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The performance of a simple method [E. L. Sibert III, E. Vergini, R. M. Benito, and F. Borondo, New J.
Phys. 10, 053016 (2008)] to efficiently compute scar functions along unstable periodic orbits with complicated
trajectories in configuration space is discussed, using a classically chaotic two-dimensional quartic oscillator as
an illustration.
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I. INTRODUCTION

The development of chaos theory that took place in
the 1960s brought back to the forefront of physics several
long-forgotten issues. One of them was the semiclassical
quantization of chaotic systems [1] whose difficulty was first
pointed out by Einstein [2,3], who noticed the lack of a
supporting invariant classical structure for the wave functions.

It was Gutzwiller who made the first significant contribution
to this problem by developing a semiclassical theory [4]
able to quantize Hamiltonian systems with chaotic classical
dynamics. His celebrated trace formula, solely based on
periodic orbit (PO) information, opened the door for the
study of the connection between these special trajectories and
the eigenvalues of such systems. This topic was extensively
studied in subsequent theoretical and experimental work [1].

POs may also have a dramatic influence on the corre-
sponding eigenfunctions, since they were found to be the
origin in some of them of an enhanced quantum den-
sity localization (“scars”), as first discussed by Heller [5].
The idea [6] behind this unexpected phenomenon, namely,
the building up of probability due to constructive interference
by recurrences caused by the dynamics along an unstable
PO, has been ever since very fruitful [7]. Bogomolny later
demonstrated that this extra density can be obtained in the
h̄ → 0 limit by averaging in configuration space groups of
eigenfunctions in an energy window [8], and the corresponding
phase space version was investigated by Berry [9]. Other
interesting aspects of scarring, such as the role of recurrences
taking place through homoclinic and heteroclinic quantized
circuits [10,11], the influence of bifurcations (in systems with
mixed dynamics) [12], or the scarring of individual resonance
eigenstates in open systems [13], have also been considered.
Scars have also been experimentally observed [14,15], and
their relevance in growing fields, such as nanotechnology [16],
optical microcavitities [17], optical fibers [18], or graphene
sheets, [19] has been described in the literature.

As a consequence, there is at present a great interest in the
construction of wave functions with probability density highly
localized along unstable POs of a classically chaotic system.
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This allows the fundamental study of quantum localization
phenomena, having at the same time potential technological
applications. Different methods have been described in the
literature to compute such functions [20–23], which present
advantages and shortcomings. For example, that based on
averaging groups of eigenstates using the true quantum
dynamics of the system [20] is of very general validity
and applicability, but it fails when the PO is either very
unstable and/or has very long period (although still smaller
than the Heisenberg’s time). The reason for this failure is
readily understood from Heller’s view of scarring [24], who
clearly showed the role of the competition existing between
recurrences and the dispersing dynamics near the unstable PO
[6]. Recently, this difficulty was overcome by decomposing the
motion in the vicinity of the PO into one of periodic nature and
another of hyperbolic character [21–23]. Even though these
techniques put on equal footing all POs, they require a detailed
knowledge of the stable and unstable manifolds in the vicinity
of the POs. Explicit expressions were nevertheless obtained
for the stadium billiard, taking advantage of the ray dynamics,
and the cat map. This method, as described in Ref. [22], was
later applied to a case with a smooth potential [25,26].

In this paper, we study the performance of this method
to systematically construct scar functions localized over
long, complicated POs of classically chaotic systems. As an
illustration, we apply it to a quartic two-dimensional oscillator,
which is a benchmark in the field of quantum chaos [20,25–27].
This method can deal with any unstable PO, no matter how
complicated it is, in an easy and straightforward manner.

The organization of the paper is as follows. In Sec. II, we
briefly discuss the system used in our calculation. In Sec. III
we describe the method that will be used to compute the scar
functions. In Sec. IV some results are presented and discussed.
We conclude the paper by presenting our conclusions and final
remarks in Sec. V.

II. SYSTEM

The model that we have chosen to study is the dynamics of
a unit mass particle moving in a quartic potential

H = 1

2

(
P 2

x + P 2
y

) + 1

2
x2y2 + ε

4
(x4 + y4), (1)
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FIG. 1. (Color online) Some periodic orbits of the quartic oscillator for an energy E = 1 that are used in the calculations of this paper. The
blue circles and red crosses indicate the position of the self-conjugated points of the (clockwise) POs corresponding to the stable and unstable
manifolds, respectively.

