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Abstract

The optimum quality that can be asymptotically achieved in the estimation of a
probability p using inverse binomial sampling is addressed. A general definition of
quality is used in terms of the risk associated with a loss function that satisfies cer-
tain assumptions. It is shown that the limit superior of the risk for p asymptotically
small has a minimum over all (possibly randomized) estimators. This minimum
is achieved by certain non-randomized estimators. The model includes commonly
used quality criteria as particular cases. Applications to the non-asymptotic regime
are discussed considering specific loss functions, for which minimax estimators are
derived.
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1. Introduction

The problem of sequentially estimating the probability of success, p, in a se-
quence of Bernoulli trials arises in many fields of science and engineering. A stop-
ping rule of notable interest, first discussed by Haldane (1945), is inverse binomial
sampling, which consists in observing the random sequence until a given number r
of successes are obtained. The resulting number of trials, N, is a sufficient statistic
(Lehmann and Casella, 1998, p. 101), from which p can be estimated. The appeal
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of this rule lies in the useful properties of estimators obtained from it. Namely, pre-
vious works have shown that the uniformly minimum variance unbiased estimator,
given by (Haldane, 1945)

p̂ =
r−1
N−1

, (1)

satisfies the following properties. Its normalized mean square error E[(p̂− p)2]/p2

has an asymptotic value for r ≥ 3, namely 1/(r− 2); and E[(p̂− p)2]/p2 is guar-
anteed to be smaller than this value for any p ∈ (0,1) (Mikulski and Smith, 1976).
Similarly, the normalized mean absolute error E[|p− p̂|]/p is smaller than its asymp-
totic value, given by 2(r−1)r−2 exp(−r+1)/(r−2)!, for any p ∈ (0,1) and r ≥ 2
(Mendo, 2009). In addition, given µ1,µ2 > 1 and r ≥ 3, under certain conditions
this estimator, as well as the modified version p̂= (r−1)/N, can guarantee that, for
p arbitrary, the random interval [p̂/µ1, p̂µ2] contains the true value p with a confi-
dence level greater than a prescribed value (Mendo and Hernando, 2006, 2008).

The results mentioned apply to specific estimators, defined as functions of the
sufficient statistic N. A natural extension is to investigate whether the quality of
the estimation can be improved using other estimators. The most general class is
that formed by randomized estimators defined in terms of N. This includes non-
randomized estimators as a particular case. This problem is addressed by Mendo
and Hernando (2010), using the confidence associated with a relative interval as a
quality measure. It is shown that the confidence that can be guaranteed for p asymp-
totically small has a maximum over all estimators. Moreover, non-randomized
estimators are given that can guarantee this maximum confidence not only asymp-
totically, but also for p ∈ (0,1) arbitrary.

A further generalization is to consider arbitrary estimators with an arbitrary def-
inition of quality. The present paper pursues this direction, focusing on the asymp-
totic regime. Namely, quality is defined as the risk associated with an arbitrary
loss function. The allowed loss functions are restricted only by certain regularity
conditions, which are easily satisfied in practice (and which, in particular, hold for
all the previously mentioned examples of quality measures). Using this general
definition of quality, the asymptotic performance as p→ 0 of arbitrary estimators
in inverse binomial sampling is analyzed. As will be seen, the quality that can
be asymptotically achieved has a maximum over all estimators. Furthermore, this
maximum can be accomplished using certain non-randomized estimators, whose
form is explicitly given.

Section 2 contains preliminary definitions and observations required for the
main results, which are presented in Section 3. Section 4 discusses these results,
and considers applications in the non-asymptotic regime. Proofs of all results are
given in Appendix A.
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2. Preliminaries

The following notation will be used. Let k(i) denote k(k−1) · · ·(k− i+1), for
k ∈ Z, i ∈ N; and k(0) = 1. Given r ∈ N, the probability function of N, f (n) =
Pr[N = n], is

f (n) =
(n−1)(r−1)

(r−1)!
pr(1− p)n−r, n≥ r. (2)

The upper and lower (not normalized) incomplete gamma functions are respec-
tively denoted as

Γ(s,u) =
∫

∞

u
τ

s−1 exp(−τ)dτ, (3)

γ(s,u) =
∫ u

0
τ

s−1 exp(−τ)dτ = Γ(s)−Γ(s,u). (4)

In addition, the functions φ(ν) and ψ(x,Ω) are defined as

φ(ν) =
νr−1 exp(−ν)

(r−1)!
, ν ∈ R+, (5)

ψ(x,Ω) =
Ωr exp(−Ω/x)

xr+1(r−1)!
, x,Ω ∈ R+. (6)

Given a function h, the one-sided limits limx→a− h(x) and limx→a+ h(x) are
respectively denoted as h(a−) and h(a+). Given two functions h1,h2 : R+ 7→
R+∪{0}, h1(x) is O(h2(x)) as x→ ∞ (respectively as x→ 0) if and only if there
exist a,M ∈ R+ such that h1(x)≤Mh2(x) for all x≥ a (respectively for all x≤ a).
Similarly, h1(x) is Θ(h2(x)) as x→ ∞ (respectively as x→ 0) if and only if there
exist a,m,M ∈ R+ such that mh2(x) ≤ h1(x) ≤Mh2(x) for all x ≥ a (respectively
for all x≤ a).

The quality of an estimator p̂ is measured by the risk (expected loss) η =
E[L(p̂/p)] associated with a non-negative loss function L : R+ 7→ R+ ∪{0}, pro-
vided that this expectation exists. The function L is defined in terms of p̂/p, rather
than p̂. This is motivated by the fact that a given error value is most meaningful
when compared with p, and therefore commonly used quality measures are most
often normalized ones.

The loss function is assumed to satisfy the following.

Assumption 1. For any x1,x2 ∈ R+ with x2 > x1, L is of bounded variation on
[x1,x2].
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Assumption 2. For any x1,x2 ∈ R+ with x2 > x1, L has a finite number of discon-
tinuities in [x1,x2].

Assumption 3. The loss function has the following asymptotic behaviour:
1. There exists K ∈ R such that L(x) is O(xK) as x→ 0.
2. There exists K′ < r such that L(x) is O(xK′) as x→ ∞.

These restrictions are very mild. Note that the loss function L is not required
to be convex, or continuous; however, being of bounded variation implies that its
discontinuities can only be jumps or removable discontinuities, i.e. L has left-hand
and right-hand limits at every point of its domain, and these limits are finite (Carter
and van Brunt, 2000, corollary 2.7.3). All quality measures mentioned in Section 1
can be expressed in terms of functions of x = p̂/p for which Assumptions 1–3 hold.
Namely, L(x) = (x− 1)2 corresponds to normalized mean square error; L(x) =
|x−1| to normalized mean absolute error; and given µ1,µ2 > 1,

L(x) =

{
0 if x ∈ [1/µ2,µ1],

1 otherwise
(7)

corresponds to 1 minus the confidence associated with a relative interval [p/µ2, pµ1].
Since N is a sufficient statistic, for any estimator defined in terms of the ob-

served sequence of Bernoulli variables for which E[L(p̂/p)] exists, there is a pos-
sibly randomized estimator expressed only in terms of N that has the same risk
(Lehmann and Casella, 1998, p. 33). Therefore, attention can be restricted to es-
timators that depend on the observations through N only; however, randomized
estimators need to be considered in addition to non-randomized ones.

The set of all functions from {r,r + 1,r + 2, . . .} to R+ is denoted as F . A
non-randomized estimator p̂ is defined as p̂ = g(N), with g ∈F . A randomized
estimator is a positive random variable p̂ whose distribution depends on the value
of N. The distribution function of p̂ conditioned on N = n will be denoted as
Πn. The randomized estimator is completely specified by the functions Πn, n ≥ r.
Denoting by FR the class of all functions from {r,r + 1,r + 2, . . .} to the set of
distribution functions, a randomized estimator is defined by a function G ∈ FR

that to each n assigns Πn. Clearly, non-randomized estimators form a subset of
the class of randomized estimators. Throughout the paper, when referring to an
arbitrary estimator without specifying its type, the general class of randomized
estimators (including non-randomized ones) will be meant.

The risk will be explicitly denoted in the sequel as a function of p, that is, η(p).
For a non-randomized estimator defined by g ∈F , the risk η(p) is given by

η(p) =
∞

∑
n=r

f (n)L(g(n)/p). (8)
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Depending on L, g and p, this series may be convergent or not; however, bound-
edness of g is sufficient to ensure that the series converges for all L satisfying As-
sumptions 1–3 and for all p. In general, for possibly randomized estimators,

η(p) =
∞

∑
n=r

f (n)
∫

∞

0
L(y/p)dΠn(y), (9)

where the integral is defined in the Lebesgue-Stieltjes sense. Assumptions 1–3
assure that this integral always exists; however, it may be finite or infinite. Besides,
even if it is finite for a given p and for all n, the series in (9) does not necessarily
converge for that p. According to this, for an arbitrary estimator and for p given,
η(p) may be finite or infinite; however, there exist estimators that have a finite risk
for all p.

An arbitrary estimator may not have an asymptotic risk, i.e. limp→0 η(p) need
not exist in general. Therefore, the asymptotic behaviour of an estimator should
be characterized by limsupp→0 η(p). The significance of the limit superior lies in
the fact that it is the smallest value such that any greater number is asymptotically
an upper bound of η(p). That is, given any η0 > limsupp→0 η(p), there exists
δ > 0 such that η(p) < η0 for all p < δ ; and no such δ can be found for η0 <
limsupp→0 η(p).1

According to the preceding discussion, a desirable asymptotic property of an
estimator is that it achieves a low value of limsupp→0 η(p). In order to character-
ize how low this value can be, the infimum of limsupp→0 η(p) over all estimators
should be determined. A related question is whether there is an estimator that can
attain this infimum. As will be seen, the answer to this question is affirmative, that
is, the infimum is also a minimum. This implies that there exist optimum estima-
tors from the point of view of asymptotic behaviour; moreover, they can be found
within the class of non-randomized estimators, as will also be shown. To obtain
these results, the following approach will be used. It will be first established that
for a certain subclass of non-randomized estimators, limp→0 η(p) exists and can
be easily computed. Secondly, it will be proved that limp→0 η(p) has a minimum
value over the referred subclass. Thirdly, this minimum will be shown to coin-
cide with the unrestricted minimum of limsupp→0 η(p) over the class of arbitrary
estimators.

1For η0 = limsupp→0 η(p) the result may hold or not depending on the estimator and loss func-
tion; for example, it holds for (1) and normalized mean square error, as mentioned in Section 1,
whereas it obviously does not hold for a constant loss function.
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3. Main results

For a given loss function L, the set of all functions g∈F such that limp→0 η(p)
exists for p̂ = g(n) is denoted as Fp. The set of functions g ∈ F for which
limn→∞ ng(n) exists, is finite and non-zero is denoted as Fn. Observe that the
definition of Fp generalizes that given by Mendo and Hernando (2010), which
assumes a specific loss function, namely (7). The result in Theorem 1 to follow
establishes that Fn ⊆Fp, and explicitly gives limp→0 η(p). For any g ∈Fn with
limn→∞ ng(n) = Ω, let

η̄ =
∫

∞

0
φ(ν)L(Ω/ν)dν . (10)

Equivalently, η̄ can be expressed as

η̄ =
∫

∞

0
ψ(x,Ω)L(x)dx (11)

by means of the change of variable ν = Ω/x (both expressions are used in the
proofs of the results to be presented). By Assumptions 1 and 3, these integrals exist
as improper Riemann integrals, and have a finite value. It should be observed (and
is exploited in the proofs) that they can also be interpreted as Lebesgue integrals
(Apostol, 1974, theorem 10.33).

Theorem 1. Consider r ∈ N. For any loss function satisfying Assumptions 1–
3, and for any non-randomized estimator defined by a function g ∈Fn, the limit
limp→0 η(p) exists and equals η̄ given by (10) (or (11)).

