6)



where κ is the curvature and

(∇I ·T)s = T>∇2I T+ κ∇I ·N, (7)

with ∇2I being the Hessian matrix of I . Also, an alternative
formula in terms of the Laplacian of I is (∇I ·T)s = (∆I −
N>∇2IN + κ∇I ·N). Hence, the steepest descent flow in
the iteration or “time” parameter t is Ct = −∇CE1(s), i.e.,

Ct =
(
κ+ λ(∇I ·N)(∇I ·T)sf̃

−2
)
f̃−1N. (8)

Observe that, if λ = 0 (i.e., f̃ = 1) the energy E1 be-
comes the Euclidean length of the curve and equation (8)
coincides with the mean curvature flow Ct = κN, which
lacks directionality information of the edges in the image.
Otherwise, the projections of the direction perpendicular to
the edge ∇I onto the Frenet frame attached to the curve
{T,N} provide the building blocks of the curve flow with
image-dependent directionality information.

Next, consider the case of a general φ. In this case, the L2

gradient of (4) is, in terms of the gradient (6),

∇CE(s) = φ∇CE1(s) + f̃∇φ

− (∇φ ·T)
(
T+ λ(∇I ·T)∇I

)
f̃−1,

which is indeed in the normal direction:

∇CE(s) =
(
(∇φ ·N)f̃ − φκf̃−1 − λ(∇I ·N)·

·
(
(∇φ ·T)(∇I ·T) + φ(∇I ·T)sf̃

−2
)
f̃−1

)
N, (9)

as expected since the energy (4) is re-parameterization invari-
ant. It is straightforward to check that (9) provides the for-
mula of the gradient of the GAC energy in the particular case
λ = 0: ∇CE(s) =

(
(∇φ · N) − φκ

)
N. The gradient flow

corresponding to the minimization of (4) is

Ct = −∇CE(s). (10)

3.1. Implementation

The curve evolution (10) is implemented numerically in the
implicit (Eulerian) formulation of Level Set methods [12]. If
u : Ω → R is the function whose zero level set is C and
the curve evolves with a speed in the normal direction β,
Ct = βN, the corresponding embedding function evolves
as ut = β‖∇u‖ (see [2]). Given an initial contour, we seek
for the steady state solution of this equation so that the re-
sulting contour satisfies the first-order optimality conditions
(Euler-Lagrange equations ∇CE(s) = 0). In our case, β =
−∇CE(s) ·N and all geometric entities in (9) (e.g., T,N, κ)
can be computed in terms of the embedding function u: re-
call that N = −∇u/‖∇u‖, T is a 90o rotation of N and κ =
div(−N). We choose as edge indicator function φ(x) = (1+
‖∇Gσ∗I‖2)−1, where Gσ is a Gaussian smoothing filter. Us-
ing finite differences to approximate derivatives (forward dif-
ferences in time and central and upwind differences in space

for diffusive and advective terms of the speed function, re-
spectively), yields an explicit incremental update scheme for
the discrete approximation of u.

4. EXPERIMENTS

The proposed technique has been tested on medical magneti-
cal resonance images (MRI). We report the results of evolving
contours to extract the boundaries of the heart chambers of a
dog in Figs. 2 and 3.

(a) I(x) and initial contour (b) Edge map φ(x)

(c) Result of GAC (d) Result of flow (10)

Fig. 2. Contour extraction from MRI heart image.

Experimentally, we have found that λ ∈ [0.01, 1] offers a
good balance between both penalties in (3) for images with
values in the range [0, 255]. Fig. 2(a) shows the common ini-
tialization for the two compared methods. Fig. 2(b) is the
edge map φ(x) of image I(x) in (a). Fig. 2(c) shows the
contour obtained by means of the GAC model with edge in-
dicator φ. Finally, Fig. 2(d) shows the result of our proposed
technique, the directional GAC model. Both techniques suc-
cessfully detect the boundary of the left ventricle, however
there are subtle differences. The conformal factor due to the
edge indicator function φ has a major contribution to the cor-
rect detection of the object boundary. The proposed penalty
term (T · ∇I)2 in directional GAC model (3) sharpens the
contour, specially at corners of the boundary of the objects in
the image where the GAC model typically shows a rounding
off effect. In particular, this is observed in the top right cor-
ner of the ventricle in Fig. 2 and it is more evident in the next
experiment (Fig. 3), which presents a more challenging target
object boundary.



(a) I(x) and initial contour (b) Edge map φ(x)

(c) Result of GAC (d) Result of flow (10)

Fig. 3. Contour extraction from MRI heart image.

In Fig. 3(c), the lack of directionality in the regularization
within the GAC model refrains the contour from extracting
acute edge corners. In Fig. 3(d), the directionality within our
model improves the detection capabilities of the active con-
tour.

5. DISCUSSION

We have shown how, from geometric local designing princi-
ples, the geodesic active contour model (GAC) can be gen-
eralized to assimilate directional information of the images
while remaining in a Riemannian framework. Hence, the
minimizing curves of the proposed model admit the interpre-
tation of being geodesics of a newly defined metric. An edge-
based functional and its corresponding gradient descent flow
have been presented and tested on MRI images. Our model
outperforms the GAC model for the segmentation of objects
with sharp boundaries.

A possible research direction to follow up would be the
extension of the proposed non-conformal edge-based energy
functional to the Sobolev framework [11], which would im-
prove the robustness with respect to the initialization curve,
hence mitigating the problem of getting trapped in local min-
ima. Our model could also be extended to the segmentation
of surfaces using analogous principles to define an anisotropic
area element, etc.
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