with ε = 0.01. This system, whose dynamics are very chaotic
[28], has been extensively studied [20,27] in connection with
the issue of quantum chaos. The potential is homogeneous,
which makes the corresponding classical dynamics mechani-
cally similar. Indeed, any trajectory, (xt ,yt ,Px,t ,Py,t ), at a given
energy, E, can be scaled to another, (x ′

t ′ ,y
′
t ′ ,P

′
x,t ′ ,P

′
y,t ′ ), at a

different energy, E′, by using the simple scaling relations

x ′
t ′ = Ext , P ′

x,t ′ = E2Px,t ′ , t ′ = E−1t,
(2)

y ′
t ′ = Eyt , P ′

y,t ′ = E2Py,t ′ , S ′
t ′ = E3St ,

with E = (E′/E)1/4, and the dynamical action S =∫ t

0 dτ (Px,τ ẋτ + Py,τ ẏτ ). This avoids the hassles associated
with bifurcations or any other structural changes of the
involved phase space.

We conclude this section by presenting in Fig. 1 some POs
of Hamiltonian (1) that are used in the calculations presented in
this paper. These POs have been selected since they constitute
representative examples with different characteristics and
complexity in the configuration space. As we progress toward
the right, the complexity of the chosen PO in the configuration
space increases. Actually, the last four [(b)–(e)] have been
selected as describing rather complicated trajectories in the
configuration space, making the application of the techniques
to compute scar functions a priori difficult, if not impossible.
Notice that in this spirit, we have not considered here POs
which are too simple, such as for example those running along
the axis or the diagonals, although our method works equally
well in those cases.

III. METHOD

In this section we describe the method that will be used to
systematically compute scar functions highly localized along
any PO for a given degree of excitation along it.

The construction of the desired functions starts by defining
tube functions with the probability density distributed along
the PO as

ψ tube
n (x,y) =

∫ T

0
dt eiEnt/h̄ φ(x,y,t), (3)

where T is the period of the PO, and En is the associated Bohr-
Sommerfeld (BS) quantized energy (see below). The function
φ(x,y,t) is a suitable wave packet, whose probability density is
forced to stay on the neighborhood of the PO, (xt ,yt ,Px,t ,Py,t ).

For this purpose, we use a frozen Gaussian [29,30] centered
on the trajectory,

φ(x,y,t) = exp{−α[(x − xt )
2 + (y − yt )

2]

+ i

h̄
[Px,t (x − xt ) + Py,t (y − yt )] + iγt }, (4)

where α = 1 is adequate for our calculations. It should be
noticed that when the guiding PO of this wave packet is not
a librational or self-retracing trajectory, i.e., does not have
turning points (TPs), the integrand in Eq. (3) should include
two contributions, corresponding to the two opposite directions
in which the PO can be run. The associated exponential factors
are then complex conjugated, thus rendering an overall real
expression for ψ tube

n .
The phase accumulated during the propagation of φ(x,y,t)

consists of two contributions: γt = (St/h̄) − (π/2)μt , where
the first term is proportional to the mechanical action, and
the second one is a topological phase, that can be calculated
by numerically computing the angle swept by the manifolds
emanating from the “guiding” PO in the (phase space) plane
transverse to it, being equal to μtπ . The value of μT ≡ μ after
a full PO period is equal to the Maslov index [31] appearing in
Gutzwiller’s trace formula [32]. This quantity is simply given
by the sum of the number of self-conjugated points (SCPs),
generated by the rotation of either the stable or the unstable
manifolds, plus the number of TPs, if any [33], on the PO.
The position of the SCPs is given by the condition that one of
the corresponding manifolds is “vertical.” In our case, we have
used local coordinates, one parallel and another transverse
to the guiding PO, to locate these points. The corresponding
positions have been indicated in Fig. 1, with blue circles and
red crosses, depending on whether they are generated by the
rotation of the stable or unstable manifold, respectively.

The smoothing process implicit in the integration on
Eq. (3) renders a function with the probability density well
localized along the PO. Furthermore, this localization effect
is maximized when γt becomes periodic, by constructive
interference, over the PO. This happens when the phase fulfills
the BS quantization rule

γ = S(En)

h̄
− π

2
μ = 2πn, n = 0,1, . . . , (5)

where n is an integer giving the number of nodes or excitations
along the scarring PO in the wave function, and γ,S, and μ

are defined over one period of the PO; that is, γ = γT and
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S = ST . Notice that the usual semiclassical quantization rule
S = 2πh̄(n + μ/4) is easily recovered from this expression.
Moreover, condition (5) is satisfied only for some (semiclas-
sically allowed [34]) values of the energy, En.