According to this, the asymptotic risk of an estimator defined by any function
g∈Fn depends on this function only through Ω, i.e. only the asymptotic behaviour
of g matters. Furthermore, under an additional assumption, it can be shown that the
asymptotic risk is a C1 function of Ω.

Assumption 2’. L has a finite number of discontinuities in R+.

It is evident that Assumption 2’ implies Assumption 2. While more restrictive,
Assumption 2’ is satisfied by a large class of loss functions, including the men-
tioned examples.

Proposition 1. Given r ∈N, a loss function satisfying Assumptions 1, 2’ and 3, and
an estimator defined by a function g ∈Fn, the asymptotic risk η̄ is a C1 function
of Ω ∈ R+, with

dη̄

dΩ
=
∫

∞

0

∂ψ(x,Ω)

∂Ω
L(x)dx. (12)
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Denoting by η̄ |r the asymptotic risk corresponding to Ω and r given, this derivative
can be expressed as

dη̄ |r
dΩ

=
r(η̄ |r− η̄ |r+1)

Ω
. (13)

Within the restricted class of non-randomized estimators defined by Fn, it is
natural to search for values of Ω that yield low values of the asymptotic risk η̄ .
Depending on the loss function, there may be or not an optimum value of Ω ∈ R+,
in the sense of minimizing η̄ . Theorem 2 to follow establishes that, under certain
additional hypotheses (represented by Assumption 4), η̄ indeed has a minimum
with respect to Ω.

Assumption 4. The loss function satisfies the following properties:

1. There exists ξ ∈ R+ such that L is non-increasing on (0,ξ ) and∫
∞

ξ

L(ξ )−L(x)
xr+1 dx > 0. (14)

2. There exists ξ ′ ∈ R+ such that L is non-decreasing on (ξ ′,∞) and one of
these conditions holds:

(a) L(ξ ′−)< L(ξ ′+).
(b) There is t ∈N such that L is of class Ct on an interval containing ξ ′ and

diL
dxi

∣∣∣∣
x=ξ ′

= 0 for i = 1,2, . . . , t−1, (15)

(−1)t−1 dtL
dxt

∣∣∣∣
x=ξ ′

> 0. (16)

The next proposition gives a sufficient condition that may help in assessing
whether a given loss function satisfies property 1 in Assumption 4.

Proposition 2. If there exist A ∈ R and B,s such that

lim
x→0

L(x)−A
xs = B with Bs < 0, s < r, (17)

inequality (14) holds for some ξ ∈ R+.

Theorem 2. Given r ∈N and a loss function satisfying Assumptions 1, 2’, 3 and 4,
consider the class of non-randomized estimators defined by functions g ∈Fn. De-
noting Ω = limn→∞ ng(n), there exists a value of Ω which minimizes the asymptotic
risk η̄ among all Ω ∈ R+.
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This theorem indicates that in the stated conditions, and restricted to the class
defined by Fn, there is an optimum value of Ω from the point of view of asymptotic
risk. This optimum is not necessarily unique. In the sequel, η∗ will denote the
minimum of η̄ over the class of estimators defined by Fn, and Ω∗ will denote any
value of Ω which attains this minimum, that is,

η
∗ =

∫
∞

0
φ(ν)L(Ω∗/ν)dν . (18)

Assumption 4 holds for a wide range of loss functions, and in particular for
those corresponding to normalized mean square error, normalized mean absolute
error, and confidence associated with a relative interval. It is not difficult, however,
to find a loss function for which the assumption does not hold, and for which η̄ does
not have a minimum over the class defined by Fn. For example, given A1,A2 > 0,
let

L(x) =


0 if x ∈ [1/µ2,µ1],

A2 if x < 1/µ2,

A1 if x > µ1,

(19)

which is a generalized version of (7). Substituting (19) into (14), it is seen that
property 1 in Assumption 4 is satisfied if and only if

A1

A2
< (µ1µ2)

r, (20)

while property 2 holds irrespective of A1 and A2. On the other hand, for Ω ∈ R,
substituting (19) into (10) and computing dη̄/dΩ gives

dη̄

dΩ
=

Ωr−1 (A1µ
−r
1 exp(−Ω/µ1)−A2µr

2 exp(−Ωµ2)
)

(r−1)!
. (21)

This implies that η̄ has a single minimum over Ω ∈ R, located at

Ω =
r log(µ1µ2)− log(A1/A2)

µ2−1/µ1
. (22)

This value is positive if and only if (20), or equivalently property 1 in Assumption 4,
is satisfied. Thus, if this property does not hold, η̄ is monotonically increasing for
Ω ∈ R+, which implies that there is not an optimum Ω within R+.

Under the hypotheses of Theorem 2, the optimum value of Ω for the considered
r, i.e. Ω∗, satisfies, by Proposition 1,

dη̄

dΩ
= 0 (23)
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(or equivalently, using the notation in the referred proposition, η̄ |r = η̄ |r+1). Thus
if (23) has only one solution, it must be equal to Ω∗. If there are several solutions,
at least one corresponds to the absolute minimum of η̄ , although not necessarily all
of them do.

According to Theorem 2, if the loss function satisfies Assumptions 1, 2’, 3 and
4, any non-randomized estimator defined by a function g∈Fn with limn→∞ ng(n)=
Ω∗ minimizes limsupp→0 η(p) within the restricted class of estimators represented
by Fn; but not necessarily within the class of all non-randomized estimators, or
within the general class of possibly randomized estimators. However, under slightly
stronger conditions this turns out to be true, as established by the next theorem.

Assumption 3’. The loss function has the following asymptotic behaviour:

1. There exists K < r such that L(x) is Θ(xK) as x→ 0.
2. There exists K′ < r such that L(x) is Θ(xK′) as x→ ∞.

Assumption 3’ replaces Assumption 3, in the sense that each of the two prop-
erties in Assumption 3’ implies the corresponding one in Assumption 3. The new
conditions are only slightly more restrictive, and are still satisfied by a large set of
loss functions, in particular by those previously mentioned as examples.

Theorem 3. Given r ∈N and any loss function satisfying Assumptions 1, 2’, 3’ and
4, limsupp→0 η(p) has a minimum over the general class of estimators defined by
FR , and this minimum equals η∗.

Corollary 1. Under the hypotheses of Theorem 3, any non-randomized estimator
defined by a function g ∈Fn with limn→∞ ng(n) = Ω∗ minimizes limsupp→0 η(p)
among all (possibly randomized) estimators based on inverse binomial sampling.

Theorem 3 and Corollary 1 show that, under the stated assumptions, an esti-
mator can be found within the class defined by Fn that is asymptotically optimum
over the general class represented by FR .

4. Discussion and applications

Since p is unknown, it is desirable to have an estimator that guarantees that
the risk is not larger than a given η0 for p arbitrary, or at least for all p within a
certain interval; that is, such that η(p) ≤ η0 for p in some interval (p1, p2), with
0 ≤ p1 < p2 ≤ 1. If p1 = 0, the estimator is said to asymptotically guarantee that
the risk is not larger than η0; if, in addition, p1 = 1, it globally guarantees that the
risk is not larger than η0.
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The results presented in Section 3 generalize the asymptotic analysis by Mendo
and Hernando (2010), which considers the specific loss function (7), to arbitrary
functions satisfying the indicated assumptions. The importance of these asymptotic
results lies not only in the fact that in many applications p is small, but also in
the observation that asymptotic behaviour sets a restriction on the risk that can be
guaranteed. This restriction is represented by the following proposition (which is a
straightforward generalization of Mendo and Hernando (2010, proposition 1)) and
its corollary.

Proposition 3. If an estimator has a risk η(p) not larger than a given η0 for all
p ∈ (p1, p2), then necessarily limsupp→p0

η(p)≤ η0 for any p0 ∈ [p1, p2].

Corollary 2. Given r ∈ N and a loss function that satisfies Assumptions 1, 2’, 3’
and 4, for any η0 < η∗ and p2 > 0, no estimator can guarantee that η(p)≤ η0 for
all p < p2.

According to the results in Section 3, if Assumptions 1, 2’, 3’ and 4 are satis-
fied, any estimator defined by g ∈Fn with limn→∞ ng(n) = Ω∗ can asymptotically
guarantee that the risk is not larger than η∗+ ε for any ε > 0, whereas Corollary 2
states that no estimator exists with this property for ε < 0. It remains to be seen
if there exist estimators that asymptotically guarantee that η(p) ≤ η∗; and, par-
ticularly, if this guarantee can be global. The answer to these questions depends
on the loss function under consideration. Since a general analysis seems imprac-
ticable, a separate study needs to be carried out for each loss function. Several
important cases are discussed next, including the loss functions already mentioned
as examples.

4.1. Confidence
For the loss function given by (7), η(p) equals 1−c(p), where c(p)=Pr[p/µ2≤

p̂≤ pµ1] = Pr[p̂/µ1≤ p≤ p̂µ2] is the confidence associated with a relative interval
defined by µ1,µ2 > 1. Let c∗ = 1−η∗, which represents the maximum confidence
that could be guaranteed to be exceeded. The analysis by Mendo and Hernando
(2010) shows that assuming r ≥ 3, the inequality c(p) > c∗ can indeed be asymp-
totically guaranteed for any µ1, µ2, and globally guaranteed if µ1,µ2 satisfy certain
conditions.

4.2. Mean absolute error
For L(x) = |x− 1|, risk corresponds to normalized mean absolute error. Con-

sidering an estimator p̂ = g(N) with limn→∞ ng(n) = Ω, and for r ≥ 2, (10) gives
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the asymptotic risk

η̄ =
∫

∞

0
φ(ν)

∣∣∣∣Ων −1
∣∣∣∣ dν =

2(Γ(r,Ω)−ΩΓ(r−1,Ω))

(r−1)!
+

Ω

r−1
−1, (24)

and it is straightforward to show that (23) reduces to Γ(r−1,Ω) = (r−2)!/2. This
equation has only one solution, which thus corresponds to Ω∗. Interestingly, for
p̂=Ω∗/(n−1) with r≥ 2, numerically evaluating η(p) suggests that this estimator
may globally guarantee η(p) ≤ η∗. However, proving this conjecture remains an
open problem.

4.3. Mean square error
The function L(x) = (x− 1)2 corresponds to normalized mean square error.

This loss function lends itself easily to non-asymptotic analysis. Considering an
estimator p̂ = g(N) with limn→∞ ng(n) = Ω, and assuming r ≥ 3, (10) gives

η̄ =
∫

∞

0
φ(ν)

(
Ω

ν
−1
)2

dν =
Ω2

(r−1)(r−2)
− 2Ω

r−1
+1, (25)

and thus (23) has the single solution Ω = r− 2, which is the optimum value for
Ω, i.e. Ω∗. From (25) the resulting η∗ is 1/(r− 1). As established by the next
proposition, an estimator can be found that globally guarantees that the risk is not
larger than η∗, namely

p̂ =
r−2
N−1

. (26)

Proposition 4. Given r ≥ 3, and for any p ∈ (0,1), the estimator (26) satisfies

E[(p̂− p)2]

p2 <
1

r−1
. (27)

The following corollary is obtained from Theorem 3 and Proposition 4.

Corollary 3. For r ≥ 3, the estimator (26) minimizes supp∈(0,1)E[(p̂− p)2]/p2

among all (possibly randomized) estimators based on inverse binomial sampling.

Thus the estimator given by (26) not only minimizes limsupp→0 E[(p̂− p)2]/p2,
but also supp∈(0,1)E[(p̂− p)2]/p2, i.e. it is minimax with respect to normalized
mean square error. Therefore, from the point of view of guaranteeing that the nor-
malized mean square error does not exceed a given value, (26) is optimum among
all estimators based on inverse binomial sampling.