The tube functions described above can be improved by
incorporating into them the dynamical effects produced by
the hyperbolic motions in the neighborhood of the scarring
or guiding PO [21]. This can be done, in a convenient way,
by propagation of the tube functions followed by a suitable
Fourier transformation at the BS quantized energy

ψ scar
n (x,y) =

∫ +TE

−TE

dt cos

(
πt

2TE

)
ei(En−Ĥ )t/h̄ψ tube

n (x,y). (6)

Although not absolutely necessary, we have included here
a cosine window in order to minimize the dispersion in
energy [35]. Notice that we have not used in Eq. (6) the
long-time quantum dynamics of ψ tube

n (x,y), since this brings
undesired (too complicated) dynamical information into our
scar function. Instead, we have considered in the construction
of the scar function the dynamics of the system up to a
shorter time, chosen as the Ehrenfest time, TE . This time is
(semiclassically) defined as the lapse in which a Gaussian wave
packet spreads and reaches the limits of a characteristic area,
A, in the Poincaré SOS of the system, and it can be related to
the Lyapunov exponent (λ̄ = 0.3848E1/4 in our case) in the
following way: TE = (1/2λ̄) ln(A/h̄).

Finally, let us remark that the probability density for ψ scar
n

is not only localized (in phase space) on the fixed point
corresponding to the PO, but also in short pieces of the
emanating manifolds, as thoroughly discussed, for example,
in Ref. [25].

IV. RESULTS

Let us examine now the performance of the method that
has been just described in the case of the classically chaotic
quartic potential, by presenting some results obtained for the
POs shown in Sec. II.

The first point that we have to address is the consideration
of the symmetry of the computed functions. The quantum
eigenstates of the quartic oscillator (1) can be classified
according to the C4v symmetry group, which has five irre-
ducible representations: A1,B1,A2,B2, and E. For practical
purposes this determines the conditions, Dirichlet (ψ = 0) or
Neumann (∂⊥ψ = 0), at the axis (x,y = 0) and the diagonals
(x = ±y). An elegant way to translate this into semiclassical
arguments is to consider the desymmetrized PO resulting
from “folding” the original one into the fundamental domain.
For the case of the quartic potential, this domain consists,
in the case of the one-dimensional representations A,B, of
the 1/8 region enclosed by one semiaxis and the neighbor
semidiagonal, and the 1/4 region between the two semiaxes
for the two-dimensional one, E. Notice that this procedure
introduces “artificial” hard wall boundaries in both the axis
and the diagonals having two effects. First, it reduces the
length, and then the topological (without the contributions
arising from the desymmetrization) and mechanical actions in
Eq. (5), in an integer factor of p, given by the ratio between
the periods of the full and desymmetrized POs. Second, it has
an additional more complicated effect in the Maslov index,

which is different for the Dirichlet and Neumann cases, that
has to be carefully taken into account, as fully discussed in
Ref. [22]. Fortunately, the final result is particularly simple
for the totally symmetric wave functions, that is, those with
Neumann conditions both along the axis and the diagonals. In
this case the contributions at the boundaries cancel, and the net
effect of the desymmetrization in the quantization condition
can be simply accounted for with the factor p,

γ = S(En)/p

h̄
− π

2
(μ/p) = 2πn, n = 0,1, . . . , (7)

where the quantum number n has been redefined as referring
to the fundamental domain. Accordingly, and in order to keep
the examples in this paper as simple as possible, we restrict our
presentation to the fully symmetric A1 case. The generalization
to the other symmetry classes is slightly more complicated but
straightforward.

We now present our results for the “loop” PO; see Fig. 1. In
this case, μ = 12, p = 4, and then the quantization condition
for the total action of the PO reads

S(En) = 2πh̄(4n + 3), n = 0,1, . . . . (8)

Considering that S(E = 1) = 25.0018 and setting h̄ = 1,

En = 0.1586(4n + 3)4/3, n = 0,1, . . . . (9)

In the bottom panels of Fig. 2 we present the scar functions
localized over this PO for n = 5 to 7. As can be seen, and
despite the complexity of the guiding PO in configuration
space, the probability density of the computed function
localizes very well along it, which is an indication of the
brilliant performance of our numerical method. Another
important characteristic of our functions can be deduced
from their spectra, that can be conveniently computed by
projection over the eigenstates, |i〉, of the system. These states
were obtained by diagonalization of the Hamiltonian operator
corresponding to Eq. (1) in a large basis set consisting of
5000 symmetry-adapted harmonic oscillator eigenfunctions.
At infinite resolution these spectra are given by I∞(E) =

n=5 n=6 n=7

E
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FIG. 2. (Color online) Bottom panel: Probability density for the
scar wave function given by Eq. (3) constructed over the “quadruple-
loop” periodic orbit (superimposed in black) with quantum numbers
n = 5 to 7. The plot has been scaled to E = 1 using the relations in
(2). Top panel: Corresponding infinite resolution (sticks) spectra and
finite resolution version (continuous line) obtained by convolution
with a Lorentzian function of width � = 0.5.
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FIG. 3. (Color online) Dispersion of the scar functions along the
“quadruple-loop” periodic orbit (blue plus signs). To observe the
tendency, the corresponding mobile mean is also plotted (red crosses).
The results obtained with the semiclassical approximation (10) are
plotted superimposed in green continuous line.

∑
i |〈i|ψ scar

n 〉|2δ(E − εi). The corresponding results are given
in the top panel of the figure. As can be seen, our scar functions
are not only localized in configuration space but also in energy,
since the spectra consist of series of sticks closely packed
around the corresponding BS energy values. To emphasize
this localization we have also plotted superimposed in the
figure the associated finite resolution spectra, I�(E), obtained
by convolution with a Lorentzian of width � = 5.

This conclusion is of more general validity, as deduced
from the results presented in Fig. 3, where the values for the
dispersion, σn = 〈ψ scar

n |(Ĥ − En)2|ψ scar
n 〉, of the 40 low-lying

scar functions over the “quadruple-loop” PO are displayed
(blue plus signs) as a function of the corresponding energies.
As can be seen the results are very small and grow very
moderately with the energy, this further confirming our
previous conclusion on the high localization in energy of the
scar function. Moreover, this dispersion fluctuates violently,
and then the underlying tendency is more clearly observed
in the mobile mean, which is also plotted (red crosses) in
the figure. This mean is well approximated semiclassically
as [35]

σ = π

2

h̄λ(ζ + λTE)

ζ 2 + (ζ + λTE)(z + λTE)
, (10)

where λ is the stability index of the PO, z ≈ 1.06078 and
ζ = π/

√
2 − z ≈ 1.16066.

To conclude this section, we present here our results for
the other POs shown in Fig. 1. The corresponding general BS
quantization conditions can be written as

En =
[

S(En)

S(E = 1)

]4/3

, with S(En) = 2πh̄

(
pn + μ

4

)
, (11)

and the values for p, μ, and S(E = 1) are 2, 4, 12.7134 for
the PO in Fig. 1(a), 1, 6, 17.8311 for the PO in Fig. 1(b), 1, 6,
15.4243 for the PO in Fig. 1(c), and 2, 8, 17.0268 for the PO
in Fig. 1(d), respectively.

Again, it should be remarked that these POs have been cho-
sen since they represent complicated figures in configuration
space, which in principle do not help in the application of any
scar function computation method.

FIG. 4. (Color online) Same as Fig. 2 corresponding to n = 20
for the other periodic orbits presented in Figs. 1(b)–1(e).

Our results for the corresponding scar functions with n =
20 and h̄ = 1 are shown in Fig. 4. Notice that although they all
correspond to the same quantum number (in the fundamental
domain) they do not exhibit the same number of total nodes.
This is due to the fact that the different desymmetrized POs
which are quantized have different lengths due to symmetry
reasons. Actually, in the first (top left panel) and last cases
(bottom right panel) one fourth of the original PO is to be
taken in the calculation, while in the other two cases (top
right and bottom left panels) one half of it is needed. Also
notice that these wave functions do not exhibit the correct C4v

symmetry of the system, something that can be easily solved
by obtaining the symmetry adapted linear combinations of
the corresponding scar functions obtained from the POs that
result from repeated application of the C4 symmetry operator.
Finally, it should be commented that all the results presented
in Fig. 4 convincingly show that our method has no problem in
computing wave functions with the probability density highly
localized on the POs, also having the correct number of nodes
along them.

V. SUMMARY

In this paper, we have checked the performance of a
simple and straightforward method to efficiently compute in
a systematic way scar functions along unstable POs. The
procedure consists of averaging the dynamics of a wave packet
forced to stay in the immediate neighborhood of a guiding
PO, and imposing the correct quantization condition for the
action. An application to some a priori complicated POs of
a classically chaotic two-dimensional quartic potential, which
constitutes an ideal benchmark for studies of quantum chaos,
is presented as an illustration. In all cases, the computed
wave functions appear highly localized along the selected POs
having the desired number of nodes. This fact is an indication
of the excellent performance of the proposed method. Finally,
our functions are shown to be also well localized in the
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energy domain. This is an important point, which indicates that
they are suitable candidates to be used as a good dynamical
basis set for the efficient computation of eigenstates of this
kind of system. We have actually verified this possibility,
and the corresponding results will be published in the near
future [36].
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