Comparing the estimators (1) and (26), the former can only guarantee E[(p̂−
p)2]/p2 < 1/(r− 2), whereas the latter guarantees E[(p̂− p)2]/p2 < 1/(r− 1).
This better (in fact, optimum) performance is obtained at the expense of some bias;
namely, it is easily seen that (26) gives E[p̂]/p = 1−1/(r−1).
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4.4. A generalization of confidence
According to Mendo and Hernando (2010, proposition 3), for the loss function

(7), given Ω ∈ R+ and assuming that r ≥ 3, µ1 ≥Ω/(r−
√

r) and µ2 ≥ (r+
√

r+
1)/Ω, the estimator

p̂ =
Ω

N +1
(28)

globally guarantees that η(p) is smaller than its asymptotic value η̄ . Taking into
account that, in this case, η(p) = Pr[p̂ < p/µ2] +Pr[p̂ > pµ1] and that the proof
given in the cited reference considers the terms Pr[p̂ < p/µ2] and Pr[p̂ > pµ1]
separately, it can be seen that the same result holds for the loss function (19) with
A1 = 0 or A2 = 0. Furthermore, the result can be generalized to any loss function
that can be approximated as a (possibly infinite) sum of functions of this form. This
is the content of the next proposition.

Proposition 5. Given r ≥ 3 and Ω ∈ R+, consider a loss function for which As-
sumptions 2’, 3’ and 4 hold and that satisfies the following:

1. L is constant on an interval [υ ,υ ′], with

υ ≤ Ω

r+
√

r+1
, υ

′ ≥ Ω

r−
√

r
. (29)

2. L is non-increasing on (0,υ ].
3. L is non-decreasing on [υ ′,∞).

In these conditions, for any p ∈ (0,1) the risk η(p) of the estimator (28) satisfies
η(p)≤ η̄ , with η̄ given by (10) (or (11)).

It is noted that conditions 1–3 of Proposition 5 imply that Assumption 1 neces-
sarily holds, and also imply that L(υ−)≥ L(υ+) and L(υ ′−)≤ L(υ ′+).

The following result, analogous to Corollary 3, is obtained for the estimator

p̂ =
Ω∗

N +1
. (30)

Corollary 4. Given r ≥ 3 and a loss function that satisfies Assumptions 1, 2’, 3’
and 4, let Ω∗ be as determined by Theorem 2. If conditions 1–3 in Proposition 5
hold for some υ , υ ′ with

υ ≤ Ω∗

r+
√

r+1
, υ

′ ≥ Ω∗

r−
√

r
, (31)

the estimator (30) minimizes supp∈(0,1)η(p) among all (possibly randomized) es-
timators based on inverse binomial sampling.

This establishes that, under the stated hypotheses, the estimator (30) is mini-
max, i.e. minimizes the risk that can be globally guaranteed not to be exceeded.
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Appendix A. Proofs

The following definitions are necessary:

Φ(p,ν) =
(1− p)ν/p−r

(r−1)!

r−1

∏
i=1

(ν− ip), p ∈ (0,1), ν ∈ R+, (A.1)

ζ =
∫ rσ

r/σ

φ(ν)L(Ω/ν)dν , Ω,σ ∈ R+. (A.2)

Lemma 1 (Mendo and Hernando (2010, lemma 1)). For any ν ∈R+, 0< φ(ν)< 1.

Lemma 2. Given ν1,ν2 ∈ R+ with ν2 > ν1, for ν ∈ [ν1,ν2] the function Φ(p,ν)
converges uniformly to φ(ν) as p→ 0.

Proof. The lemma is equivalent to the result that Φ(pk,ν) converges uniformly on
ν ∈ [ν1,ν2] for any sequence (pk) such that pk ∈ (0,1), pk→ 0, which is proved by
Mendo and Hernando (2010, lemma 3).

Proof of Theorem 1. The risk η(p) tends to η̄ for p→ 0 if and only if η(pk) con-
verges to η̄ for every sequence (pk) such that pk ∈ (0,1), pk→ 0 (Apostol, 1974,
theorem 4.12). Consider an arbitrary sequence of this type. Let ηk = η(pk), and
let fk denote the probability function f for p = pk. Defining φk(ν) = Φ(pk,ν), it
is seen from (2) and (A.1) that fk(n) = pkφk(npk).

From property 1 in Assumption 3, there exist K ∈R and ML,xL ∈R+ such that

L(x)< MLxK for x < xL. (A.3)

Without loss of generality, it will be assumed that K < 0. On the other hand, prop-
erty 2 implies that there exist K′ < r and M′L,x

′
L ∈ R+ such that

L(x)< M′LxK′ for x > x′L. (A.4)

The risk ηk is expressed from (8) as

η
k =

∞

∑
n=r

fk(n)L
(

g(n)
pk

)
. (A.5)

Given α,β ∈ R+ with β > α , let the set Ik be defined as

Ik = {bα/pkc,bα/pkc+1, . . . ,dβ/pke}. (A.6)

Under the assumption
pk ≤

α

r
, (A.7)

13



which implies that min Ik = bα/pkc ≥ r, the following definition can be made:

η
k
0 = ∑

n∈Ik

fk(n)L
(

g(n)
pk

)
. (A.8)

The proof will proceed as follows. With a suitable choice of α and β , and for
k sufficiently large, the term ηk

0 can be made arbitrarily close to η̄ , as will be
seen. On the other hand, the difference ηk−ηk

0 will be decomposed as the sum
of three terms, each of which can be made arbitrarily small for sufficiently large k.
Adequate bounds will be derived for each of these four terms, and then the bounds
will be suitably combined to show that ηk tends to η̄ as k→ ∞.

In the following, npk will be denoted as νn,k. Assuming

pk ≤
α

r+1
, (A.9)

(which obviously implies (A.7)), it is easily seen that for n ∈ Ik, νn,k is contained in
the interval I given as

I =
[

rα

r+1
,β +

α

r+1

]
. (A.10)

Lemma 2 implies that the sequence of functions (φk) converges uniformly to φ for
ν ∈ I; that is, given εunif > 0, there exists kunif such that |φk(ν)−φ(ν)|< εunif for
ν ∈ I, k ≥ kunif. Thus fk(n) = pkφ(νn,k)+ pkθunif,n with |θunif,n|< εunif for n ∈ Ik,
k≥ kunif. In these conditions, since φ(νn,k)> 0 (Lemma 1), (A.8) can be expressed
as

η
k
0 = ∑

n∈Ik

pkφ(νn,k)

(
1+

θunif,n

φ(νn,k)

)
L
(

g(n)
pk

)
. (A.11)

On the other hand, since ng(n)→ Ω as n→ ∞, given εest > 0 there exists nest ≥ r
such that |ng(n)−Ω|< εest for all n≥ nest, i.e. g(n) = (Ω+θest,n)/n with |θest,n|<
εest. Therefore, assuming

pk ≤
α

nest
, (A.12)

which implies that min Ik ≥ nest, (A.11) can be written as

η
k
0 = ∑

n∈Ik

pkφ(νn,k)

(
1+

θunif,n

φ(νn,k)

)
L
(

Ω+θest,n

νn,k

)
. (A.13)

Denoting mφ = minν∈I φ(ν), which is non-zero because of Lemma 1, it stems from
(A.13) that

η
k
0 =

(
1+

θunif

mφ

)
∑

n∈Ik

pkφ(νn,k)L
(

Ω+θest,n

νn,k

)
(A.14)
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for some θunif with |θunif|< εunif.
Assuming εest ≤Ω/2, and taking into account (A.9), it follows from (A.6) that

for n ∈ Ik, both Ω/νn,k and (Ω+θest,n)/νn,k are contained in the interval

I′ =
[

Ω

2(β +α/(r+1))
,
3(r+1)Ω

2rα

]
. (A.15)

According to Assumption 2, L has a finite number of discontinuities in I′. Let d
denote this number. Each of these discontinuities, located at x1, . . . ,xd , may be
either a jump or a removable discontinuity. Let

J =
d

∑
i=1

(∣∣∣∣ lim
x→xi−

L(x)−L(xi)

∣∣∣∣+ ∣∣∣∣ lim
x→xi+

L(x)−L(xi)

∣∣∣∣) . (A.16)

Thus J represents the contribution of all discontinuities to the total variation of L
on I′.

The function L on the interval I′ can be decomposed as the sum of a continu-
ous function Lc and a piecewise constant function Ld, the latter of which has dis-
continuities at x1, . . . ,xd . By the Heine-Cantor theorem (Apostol, 1974, theorem
4.47), Lc is uniformly continuous on I′. Since |θest,n|< εest, it follows that for any
εcont > 0 there exists δcont such that |Lc((Ω+θest,n)/νn,k)−Lc(Ω/νn,k)|< εcont for
εest < δcont, for all n ∈ Ik, and for all k. Regarding Ld, let

Uk =

{
n ∈ Ik | Ld

(
Ω+θest,n

νn,k

)
6= Ld

(
Ω

νn,k

)}
. (A.17)

For n ∈ Ik \Uk, ∣∣∣∣L(Ω+θest,n

νn,k

)
−L

(
Ω

νn,k

)∣∣∣∣< εcont. (A.18)

For each n ∈Uk, |Ld((Ω+θest,n)/νn,k)−Ld(Ω/νn,k)| can be at at most J, and thus∣∣∣∣L(Ω+θest,n

νn,k

)
−L

(
Ω

νn,k

)∣∣∣∣< εcont + J. (A.19)

Let χk denote the number of elements of Uk divided by that of Ik. Taking into
account that the latter is less than (β −α)/pk + 3 < (β −α + 3)/pk and that the
function φ is upper-bounded by 1 (Lemma 1), from (A.18) and (A.19) it follows
that, for εest < δcont,∣∣∣∣∣∑n∈Ik

pkφ(νn,k)L
(

Ω+θest,n

νn,k

)
− ∑

n∈Ik

pkφ(νn,k)L
(

Ω

νn,k

)∣∣∣∣∣
< (β −α +3)(εcont + Jχk). (A.20)
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It is easily seen that limk→∞ χk can be made arbitrarily small by taking εest suf-
ficiently small. Thus, given εdisc, there exist δdisc, kdisc such that χk < εdisc for
εest < δdisc, k ≥ kdisc. Consequently, for εest < min{δcont,δdisc} and k ≥ kdisc,∣∣∣∣∣∑n∈Ik

pkφ(νn,k)L
(

Ω+θest,n

νn,k

)
− ∑

n∈Ik

pkφ(νn,k)L
(

Ω

νn,k

)∣∣∣∣∣
< (β −α +3)(εcont + Jεdisc). (A.21)

From (A.14) and (A.21),

η
k
0 =

(
1+

θunif

mφ

)[
∑

n∈Ik

pkφ(νn,k)L
(

Ω

νn,k

)
+(β −α +3)(θcont + Jθdisc)

]
(A.22)

with |θcont|< εcont, |θdisc|< εdisc. The sum over n in (A.22) tends to
∫

β

α
φ(ν)L(Ω/ν)dν

as k→ ∞. Thus for any εint > 0 there exists kint such that for all k ≥ kint∣∣∣∣∣∑n∈Ik

pkφ(νn,k)L
(

Ω

νn,k

)
−
∫

β

α

φ(ν)L
(

Ω

ν

)
dν

∣∣∣∣∣< εint, (A.23)

and therefore (A.22) can be expressed for k ≥max{kdisc,kint} as

η
k
0 =

(
1+

θunif

mφ

)[∫
β

α

φ(ν)L
(

Ω

ν

)
dν +θint +(β −α +3)(θcont + Jθdisc)

]
(A.24)

with |θint|< εint. In addition, given any εtail, there exist αtail, βtail with βtail > αtail

such that |η̄−
∫

β

α
φ(ν)L(Ω/ν)dν |< εtail for 0 < α ≤ αtail, β ≥ βtail. Thus, in these

conditions,

η
k
0 =

(
1+

θunif

mφ

)
[η̄ +θtail +θint +(β −α +3)(θcont + Jθdisc)] . (A.25)

with |θtail|< εtail.
The difference ηk−ηk

0 can be expressed as ηk
1 +ηk

2 +ηk
3 , where

η
k
1 =

nest−1

∑
n=r

fk(n)L
(

g(n)
pk

)
, (A.26)

η
k
2 =

bα/pkc−1

∑
n=nest

fk(n)L
(

g(n)
pk

)
, (A.27)

η
k
3 =

∞

∑
dβ/pke+1

fk(n)L
(

g(n)
pk

)
. (A.28)
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Regarding the term ηk
1 , from (2) it is seen that

fk(n)<
nr−1 pr

k
(r−1)!

(A.29)

and therefore

0 < η
k
1 <

nest−1

∑
n=r

nr−1 pr
k

(r−1)!
L
(

g(n)
pk

)
<

nr−1
est pr

k
(r−1)!

nest−1

∑
n=r

L
(

g(n)
pk

)
. (A.30)

The fact that limn→∞ ng(n) exists and is finite implies that the function g is upper-
bounded by some constant Mg. For g(n)/pk > x′L, (A.4) implies that L(g(n)/pk)<

M′L(Mg/pk)
K′ . On the other hand, g(n)/pk in (A.30) is greater than mg =min{g(r),g(r+

1), . . . ,g(nest−1)}; and for g(n)/pk ∈ (mg,x′L], Assumption 1 implies that L(g(n)/pk)
is lower than some value M′g, where both mg and M′g depend on nest. Thus, for the
range of values of n in (A.30),

L
(

g(n)
pk

)
< max

{
M′LMK′

g

pK′
k

,M′g

}
<

max{M′LMK′
g ,M′g}

pK′
k

. (A.31)

The sum in the right-most part of (A.30) is either empty or else it contains nest−r <
nest terms. Therefore, using (A.31),

0≤ η
k
1 <

nr
est max{M′LMK′

g ,M′g}
(r−1)!

pr−K′
k . (A.32)

Regarding ηk
2 , the sum in (A.27) is empty for α/pk < nest + 1. If it is non-

empty, since n ≥ nest, the term g(n)/pk can be written as (Ω+ θest,n)/νn,k with
|θest,n|< εest. Therefore, taking into account (A.29),

0≤ η
k
2 <

pk

(r−1)!

bα/pkc−1

∑
n=nest

ν
r−1
n,k L

(
Ω+θest,n

νn,k

)
. (A.33)

Since εest ≤Ω/2, it holds that Ω/2 < Ω+θest,n < 3Ω/2, and thus for the range of
values of n in (A.27)

3Ω

2νn,k
>

Ω+θest,n

νn,k
>

Ω

2νn,k
>

Ω

2α
. (A.34)

Therefore, assuming Ω/(2α) ≥ x′L, for n within the indicated range it stems from
(A.4) that

L
(

Ω+θest,n

νn,k

)
< M′L

(
Ω+θest,n

νn,k

)K′

< M′L

(
3Ω

2νn,k

)K′

. (A.35)
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Substituting (A.35) into (A.33),

0≤ η
k
2 <

M′L(3Ω/2)K′ pk

(r−1)!

bα/pkc−1

∑
n=nest

ν
r−K′−1
n,k <

M′L(3Ω/2)K′

(r−1)!
α

r−K′. (A.36)

Consider ε ′tail > 0 arbitrary. Since K′ < r, defining

α
′
tail =

(
(r−1)!ε ′tail

M′L(3Ω/2)K′

)1/(r−K′)

(A.37)

it follows from (A.36) that for any α ≤ α ′tail

0≤ η
k
2 < ε

′
tail. (A.38)

As for ηk
3 , taking into account that (1− pk)

1/pk < 1/e, from (2) and (5) it is
seen that fk(n)< pkφ(νn,k)/(1− pk)

r. In addition, (A.12) implies that n≥ nest for
any n within the range in (A.28). Thus

0 < η
k
3 <

pk

(1− pk)r

∞

∑
dβ/pke+1

φ(νn,k)L
(

Ω+θest,n

νn,k

)
. (A.39)

Since εest ≤Ω/2,
Ω

2νn,k
<

Ω+θest,n

νn,k
<

3Ω

2νn,k
<

3Ω

2β
. (A.40)

Thus, assuming 3Ω/(2β ) < xL, and taking into account that K < 0, it stems that
for n within the indicated range

L
(

Ω+θest,n

νn,k

)
< ML

(
Ω+θest,n

νn,k

)K

< ML

(
Ω

2νn,k

)K

. (A.41)

If it is additionally assumed that pk ≤ 1/2, the factor 1/(1− pk)
r in (A.39) cannot

exceed 2r. Therefore

0 < η
k
3 <

2r−KMLΩK

(r−1)!

∞

∑
dβ/pke+1

pkν
r−K−1
n,k exp(−νn,k). (A.42)

The sum in (A.42) tends to Γ(r−K,β ) as k →∞. Thus, given ε ′int > 0, there exists
k′int such that for k ≥ k′int

0 <
∞

∑
dβ/pke+1

pkν
r−K−1
n,k exp(−νn,k)< Γ(r−K,β )+ ε

′
int. (A.43)
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In addition, since Γ(r−K,β ) is positive and tends to 0 as β → ∞, for any ε ′′tail > 0
there exists β ′′tail such that 0 < Γ(r−K,β ) < ε ′′tail for β ≥ β ′′tail. Therefore (A.42)
can be written as

0 < η
k
3 <

2r−KMLΩK

(r−1)!
(ε ′′tail + ε

′
int). (A.44)

To establish that ηk→ η̄ , it suffices to show that for any ε0 > 0, there exists k0
such that |ηk− η̄ | < ε0 for all k ≥ k0. With the foregoing results, and taking into
account the dependencies between the involved parameters, this is accomplished as
follows. Given ε0 > 0, let

εtail =
ε0

9
. (A.45)

This determines the values αtail and βtail. Likewise, taking

ε
′
tail =

ε0

9
(A.46)

determines α ′tail, and taking ε ′′tail such that

2r−KMLΩK

(r−1)!
ε
′′
tail =

ε0

9
(A.47)

determines β ′′tail. The values α and β are selected as

α = min
{

αtail,α
′
tail,

Ω

x′L

}
, (A.48)

β = max
{

βtail,β
′′
tail,

3Ω

2xL

}
. (A.49)

(Note that, since βtail > αtail, (A.48) and (A.49) imply that β > α .) From α and
β , the intervals I and I′ are obtained, and the values mφ , d and J can be computed.
Taking

εint =
ε0

9
(A.50)

determines kint. The parameter εunif is selected such that(
η̄ +

4ε0

9

)
εunif

mφ

=
ε0

9
, (A.51)

which determines kunif. Next, εcont is chosen such that

(β −α +3)εcont =
ε0

9
, (A.52)
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from which δcont is obtained. Taking εdisc as

εdisc =
εcont

J
(A.53)

determines δdisc and kdisc. Choosing any εest smaller than min{Ω/2,δcont,δdisc}
determines nest, from which mg and M′g can be obtained. Let kest be such that for
all k ≥ kest

nr
est max{M′LMK′

g ,M′g}
(r−1)!

pr−K′
k <

ε0

9
. (A.54)

Let k′est be chosen such that (A.12) holds for all k ≥ k′est, and kinterv such that (A.9)
holds for all k ≥ kinterv. The parameter ε ′int is chosen as

ε
′
int = ε

′′
tail, (A.55)

which determines k′int. Finally, let kconst be such that pk≤ 1/2 for all k≥ kconst. Tak-
ing k0 = max{kint,k′int,kunif,kest,k′est,kdisc,kinterv,kconst}, the following inequalities
are obtained for k ≥ k0. From (A.25), (A.45) and (A.50)–(A.53),

|ηk
0 − η̄ |< 4ε0

9
+

(
η̄ +

4ε0

9

)
εunif

mφ

=
5ε0

9
; (A.56)

from (A.32) and (A.54),
0≤ η

k
1 <

ε0

9
; (A.57)

from (A.38) and (A.46),
0≤ η

k
2 <

ε0

9
; (A.58)

and from (A.44), (A.47) and (A.55),

0 < η
k
3 <

2ε0

9
. (A.59)

Inequalities (A.56)–(A.59) imply that |ηk− η̄ |< ε0 for all k≥ k0, which concludes
the proof.

Proof of Proposition 1. By Assumption 2’, let D be the number of discontinuities
of L, occurring at points x1 < x2 < · · ·< xD. The asymptotic risk η̄ can be expressed
as ∑

D
i=0 η̄i with

η̄0 =
∫ x1

0
ψ(x,Ω)L(x)dx, (A.60)

η̄i =
∫ xi+1

xi

ψ(x,Ω)L(x)dx, i = 1, . . . ,D−1, (A.61)

η̄D =
∫

∞

xD

ψ(x,Ω)L(x)dx. (A.62)
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Given i = 1, . . . ,D−1, let Li(x) be defined for x ∈ [xi,xi+1] as

Li(x) =


L(x), xi < x < xi+1,

L(xi+), x = xi,

L(xi+1−), x = xi+1,

(A.63)

and let Ti(x,Ω) be defined for x ∈ [xi,xi+1], Ω ∈ R+ as Ti(x,Ω) = ψ(x,Ω)Li(x).
Clearly, the integral in (A.61) does not change if ψ(x,Ω)L(x) is replaced by Ti(x,Ω).
The function Ti is continuous on [xi,xi+1]×R+, because it is the product of con-
tinuous functions. The function ∂Ti/∂Ω is similarly seen to be continuous. This
implies (Fleming, 1977, corollary to theorem 5.9) that η̄i given by (A.61) is a C1

function of Ω, with

dη̄i

dΩ
=
∫ xi+1

xi

∂Ti(x,Ω)

∂Ω
dx =

∫ xi+1

xi

∂ψ(x,Ω)

∂Ω
L(x)dx. (A.64)

Regarding η̄0, let T0(x,Ω)=ψ(x,Ω)L(x) for x∈ (0,xi+1], Ω∈R+, and T0(0,Ω)=
0. It is clear that T0 is continuous on (0,x1]×R+. In addition, its continuity at any
point of the form (0,Ω0) can be established as follows. Let ∆ be any value such
that 0 < ∆ < Ω0. For Ω ∈ (Ω0−∆,Ω0 +∆) and x > 0, T0 is bounded as

0≤ T0(x,Ω)<
(Ω0 +∆)r exp(−(Ω0−∆)/x)L(x)

xr+1(r−1)!
. (A.65)

Property 1 in Assumption 3 implies that the right-hand side of (A.65) tends to 0 as
x→ 0. Thus there exists δ > 0 such that 0≤ T0(x,Ω)< ε for 0≤ x < δ , |Ω−Ω0|<
∆. This shows that T0 is continuous at (0,Ω0), and thus on [0,x1]×R+. Using
analogous arguments, ∂T0/∂Ω can also be seen to be continuous on [0,x1]×R+.
This implies that η̄0 is a C1 function of Ω, and (A.64) holds for i = 0 if the lower
integration limit is replaced by 0.

As for η̄D, let T (x,Ω) = ψ(x,Ω)L(x), and consider the function T (x,Ω)/Ωr.
This function and its partial derivative with respect to Ω are continuous on (xD,∞)×
R+, and satisfy the following bounds:

0 <
T (x,Ω)

Ωr <
L(x)

xr+1(r−1)!
, (A.66)

0 >
∂ (T (x,Ω)/Ωr)

∂Ω
=−exp(−Ω/x)L(x)

xr+2(r−1)!
>− L(x)

xr+2(r−1)!
. (A.67)

The right-most parts of (A.66) and (A.67) are integrable on (xD,∞), because of
property 2 in Assumption 3. This implies (Fleming, 1977, theorem 5.9) that η̄D/Ωr
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is a C1 function of Ω, and therefore so is η̄D; in addition, dη̄D/dΩ satisfies an
expression analogous to (A.64) with the integration interval replaced by (xD,∞).

The preceding results assure that dη̄/dΩ = ∑
D
i=0 dη̄i/dΩ is continuous and can

be expressed as in (12). The equality (13) readily follows from (6), (11) and (12).

Lemma 3. For any a,c ∈ R+, b ∈ R,

d
dΩ

∫
∞

a

Ωb exp(−Ω/x)
xc+1 dx =

Ωb−1 exp(−Ω/a)
ac +(b− c)Ωb−c−1

γ

(
c,

Ω

a

)
.

(A.68)

Proof. Applying the change of variable x = Ω/ν , the integral in (A.68) can be
expressed as∫

∞

a

Ωb exp(−Ω/x)
xc+1 dx =

∫
Ω/a

0
Ω

b−c
ν

c−1 exp(−ν)dν = Ω
b−c
(

c,
Ω

a

)
, (A.69)

from which (A.68) follows.

Lemma 4. For s ∈ R,

lim
u→0

γ(s,u)
us =

1
s
, (A.70)

lim
u→∞

Γ(s,u)
us−1 exp(−u)

= 1. (A.71)

Proof. These equalities respectively follow from Abramowitz and Stegun (1970,
equation 6.5.29) and Abramowitz and Stegun (1970, equation 6.5.32).

Lemma 5. The upper incomplete gamma function (3) satisfies for s,w∈N, ν ∈R+

Γ(s,ν) =


s−1

∑
k=0

(s−1)(s−k−1)
ν

k exp(−ν), s≥ 1,

s−1

∑
k=s−w

(s−1)(s−k−1)
ν

k exp(−ν)+W (ν), s≤ 0,
(A.72)

where W (ν) is O(νs−w−1 exp(−ν)) as ν → ∞.

Proof. The expression for s ≥ 1 is equivalent to Abramowitz and Stegun (1970,
equation 6.5.13).
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For s≤ 0, the stated result follows from recursively using the identity (Abramowitz
and Stegun, 1970, equation 6.5.21)

Γ(s,ν) = (s−1)Γ(s−1,ν)+ν
s−1 exp(−ν) (A.73)

w times and taking into account the equality (A.71) from Lemma 4.

Lemma 6. For t ∈ N, u ∈ Z,

t

∑
j=0

(
t
j

)
j(u− j)(i−1)(−1)t− j =

{
0, i = 1, . . . , t−1,
(−1)t−1t!, i = t.

(A.74)

Proof. The equality

t

∑
j=0

(
t
j

)
j(k)(−1)t− j =

{
0, k 6= t,
t!, k = t.

(A.75)

is easily shown to hold for k ∈ N by applying the binomial theorem to (x− 1)t ,
differentiating k times and particularizing for x = 1. The term j(u− j)(i−1) in
(A.74) can be expressed as ∑

i
k=1 ak j(k) for appropriate values of the coefficients ak;

furthermore, it is easily seen that ai equals (−1)i−1. Thus

t

∑
j=0

(
t
j

)
j(u− j)(i−1)(−1)t− j =

i

∑
k=1

t

∑
j=0

ak

(
t
j

)
j(k)(−1)t− j. (A.76)

If i≤ t−1, the inner sum in (A.76) equals 0 for all k within the range specified in
the outer sum, because of (A.75). If i = t, all values of the index k give a null inner
sum except k = t, which gives att! = (−1)t−1t!. This establishes (A.74).

Proof of Proposition 2. Assume that (17) holds. Let ε =−Bs/(4r), which is posi-
tive for the allowed values of B and s. From (17), there exists δ such that |L(x)−
A− Bxs| < εxs for all x ∈ (0,δ ). This implies that for any ξ ∈ (0,δ ), and for
ξ ≤ x < δ ,

L(ξ )−L(x)> B(ξ s− xs)−2εxs = Bξ
s− (B+2ε)xs. (A.77)
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Therefore∫
∞

ξ

L(ξ )−L(x)
xr+1 dx

=
∫

δ

ξ

L(ξ )−L(x)
xr+1 dx+

∫
∞

δ

L(ξ )−L(x)
xr+1 dx

> Bξ
s
∫

δ

ξ

dx
xr+1 − (B+2ε)

∫
δ

ξ

dx
xr−s+1 +

∫
∞

δ

L(ξ )−L(x)
xr+1 dx

=
B

rξ r−s −
Bξ s

rδ r +
B+2ε

(r− s)δ r−s −
B+2ε

(r− s)ξ r−s +
∫

∞

δ

L(ξ )−L(x)
xr+1 dx

>
B

rξ r−s −
B

rδ r−s +
B+2ε

(r− s)δ r−s −
B+2ε

(r− s)ξ r−s +
∫

∞

δ

L(ξ )−L(x)
xr+1 dx

(A.78)

Denoting by C the sum of the terms in the right-hand side of (A.78) which do not
depend on ξ , i.e. the second, third and fifth, and substituting the value of ε ,∫

∞

ξ

L(ξ )−L(x)
xr+1 dx >− Bs

2r(r− s)ξ r−s +C. (A.79)

Taking into account that −Bs and r− s are positive, and that C is independent of ξ ,
from (A.79) it is seen that there exists ξ ∈ (0,δ ) such that (14) holds.

Lemma 7. Under the hypotheses of Theorem 2, there exists Ω0 such that dη̄/dΩ <
0 for all Ω≤Ω0.

Proof. Let ξ be as in property 1 in Assumption 4. Since L is non-increasing for all
x smaller than ξ , the function ` defined as

`(x) =

{
L(x)−L(ξ ) for 0 < x < ξ

0 for x≥ ξ
(A.80)

is non-negative and non-increasing. From (10) and (11), η̄ can be expressed as
ζ0 +ζ1 +ζ2 with

ζ0 =
∫

∞

Ω/ξ

φ(ν)L(ξ )dν , (A.81)

ζ1 =
∫

∞

Ω/ξ

φ(ν)`(Ω/ν)dν , (A.82)

ζ2 =
∫

∞

ξ

ψ(x,Ω)L(x)dx. (A.83)
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Each of these terms can be interpreted as the risk associated with a certain loss
function for which Proposition 1 applies.

Since ` is non-negative and non-increasing, for ν fixed the integrand in (A.82)
is a non-negative, non-increasing function of Ω. This implies that ζ1 is a non-
increasing function of Ω, and thus dζ1/dΩ≤ 0.

Regarding the term ζ0,

dζ0

dΩ
=−Ωr−1 exp(−Ω/ξ )L(ξ )

ξ r(r−1)!
, (A.84)

which implies that

lim
Ω→0

dζ0/dΩ

Ωr−1 =− L(ξ )
ξ r(r−1)!

. (A.85)

As for ζ2, from (A.83) it follows that

dζ2

dΩ
=

rΩr−1

(r−1)!

∫
∞

ξ

exp(−Ω/x)L(x)
xr+1 dx− Ωr

(r−1)!

∫
∞

ξ

exp(−Ω/x)L(x)
xr+2 dx.

(A.86)
Interpreting the integrals in (A.86) as Lebesgue integrals, and noting that exp(−Ω/x)<
1 for Ω,x ∈ R+, Lebesgue’s dominated convergence theorem (Apostol, 1974, the-
orem 10.27) assures that

lim
Ω→0

∫
∞

ξ

exp(−Ω/x)L(x)
xr+1 dx =

∫
∞

ξ

L(x)
xr+1 dx, (A.87)

and similarly for the second integral. This implies that the first term in the right-
hand side of (A.86) dominates the second for Ω asymptotically small, i.e.

lim
Ω→0

dζ2/dΩ

Ωr−1 =
r

(r−1)!

∫
∞

ξ

L(x)
xr+1 dx. (A.88)

From (A.85) and (A.88),

lim
Ω→0

d(ζ0 +ζ2)/dΩ

Ωr−1 =− L(ξ )
ξ r(r−1)!

+
r

(r−1)!

∫
∞

ξ

L(x)
xr+1 dx

=− r
(r−1)!

∫
∞

ξ

L(ξ )−L(x)
xr+1 dx.

(A.89)

Combining (A.89) with the inequality (14) from Assumption 4, the limit on the
right-hand side of (A.89) is seen to be negative. This implies that there exists Ω0
such that d(ζ0 +ζ2)/dΩ < 0 for Ω≤Ω0. Taking into account that dζ1/dΩ≤ 0, it
follows that dη̄/dΩ < 0 for Ω≤Ω0.
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Lemma 8. Under the hypotheses of Theorem 2, there exists Ω′0 such that dη̄/dΩ >
0 for all Ω≥Ω′0.

Proof. If condition (a) of property 2 in Assumption 4 holds, let H be chosen such
that 0 < H < L(ξ ′+)−L(ξ ′−). By definition of L(ξ ′−), there exists h such that
L(x) ∈ (L(ξ ′−)−H,L(ξ ′−)+H) for all x ∈ (ξ ′− h,ξ ′). If condition (b) holds,
it stems that there exists h such that (−1)t−1dtL/dxt is positive and continuous for
x ∈ (ξ ′−h,ξ ′). Thus, let h be selected as has been indicated.

From property 1 in Assumption 3, there exist K ∈ R, ML and xL < ξ ′−h such
that

L(x)< MLxK for x < xL. (A.90)

The asymptotic risk η̄ can be expressed from (10) and (11) as ζ ′0+ζ ′1+ζ ′2+ζ ′3+ζ ′4
with

ζ
′
0 =

∫
ξ ′

ξ ′−h
ψ(x,Ω)L(x)dx, (A.91)

ζ
′
1 =

∫ xL

0
ψ(x,Ω)L(x)dx, (A.92)

ζ
′
2 =

∫
ξ ′−h

xL

ψ(x,Ω)L(x)dx, (A.93)

ζ
′
3 =

∫
∞

ξ ′
ψ(x,Ω)L(ξ ′+)dx, (A.94)

ζ
′
4 =

∫
Ω/ξ ′

0
φ(ν)(L(Ω/ν)−L(ξ ′+))dν . (A.95)

Each of these terms corresponds to the risk associated with a certain loss function
which satisfies Proposition 1.

By property 2 of Assumption 4, L(x)−L(ξ ′+) is non-negative and non-decreasing
for x > ξ ′. An argument analogous to that used for ζ1 in Lemma 7 shows that the
term ζ ′4 given by (A.95) is non-decreasing with Ω, and thus

dζ ′4
dΩ
≥ 0. (A.96)

According to Lemma 3, dζ ′3/dΩ is given by

dζ ′3
dΩ

=
L(ξ ′+)Ωr−1 exp(−Ω/ξ ′)

ξ ′r(r−1)!
. (A.97)

Computing

dζ ′1
dΩ

=
∫ xL

0

rΩr−1 exp(−Ω/x)
xr+1(r−1)!

L(x)dx−
∫ xL

0

Ωr exp(−Ω/x)
xr+2(r−1)!

L(x)dx (A.98)
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and using (A.90) it stems that∣∣∣∣dζ ′1
dΩ

∣∣∣∣≤ MLrΩr−1

(r−1)!

∫ xL

0

exp(−Ω/x)
xr+1−K dx+

MLΩr

(r−1)!

∫ xL

0

exp(−Ω/x)
xr+2−K dx. (A.99)

The integrals in (A.99) can be bounded as follows. Let λ = (xL +ξ ′−h)/(2(ξ ′−
h)). It is seen that λ and 1− λ are lower than 1. Let the function v1 : R+ ∪
{0} 7→ R∪{0} be defined as v1(x) = exp(−λΩ/x) for x > 0 and v1(0) = 0. Since
exp(−λΩ/x)→ 0 as x→ 0, v1 is continuous on [0,xL]. In addition, the function
v2 : R∪{0} 7→ R∪{0} such that

v2(x) =
exp(−(1−λ )Ω/x)

xr+1−K (A.100)

for x > 0 and v2(0) = 0 is non-negative and integrable on [0,xL]. Thus, the mean
value theorem (Fleming, 1977, p. 190) can be applied to the first integral in (A.99)
to yield:∫ xL

0

exp(−Ω/x)
xr+1−K dx =

∫ xL

0
v1(x)v2(x)dx = v1(xm)

∫ xL

0
v2(x)dx (A.101)

for some xm ∈ [0,xL]. Actually, xm cannot be 0, because that would give 0 in
the right-hand side of (A.101), whereas the left-hand side is greater than 0. Thus
xm ∈ (0,xL]. Similar arguments can be applied to the last integral in (A.101) to
obtain ∫ xL

0

exp(−(1−λ )Ω/x)
xr+1−K dx = xL

exp(−(1−λ )Ω/x′m)
x′m

r+1−K (A.102)

with x′m ∈ (0,xL]. Maximizing the right-hand side of (A.102) with respect to x′m ∈
R+ gives∫ xL

0

exp(−(1−λ )Ω/x)
xr+1−K dx≤ xL

(
r+1−K

1−λ

)r+1−K exp(−(r+1−K))

Ωr+1−K .

(A.103)
Combining (A.101) and (A.103),∫ xL

0

exp(−Ω/x)
xr+1−K dx≤ xL(r+1−K)r+1−K exp(−(r+1−K +λΩ/xm))

((1−λ )Ω)r+1−K .

(A.104)
The second integral in (A.99) is bounded analogously:∫ xL

0

exp(−Ω/x)
xr+2−K dx≤ xL(r+2−K)r+2−K exp(−(r+2−K +λΩ/x′′m))

((1−λ )Ω)r+2−K .

(A.105)
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with x′′m ∈ (0,xL]. From (A.99), (A.104) and (A.105),∣∣∣∣dζ ′1
dΩ

∣∣∣∣≤ MLxLr(r+1−K)r+1−KΩK−2 exp(−(r+1−K +λΩ/xm))

(1−λ )r+1−K(r−1)!

+
MLxL(r+2−K)r+2−KΩK−2 exp(−(r+2−K +λΩ/x′′m))

(1−λ )r+2−K(r−1)!
.

(A.106)

It is easily seen that xm/λ ,x′′m/λ < xL < ξ ′−h. It thus follows from (A.106) that∣∣∣∣dζ ′1
dΩ

∣∣∣∣< QΩ
K−2 exp(−Ω/(ξ ′−h)) (A.107)

where Q is independent of Ω.
For dζ ′2/dΩ, by Assumption 1, let M be an upper bound of L in the interval

(xL,ξ
′− h). An argument based on the mean value theorem can also be applied

here; in fact, it is slightly simpler than in the preceding paragraph because in this
case the lower integration limit is greater than 0:∣∣∣∣dζ ′2

dΩ

∣∣∣∣≤ MrΩr−1

(r−1)!

∫
ξ ′−h

xL

exp(−Ω/x)
xr+1 dx+

MΩr

(r−1)!

∫
ξ ′−h

xL

exp(−Ω/x)
xr+2 dx

=
MΩr−1(ξ ′−h− xL)

(r−1)!

(
r exp(−Ω/x′′′m)

x′′′m
r+1 +

Ωexp(−Ω/x′′′′m )

x′′′′m
r+2

)
(A.108)

with x′′′m,x
′′′′
m ∈ [xL,ξ

′−h]. Therefore∣∣∣∣dζ ′2
dΩ

∣∣∣∣< M(ξ ′−h− xL)

xLr+1(r−1)!

(
r+

Ω

xL

)
Ω

r−1 exp(−Ω/(ξ ′−h)). (A.109)

To compute the derivative of ζ ′0, it is necessary to distinguish cases (a) and (b)
of property 2 in Assumption 4. In case (a), since L(x)∈ (L(ξ ′−)−H,L(ξ ′−)+H)
for all x ∈ (ξ ′− h,ξ ′), the mean value theorem assures that there is some θ ∈
[L(ξ ′−)−H,L(ξ ′−)+H] such that

dζ ′0
dΩ

=
∫

ξ ′

ξ ′−h

∂ψ(x,Ω)

∂Ω
L(x)dx = θ

∫
ξ ′

ξ ′−h

∂ψ(x,Ω)

∂Ω
dx

=
θ

(r−1)!
d

dΩ

∫
ξ ′

ξ ′−h

Ωr exp(−Ω/x)
xr+1 dx.

(A.110)

Applying Lemma 3,

dζ ′0
dΩ

=
θΩr−1

(r−1)!

(
−exp(−Ω/ξ ′)

ξ ′r
+

exp(−Ω/(ξ ′−h))
(ξ ′−h)r

)
. (A.111)
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Using (A.96), (A.97), (A.107), (A.109) and (A.111),

dη̄

dΩ
≥ (L(ξ ′+)−θ)Ωr−1 exp(−Ω/ξ ′)

ξ ′r(r−1)!
+O

(
Ω

q exp(−Ω/(ξ ′−h))
)

(A.112)

with q = max{r,K−2}. Since h > 0 and θ ≤ L(ξ ′−)+H < L(ξ ′+), from (A.112)
it follows that

lim
Ω→∞

(
exp(Ω/ξ ′)

Ωr−1
dη̄

dΩ

)
≥ L(ξ ′+)−θ

ξ ′r(r−1)!
> 0. (A.113)

In case (b), since dtL/dxt is continuous on (ξ ′−h,ξ ′), Taylor’s theorem (Apos-
tol, 1967, volume 1, theorem 7.6) can be applied to express L(x) for x ∈ (ξ ′−h,ξ ′)
as

L(x) = L(ξ ′−)+ θ ′(x−ξ ′)t

t!
= L(ξ ′−)+ θ ′

t!

t

∑
j=0

(
t
j

)
(−ξ

′)t− jx j (A.114)

where θ ′ is the value of dtL/dxt at some point within the interval (ξ ′−h,ξ ′). The
choice of h assures that (−1)t−1θ ′ is positive. Substituting (A.114) into (A.91),
differentiating and making use of Lemma 3 and (4) gives

dζ ′0
dΩ

=
L(ξ ′−)

Ω(r−1)!

[
−
(

Ω

ξ ′

)r

exp(−Ω/ξ
′)+

(
Ω

ξ ′−h

)r

exp(−Ω/(ξ ′−h))
]

+
θ ′

(r−1)! t!

t

∑
j=0

(
t
j

)
(−ξ

′)t− j
Ω

j−1

[
−
(

Ω

ξ ′

)r− j

exp(−Ω/ξ
′)

+

(
Ω

ξ ′−h

)r− j

exp(−Ω/(ξ ′−h))

+ j
(

Γ

(
r− j,

Ω

ξ ′

)
−Γ

(
r− j,

Ω

ξ ′−h

))]
.

(A.115)

The identity ∑
t
j=0
(t

j

)
(−1)t− j = 0 implies that

t

∑
j=0

(
t
j

)
(−ξ

′)t− j
Ω

j−1
(

Ω

ξ ′

)r− j

= ξ
′t−r

Ω
r−1

t

∑
j=0

(
t
j

)
(−1)t− j = 0, (A.116)
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and thus (A.115) simplifies to

dζ ′0
dΩ

=
L(ξ ′−)Ωr−1

(r−1)!

(
−exp(−Ω/ξ ′)

ξ ′r
+

exp(−Ω/(ξ ′−h))
(ξ ′−h)r

)
+

Ωr−1θ ′ exp(−Ω/(ξ ′−h))
(r−1)! t!

t

∑
j=0

(
t
j

)
(−ξ ′)t− j

(ξ ′−h)r− j

+
θ ′

(r−1)! t!

t

∑
j=0

(
t
j

)
j(−ξ

′)t− j
Ω

j−1
[

Γ

(
r− j,

Ω

ξ ′

)
−Γ

(
r− j,

Ω

ξ ′−h

)]
.

(A.117)

From Lemma 5, Ω j−1Γ(r− j,Ω/ξ ′) for j ≤ r−1 is given by

Ω
j−1

Γ

(
r− j,

Ω

ξ ′

)
= exp(−Ω/ξ

′)
r−1

∑
k= j

(r− j−1)(r−k−1)Ωk−1

ξ ′k− j , (A.118)

whereas for j ≥ r and for any w ∈ N

Ω
j−1

Γ

(
r− j,

Ω

ξ ′

)
= exp(−Ω/ξ

′)
r−1

∑
k=r−w

(r− j−1)(r−k−1)Ωk−1

ξ ′k− j

+O
(
Ω

r−w−2 exp(−Ω/ξ
′)
)
.

(A.119)

Replacing ξ ′ by ξ ′−h in (A.118) and (A.119) it is seen that

Ω
j−1

Γ

(
r− j,

Ω

ξ ′−h

)
= O

(
Ω

r−2 exp(−Ω/(ξ ′−h))
)
. (A.120)

Setting w = t in (A.119) and substituting (A.118)–(A.120) into (A.117) yields

dζ ′0
dΩ

=−L(ξ ′−)Ωr−1 exp(−Ω/ξ ′)

ξ ′r(r−1)!

+
θ ′ exp(−Ω/ξ ′)

(r−1)! t!

[
min{t,r−1}

∑
j=0

(
t
j

)
j(−ξ

′)t− j
r−1

∑
k= j

(r− j−1)(r−k−1)Ωk−1

ξ ′k− j

+
t

∑
j=r

(
t
j

)
j(−ξ

′)t− j
r−1

∑
k=r−t

(r− j−1)(r−k−1)Ωk−1

ξ ′k− j

]
+O

(
Ω

r−t−2 exp(−Ω/ξ
′)
)

(A.121)
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(the term O(Ωr−t−2 exp(−Ω/ξ ′)) could be substituted by a lower-order term if
t < r, but this is unnecessary for the proof). Since (r− j− 1)(r−k−1) = 0 for k <
j < r, the summation range of the first sum over k in (A.121) can be extended from
k = j, . . . ,r−1 to k = min{0,r− t}, . . . ,r−1. On the other hand, the second sum
over j is empty if t < r. Thus the second sum over k only appears if t ≥ r, and in
this case min{0,r− t}= r− t. Therefore the lower limit in the latter sum can also
be expressed as k = min{0,r− t}. With these changes, (A.121) is rewritten as

dζ ′0
dΩ

=−L(ξ ′−)Ωr−1 exp(−Ω/ξ ′)

ξ ′r(r−1)!
+

ξ ′t−1θ ′ exp(−Ω/ξ ′)

(r−1)! t!

·
r−1

∑
k=min{0,r−t}

(
Ω

ξ ′

)k−1 t

∑
j=0

(
t
j

)
j(r− j−1)(r−k−1)(−1)t− j

+O
(
Ω

r−t−2 exp(−Ω/ξ
′)
)
.

(A.122)

From Lemma 6, the inner sum in (A.122) equals 0 for k = r−t+1,r−t+2, . . . ,r−
1 and (−1)t−1t! for k = r− t. If t < r, the terms with index k = 0,1, . . . ,r− t− 1
are O(Ωr−t−2 exp(−Ω/ξ ′)). Therefore

dζ ′0
dΩ

=−L(ξ ′−)Ωr−1 exp(−Ω/ξ ′)

ξ ′r(r−1)!
+

(−1)t−1ξ ′2t−rθ ′Ωr−t−1 exp(−Ω/ξ ′)

(r−1)!
+O

(
Ω

r−t−2 exp(−Ω/ξ
′)
)
.

(A.123)

Using (A.96), (A.97), (A.107), (A.109) and (A.123), and considering that L(ξ ′−)=
L(ξ ′+),

dη̄

dΩ
≥ (−1)t−1ξ ′2t−rθ ′Ωr−t−1 exp(−Ω/ξ ′)

(r−1)!
+O

(
Ω

r−t−2 exp(−Ω/ξ
′)
)
. (A.124)

Since (−1)t−1θ ′ > 0, this implies that

lim
Ω→∞

(
exp(Ω/ξ ′)

Ωr−t−1
dη̄

dΩ

)
≥ (−1)t−1ξ ′2t−rθ ′

(r−1)!
> 0. (A.125)

As a consequence of (A.113) and (A.125), in either case (a) or (b) of property 2 in
Assumption 4, there exists Ω′0 such that dη̄/dΩ > 0 for Ω≥Ω′0.

Proof of Theorem 2. From Lemmas 7 and 8, there exist Ω0, Ω′0 such that, denoting
by η̄ |

Ω
the value of η̄ corresponding to a given Ω,

η̄ |
Ω
> η̄ |

Ω0
for Ω < Ω0, (A.126)

η̄ |
Ω
> η̄ |

Ω′0
for Ω > Ω

′
0. (A.127)
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Proposition 1 implies that η̄ is a continuous function of Ω. Therefore, this function
restricted to the interval [Ω0,Ω

′
0] has an absolute maximum (Apostol, 1974, the-

orem 4.28). Because of (A.126) and (A.127), this is the absolute maximum of η̄

over R+.

Lemma 9. Under the hypotheses of Theorem 3, given σ ∈ R+, ζ as defined by
(A.2) is a continuous function of Ω ∈ R+.

Proof. From Assumptions 1 and 2’, L is continuous except possibly at a finite num-
ber of points, where it can only have removable discontinuities or jumps. Since
removable discontinuities do not have any effect on the integral in (A.2), they can
be disregarded. Thus in the following it is assumed that L only has jump disconti-
nuities. Let D be the number of discontinuity points, located at x1 < x2 < · · ·< xD.
The function L can be decomposed as the sum of Lc and Ld, where Lc is continuous
and Ld is piecewise constant with jumps at x1, . . . ,xD. Accordingly, ζ = ζc + ζd,
where ζc and ζd are given as in (A.2) with L replaced by Lc and Ld respectively.

For any Ω′ 6= Ω, let ζ ′ denote the right-hand side of (A.2) with Ω replaced by
Ω′, and let ζ ′c and ζ ′d be defined similarly. For ε > 0 arbitrary, it is necessary to find
δ > 0 such that |ζ ′− ζ | < ε for |Ω′−Ω| < δ . Consider an arbitrary δ0 ∈ (0,Ω).
Since Lc is continuous, by the Heine-Cantor theorem (Apostol, 1974, theorem 4.47)
it is uniformly continuous on the interval [(Ω− δ0)/(rσ),(Ω+ δ0)σ/r]. This in-
terval contains the values Ω/ν and Ω′/ν for |Ω′−Ω| < δ0, ν ∈ [r/σ ,rσ ]. By
virtue of this, defining εc = ε/(2r(σ − 1/σ)), let δc < δ0 be chosen such that
|Lc(Ω

′/ν)−Lc(Ω/ν)|< εc for all |Ω′−Ω|< δc, ν ∈ [r/σ ,rσ ]. Taking into account
Lemma 1, it follows that

|ζ ′c−ζc| ≤
∫ rσ

r/σ

|L(Ω/ν)−L(Ω′/ν)|dν < r
(

σ − 1
σ

)
εc =

ε

2
for |Ω′−Ω|< δc.

(A.128)
By construction, there exists an upper bound Md on |Ld(x)|, x ∈ R+. Since

Ld(Ω/ν), considered as a function of ν , has jumps at Ω/x1, . . . ,Ω/xD, associated
with each discontinuity point Ω/xi there is an interval of values of ν for which
Ld(Ω

′/ν) 6= Ld(Ω/ν). The width of this interval is |Ω′−Ω|/xi ≤ |Ω′−Ω|/x1, and
|Ld(Ω

′/ν)−Ld(Ω/ν)| ≤ 2Md for ν within this interval. There are at most D such
intervals contained in [r/σ ,rσ ], and for any value of ν not belonging to any of
these intervals it holds that Ld(Ω

′/ν) = Ld(Ω/ν). Using Lemma 1 again, it is seen
that |ζ ′d−ζd| ≤ 2DMd|Ω′−Ω|/x1. Thus there exists δd such that

|ζ ′d−ζd|<
ε

2
for |Ω′−Ω|< δd. (A.129)

32



Taking δ = min{δc,δd}, it follows from (A.128) and (A.129) that

|ζ ′−ζ | ≤ |ζ ′c−ζc|+ |ζ ′d−ζd|<
ε

2
+

ε

2
= ε for |Ω′−Ω|< δ , (A.130)

which shows that ζ is a continuous function of Ω.

Lemma 10. Under the hypotheses of Theorem 3, and with ζ defined by (A.2),

lim
σ→∞

limsup
Ω→0

η̄−ζ

ζ
= lim

σ→∞
limsup

Ω→∞

η̄−ζ

ζ
= 0. (A.131)

Proof. According to property 1 in Assumption 3’, there exist K < r and mL,ML,xL ∈
R+ such that mLxK < L(x)< MLxK for x < xL, that is,

mL(Ω/ν)K < L(Ω/ν)< ML(Ω/ν)K for ν > Ω/xL. (A.132)

Similarly, property 2 implies that there exist K′ < r; m′L,M
′
L ∈ R+; and x′L > xL

such that

m′L(Ω/ν)K′ < L(Ω/ν)< M′L(Ω/ν)K′ for ν < Ω/x′L. (A.133)

From Assumption 1, L is of bounded variation on [xL,x′L], and thus there exists M
such that L(x)≤M for x ∈ [xL,x′L], that is,

L(Ω/ν)≤M for Ω/x′L ≤ ν ≤Ω/xL. (A.134)

The case Ω → 0 is analyzed first. Given σ ∈ R+, it will be assumed that
Ω < rxL/σ . Under this assumption, any ν within the integration interval in (A.2)
exceeds Ω/xL. Thus, applying (A.132),

ζ > mLΩ
K
∫ rσ

r/σ

νr−K−1 exp(−ν)

(r−1)!
dν =

mLΩK(Γ(r−K,r/σ)−Γ(r−K,rσ))

(r−1)!
.

(A.135)
The difference η̄−ζ can be expressed as2 ζ1+ζ2+ζ3+ζ4, where each term is

an integral as in (A.2) with the integration interval respectively given as (0,Ω/x′L),
(Ω/x′L,Ω/xL), (Ω/xL,r/σ) and (rσ ,∞). In the first case, (A.133) implies that

ζ1 <
M′LΩK′γ(r−K′,Ω/x′L)

(r−1)!
, (A.136)

2Note that this decomposition, and the one to be used for Ω→ ∞, are different from those used
in the proofs of Lemmas 7 and 8 respectively, although the same notation is used for simplicity.
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and thus
ζ1

ζ
<

M′LΩK′−Kγ(r−K′,Ω/x′L)
mL(Γ(r−K,r/σ)−Γ(r−K,rσ))

. (A.137)

Using the equality (A.70) from Lemma 4, and taking into account that K,K′ < r by
Assumption 3’, it is seen that the right-hand side of (A.137) tends to 0 as Ω→ 0.
Since ζ1 and ζ are both positive, this implies that

lim
Ω→0

ζ1

ζ
= 0. (A.138)

As for the term ζ2, using (A.134),

ζ2 ≤
M(γ(r,Ω/xL)− γ(r,Ω/x′L))

(r−1)!
<

Mγ(r,Ω/xL)

(r−1)!
, (A.139)

and thus
ζ2

ζ
<

MΩ−Kγ(r,Ω/xL)

mL(Γ(r−K,r/σ)−Γ(r−K,rσ))
. (A.140)

Using (A.70) again, and taking into account that K < r, it stems that

lim
Ω→0

ζ2

ζ
= 0. (A.141)

Regarding the third term, (A.132) holds for all ν within the integration interval,
and thus

ζ3 <
MLΩK(γ(r−K,r/σ)− γ(r−K,Ω/xL))

(r−1)!
<

MLΩKγ(r−K,r/σ)

(r−1)!
. (A.142)

Therefore
ζ3

ζ
<

MLγ(r−K,r/σ)

mL(Γ(r−K,r/σ)−Γ(r−K,rσ))
. (A.143)

Similarly, the fourth term satisfies

ζ4 <
MLΩKΓ(r−K,rσ)

(r−1)!
, (A.144)

and therefore
ζ4

ζ
<

MLΓ(r−K,rσ)

mL(Γ(r−K,r/σ)−Γ(r−K,rσ))
. (A.145)
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From (A.138), (A.141), (A.143) and (A.145) it follows that

limsup
Ω→0

η̄−ζ

ζ
≤ ML(γ(r−K,r/σ)+Γ(r−K,rσ))

mL(Γ(r−K,r/σ)−Γ(r−K,rσ))
. (A.146)

The right-hand side of (A.146) is seen to converge to 0 as σ →∞, and thus so does
the left-hand side. This establishes the first part of the result.

The analysis for Ω→ ∞ is similar. Given σ ∈ R+, it is assumed that Ω >
rx′Lσ . The difference η̄ − ζ is expressed as ζ ′1 + ζ ′2 + ζ ′3 + ζ ′4, where each term
is an integral as in (A.2) with integration intervals respectively given as (0,r/σ),
(rσ ,Ω/x′L), (Ω/x′L,Ω/xL) and (Ω/xL,∞). Arguments analogous to those used for
Ω→ 0 establish that

limsup
Ω→∞

η̄−ζ

ζ
≤

M′L(γ(r−K′,r/σ)+Γ(r−K′,rσ))

m′L(Γ(r−K′,r/σ)−Γ(r−K′,rσ))
. (A.147)

The right-hand side of (A.147) is seen to converge to 0 as σ →∞, and thus so does
the left-hand side. This establishes the second part of the result.

Lemma 11. Under the hypotheses of Theorem 3, considering ζ and η̄ as functions
of Ω ∈ R+, ζ/η̄ → 1 uniformly on R+ as σ → ∞.

Proof. The result is equivalent to the statement that for any ε > 0 there exists
σ0 such that |η̄/ζ − 1| < ε for all Ω ∈ R+ and for all σ > σ0. Consider ε >
0 arbitrary. Let R(σ) and R′(σ) respectively denote limsupΩ→0(η̄ − ζ )/ζ and
limsupΩ→∞(η̄−ζ )/ζ . Since L is a non-negative function, from (A.2) it is seen that
ζ is a non-negative, non-decreasing function of σ for any Ω. By Lemma 10, R(σ)
and R′(σ) tend to 0 as σ → ∞, and thus there exists σ1 such that R(σ1),R′(σ1) ≤
ε/2. By definition of R(σ), there exists Ω0 such that the following inequality holds
(note that the left-hand side is a function of σ and Ω):

η̄−ζ

ζ
< R(σ1)+

ε

2
≤ ε for Ω < Ω0, σ = σ1. (A.148)

The non-decreasing character of ζ with σ implies that (A.148) also holds for σ >
σ1, that is,

η̄−ζ

ζ
< ε for Ω < Ω0, σ ≥ σ1. (A.149)

Analogously, there exists Ω′0 > Ω0 such that

η̄−ζ

ζ
< ε for Ω > Ω

′
0, σ ≥ σ1. (A.150)

35



According to Lemma 9, for σ fixed, ζ is a continuous function of Ω∈ [Ω0,Ω
′
0],

and therefore it has an absolute minimum on that interval, which will be denoted
as S1(σ). The non-negative and non-decreasing character of ζ with σ implies that
S1 is also a non-negative, non-decreasing function. In addition, S1(σ) > 0 for all
σ greater than a certain value σ2. This can be seen as follows. By Assumption 3’,
L(x) is non-zero for all x outside a bounded interval. If σ is sufficiently large,
i.e. greater than a certain σ2, for any Ω ∈ [Ω0,Ω

′
0] the integration interval in (A.2)

contains a subinterval where L is non-zero, which gives ζ > 0. Thus S1(σ)> 0 for
σ > σ2.

By arguments similar to those in the above paragraph, η̄ − ζ , considered as a
function of Ω, has an absolute maximum on [Ω0,Ω

′
0]; and this maximum, denoted

as S2(σ), tends to 0 as σ → ∞. Therefore, defining S(σ) = S2(σ)/S1(σ) for σ >
σ2,

(η̄−ζ )/ζ ≤ S(σ) for Ω ∈ [Ω0,Ω
′
0], σ > σ2; (A.151)

and S(σ)→ 0 as σ →∞. Thus, for the considered ε , there exists σ3 ≥ σ2 such that
S(σ)< ε for σ ≥ σ3. Combined with (A.151), this gives

(η̄−ζ )/ζ < ε for Ω ∈ [Ω0,Ω
′
0], σ ≥ σ3. (A.152)

From (A.149), (A.150) and (A.152), choosing σ0 = max{σ1,σ3} is sufficient to
satisfy |η̄/ζ −1|< ε for Ω ∈ R+, σ > σ0. This completes the proof.

Proof of Theorem 3. The result will be proved by contradiction. Assume that there
exists a possibly randomized estimator p̂ with limsupp→0 η(p)< η∗. This implies
that there exist θ < 1 and a probability pθ such that the estimator has

η(p)< θη
∗ for all p < pθ . (A.153)

For n = r,r + 1, . . ., let Πn denote the distribution function of p̂ conditioned on
N = n.

By Lemma 11, let σ be selected such that∫ rσ

r/σ

φ(ν)L(Ω/ν)dν >
3√

θ

∫
∞

0
φ(ν)L(Ω/ν)dν for all Ω ∈ R+. (A.154)

In particular, this implies that∫ rσ

r/σ

φ(ν)L(Ω/ν)dν >
3√

θη
∗ for all Ω ∈ R+. (A.155)

Given ν1,ν2 with ν2 > ν1 > 0, according to Lemma 2, Φ(p,ν)→ φ(ν) uni-
formly on [ν1,ν2] as p→ 0. By virtue of this, let p1 < pθ be such that

|Φ(p,ν)−φ(ν)|< (1− 3√
θ)φ(ν) for all p < p1, ν ∈ [r/σ ,rσ ]. (A.156)
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Let u = drσ/p1e. Taking into account that limw→∞(∑
w
n=1 1/n− logw) = γ , where γ

is the Euler-Mascheroni constant (Abramowitz and Stegun, 1970, equation 6.1.3),
it is easy to see that

lim
p→0

(
br/(σ p)c

∑
n=u

1
n
− log

p1

p

)
= γ + log

r
σ p1
−

u−1

∑
n=1

1
n
. (A.157)

This implies that there exist λ > 0 and p′0 such that

br/(σ p)c

∑
n=u

1
n
− log

p1

p
>−λ for all p≤ p′0. (A.158)

Let λ and p′0 be chosen such that (A.158) holds, and let p′′0 be defined by the
equation

log
p1

p′′0
=

λ

1− 3
√

θ
. (A.159)

Since λ > 0 and θ < 1, it follows that p′′0 < p1.
Let p0 = min{p′0, p′′0}. For a given n, the measure associated with the distribu-

tion function Πn is obviously finite, and thus sigma-finite. This implies (Billings-
ley, 1995, theorem 18.3) that for each n the integral in (9), considered as a function
of p, is measurable with respect to Lebesgue measure. In addition, since p1 < pθ ,
it stems from (A.153) that the series in (9) converges for p ≤ p1. This assures
(Billingsley, 1995, theorem 13.4(ii)) that η(p) restricted to p ≤ p1 is measurable.
Therefore, the integral

X =
∫ p1

p0

η(p)
p

dp (A.160)

exists in the Lebesgue sense, and according to (A.153) it satisfies

X < θη
∗
∫ p1

p0

dp
p

= θη
∗ log

p1

p0
. (A.161)

Substituting (9) into (A.160),

X =
∫ p1

p0

1
p

∞

∑
n=r

f (n)
(∫

∞

0
L(y/p)dΠn(y)

)
dp. (A.162)

Defining v = br/(σ p0)c, it is clear from (A.162) that

X >
v

∑
n=u

∫ p1

p0

(∫
∞

0

f (n)L(y/p)
p

dΠn(y)
)

dp. (A.163)
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Since both measures in (A.163) are sigma-finite, and both the inner and outer in-
tegrals are finite, the order of integration can be reversed (Billingsley, 1995, theo-
rem 18.3), which gives

X >
v

∑
n=u

∫
∞

0

(∫ p1

p0

f (n)L(y/p)
p

dp
)

dΠn(y). (A.164)

Making the change of variable ν = np in the inner integral and taking into account
that f (n)/p = Φ(p,np), (A.164) becomes

X >
v

∑
n=u

1
n

∫
∞

0

(∫ np1

np0

Φ(ν/n,ν)L(ny/ν)dν

)
dΠn(y). (A.165)

For u≤ n≤ v it holds that np0 ≤ r/σ and np1 ≥ rσ . Therefore

X >
v

∑
n=u

1
n

∫
∞

0

(∫ rσ

r/σ

Φ(ν/n,ν)L(ny/ν)dν

)
dΠn(y). (A.166)

For ν ∈ [r/σ ,rσ ] and u ≤ n ≤ v it holds that ν/n < p1. Thus (A.156) gives
Φ(ν/n,ν)> 3

√
θφ(ν). Substituting into (A.166),

X >
3√

θ

v

∑
n=u

1
n

∫
∞

0

(∫ rσ

r/σ

φ(ν)L(ny/ν)dν

)
dΠn(y). (A.167)

From (A.155), the inner integral in (A.167) exceeds 3
√

θη∗, and thus

X > θ
2/3

η
∗

v

∑
n=u

1
n
. (A.168)

Since p0 ≤ p′0 and p0 ≤ p′′0 < p1, (A.158) and (A.159) give

v

∑
n=u

1
n
>−λ + log

p1

p0
≥ log

p1

p0

(
1− λ

log(p1/p′′0)

)
=

3√
θ log

p1

p0
. (A.169)

Substituting into (A.168),
X > θη

∗ log
p1

p0
, (A.170)

in contradiction with (A.161). This establishes the result.

Proof of Proposition 3. The proof is analogous to that of Mendo and Hernando
(2010, proposition 1).
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Proof of Proposition 4. For the considered estimator,

E[(p̂− p)2]

p2 =
(r−2)2

p2 E
[

1
(N−1)2

]
− 2(r−2)

p
E
[

1
N−1

]
+1. (A.171)

The equality

E
[

1
N−1

]
=

p
r−1

(A.172)

directly stems from the fact that (1) is unbiased. On the other hand, according to
Mikulski and Smith (1976), for p ∈ (0,1)

Var
[

r−1
N−1

]
≤ p2(1− p)

r−2
<

p2

r−2
. (A.173)

From (A.172) and (A.173),

E
[

1
(N−1)2

]
=

(
E
[

1
N−1

])2

+Var
[

1
N−1

]
<

p2

(r−1)(r−2)
. (A.174)

Substituting (A.172) and (A.174) into (A.171), the desired result (27) is obtained.

Lemma 12. Given r ≥ 3 and Ω ∈ R+, considering the loss function (19) with
A1 = 0, A2 > 0, if µ2 ≥ (r +

√
r + 1)/Ω the risk of the estimator (28) satisfies

η(p) < η̄ for any p ∈ (0,1). Similarly, for the loss function (19) with A1 > 0,
A2 = 0, if µ1 ≥Ω/(r−

√
r) the inequality η(p)< η̄ holds for any p ∈ (0,1).

Proof. The stated results follow from the arguments used in the proof of Mendo
and Hernando (2010, proposition 3).

Proof of Proposition 5. The result will be proved by approximating the loss func-
tion as a sum of terms of the form (19) with A1,A2 ≥ 0 and using Lemma 12. It
may be assumed without loss of generality that L(x) = 0 for x ∈ [υ ,υ ′], because if
L(x) = C within that interval, defining L′(x) = L(x)−C the risk corresponding to
L is expressed as C plus the risk resulting from the loss function L′, which satisfies
the hypotheses of the proposition.

Let ε > 0, and suppose for the moment that L is unbounded on the interval
(0,υ). This implies that for any i ∈ N, the set Vε,i = {x ∈ (0,υ) | L(x) ≥ iε} is
non-empty. In fact, since L is non-increasing on (0,υ), Vε,i is an interval. Let xε,i
be defined as the supremum of Vε,i, and let

`ε,i(x) =

{
ε if x≤ xε,i,

0 otherwise.
(A.175)
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If L is bounded on (0,υ), the sets Vε,i are empty for i greater than a certain value.
In this case, the corresponding `ε,i functions are defined as the null function. In a
similar manner, for L unbounded on (υ ′,∞), let V ′

ε,i = {x ∈ (υ ′,∞) | L(x) ≥ iε},
which is again non-empty interval; let x′

ε,i be its infimum, and

`′ε,i(x) =

{
ε if x≥ x′

ε,i,

0 otherwise.
(A.176)

If L is bounded on (υ ′,∞), for i greater than a certain value the sets V ′
ε,i are empty,

and the corresponding `′
ε,i are defined as null. Let Lε,i(x) = `ε,i(x)+ `′

ε,i(x) and
Lε(x) = ∑

∞
i=1 Lε,i(x). By construction, for all x ∈ R+,

0≤ L(x)−Lε(x)≤ ε. (A.177)

Each function Lε,i satisfies Assumptions 1–3, and therefore a risk can be defined
considering Lε,i as the loss function. This risk will be denoted as ηε,i(p). The
function Lε also satisfies Assumptions 1–3. Let ηε(p) denote its corresponding
risk,

ηε(p) =
∞

∑
n=r

f (n)Lε(g(n)/p) =
∞

∑
n=r

∞

∑
i=1

f (n)Lε,i(g(n)/p) (A.178)

For each n, the inner series in (A.178) converges absolutely; namely, to f (n)Lε(g(n)/p).
In addition, from (A.177) it is seen that Lε(g(n)/p)≤ L(g(n)/p), and this implies
that the outer series in (A.178) is also absolutely convergent. This allows inter-
changing the sums over n and i (Apostol, 1974, theorem 8.43), which gives

ηε(p) =
∞

∑
i=1

ηε,i(p). (A.179)

Theorem 1 assures that ηε,i(p) has an asymptotic value η̄ε,i, given by

η̄ε,i =
∫

∞

0
φ(ν)Lε,i(Ω/ν)dν , (A.180)

Similarly, ηε(p) has an asymptotic value

η̄ε =
∫

∞

0
φ(ν)

∞

∑
i=1

Lε,i(Ω/ν)dν . (A.181)

Since Lε,i is a nonnegative function for all i, the monotone convergence theorem
(Athreya and Lahiri, 2006, theorem 2.3.4) implies that the sum and integral signs
in (A.181) commute, and thus

η̄ε =
∞

∑
i=1

η̄ε,i. (A.182)
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From Lemma 12, ηε,i(p)< η̄ε,i. Combined with (A.179) and (A.182), this gives

ηε(p)< η̄ε . (A.183)

On the other hand, from (A.177) it stems that

0≤ η(p)−ηε(p)≤ ε, (A.184)

which in turn implies
0≤ η̄− η̄ε ≤ ε. (A.185)

From (A.183)–(A.185),

η(p)≤ ηε(p)+ ε < η̄ε + ε < η̄ + ε. (A.186)

Since (A.186) holds for ε arbitrary, the desired inequality η(p)≤ η̄ follows.
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