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Received: date / Accepted: date

Abstract A recent study by Rozvany and Sokó l dis-
cussed an important topic in structural design: the al-

lowance for support costs in the optimization process.

This paper examines a frequently used kind of support

—that of simple foundation with horizontal reaction by

friction— that appears no covered for the Authors’ ap-
proach. A simple example is examined to illustrate the

case and to try of applying the Authors’ method; also

some solutions from standard standard design method

are included.

Keywords Support cost · Michell trusses · fixed

boundary problems · free loading problems

1 Introduction

The fixed boundary class of problems was exactly de-

fined by Cox (1965:116-117), as a different class of prob-

lems than those covered by Maxwell & Michell design
theory. In his remarkable book, Cox shown that al-

though the theories to tackle with these two classes have

different optimality criteria, both they lead to optimal

layouts on the basis of Hencky-Prandtl nets (1965:96).

The optimality criteria for the former class was after
formulated by Hemp (1973) in detailed form and by

many other authors.

The fixed boundary theory has a well-known draw-

back: “the reactions such as those at [fixed supports],
are in any case carried by some other bodies acting as

structures and the true picture of the economy achieved

should include the abutments.” (Owen, 1965:64). A con-

spicuous extension of this theory for the allowance of
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support cost has been derived by Rozvany and Sokó l
(2012:§3–7) from the optimal layout theory of Prager

and Rozvany (1977), “which is based on ‘optimal plas-

tic design’” of Prager and Shield (1967). It could hope

that with this extension the shortcoming noted by Cox

and Owen could be filled.

2 Foundation with friction

The frequently used foundation with friction (see e.g.

Bow, 1873) is composed by a prismatic body with square

base A = a×a and height h. For an allowable soil stress
σS , A = |Y |/σS , being Y the vertical reaction to be ex-

erted to the structure by the foundation (see Fig. 1a).

If the static friction coefficient between foundation and

soil is µ, the foundation can bear too an horizontal re-

action X such that |X | ≤ −µY providing Y ≤ 0 ac-
cordingly with the sign convention of Fig. 1 of Rozvany

and Sokó l (2012), i.e., the soil under the foundation will

be compressed under Y -action. For a given foundation

material, the total volume of the foundation can be ex-
pressed as λa3, being λ a given constant dependent of

foundation material and soil properties. Let us select

the foundation volume as the cost following Authors’,

then the function costs can be expressed as follows:

C(Y ) =







λ
(

−Y

σS

)
3

2

if Y ≤ 0

∞ if Y > 0
(1)

C(X) =

{

0 if Y ≤ 0 and |X | ≤ −µY
∞ if Y > 0 or |X | > −µY

(2)
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The infinity values mean that the corresponding value

of the reaction can not be borne by the foundation.

Accordingly with Authors’ notation, we have:

∀X,Y : R(X,Y ) ∈

{

λ

(

−Y

σS

)
3

2

,∞

}

(3)

3 The Authors’ method

For the allowance of support cost, the Authors propose

to add to the optimality criterion on ‘adjoint’ strains,

new conditions on ‘adjoint’ displacements at supports
points. These displacements are given by generalised

gradients of reaction cost functions, i.e., ∂R/∂X and

∂R/∂Y —replaced by subgradients when appropriated.

From (3), it is clear that R is a “homogeneous”
function of order 3

2
(Rozvany, 1976:40). But from its

“constituents”, (1) and (2), it is clear also that the

cost function in this case has not a well defined gradi-

ent in the X,Y -space, neither fulfils the assumptions of

the Prager-Shield optimality criterion (1976:40–48). We
have of course well-defined derivatives for some of the

constituents, but R(X,Y ) = constant does not define a

closed, continuous surface, neither R(X,Y ) ≤ constant

does a convex domain—in ‘plastic’ jargon, perhaps it
can be said that we have no “flow rule” in this case.

Hence, the case can be tackled neither with Authors’

Eqs. (3) and (4) nor with the rules for the special cases

‘with non-separable variables’ or ‘with slope disconti-

nuities’ considered by the Authors. Therefore, it is not
covered by the Authors’ approach in the Writer’s view.

Of course, this fact does not point out any mistake

in Authors’, only a key shortcoming in the underlying

theories—of equal nature that the drawback noted by
Cox and Owen.

Against this conclusion, it can be argued that I have

not taken into account the self-weight of the foundation

itself and that if I would have done so the function R

would have been continuous in half of its domain at
least. I do not follow this approach for two main reasons:

(i) I want to show a simple example without technical

complexity; and (ii) to take into account the self-weight

of the foundation would require to make the same with
the structure itself, coming us very far of the realm of

the Authors’ paper.

Perhaps the Authors can enlightened the Writer with

some other rule that the latter is not aware of.

4 Standard design method

With the standard design method (see e.g. Cox, 1965;

Owen, 1965: or Cervera Bravo (2008) for a contempo-

rary writting), each value of X = −νY with |ν| ≤ µ

X

Y ≤ 0

A
−X

Y ≤ 0

B

P

C

L

L/2
D

E G

F

(a) The solution domain is the half plane over AB line.
The given load is P . The foundations are under A y B.

(b) Solution for µ = 0:
V = 1.435PL

(c) Solution for µ = 0.25:
V = 1.310PL

(d) Solution for µ = 0.50:
V = 1.190PL

(e) Solution for µ = 0.75:
V = 1.084PL

With µ = 1, minV = PL for the layout ACB.

Fig. 1 An illustrative example (Cox, 1965:127).

and Y ≤ 0 leads to a given Maxwell’s problem without

any kinematic support conditions (this is the Michell’s

approach: the “free loading” defined by Cox). All these

problems form a family —dependent on ν— that covers
all possible solutions for the given design problem. The

designer’s target is to find the optimal solution within

this family.

For the sake of brevity, let us consider an illustrative

example, see Fig. 1a. The vertical reactions are stati-

cally determined as |Y | = P/2. The horizontal ones are

restricted to maximum friction force, i.e., to |ν| ≤ µ for
the given friction coefficient µ.

By elementary calculations, the minimal internal

force in E with direction AB will be a traction P/2

without horizontal reactions, hence the designer would
wish X = P/2 that corresponds to µ = 1 —and to the

optimal solution ACB. Although this value is not at-

tainable with normal soil conditions, this fact leads to

the conclusion that we must select |ν| = µ when µ < 1,
i.e., to design accounting for all the friction force at our

disposal as X is free-cost anyway. To fix |ν| is the same

to select one problem from the family.
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Once we have one Maxwell’s problem, we can search

for the optimal layout that minimise the Michell’s func-

tional, the “quantity” of structure V (1904:Eq. (3)). We

can compute as an alternative the volume of the struc-

ture —to remain within Authors’ realm— with the well-
known formula (Cox, 1965:87, Eq. (121); Owen, 1965:53,

Eq. (18); Barnett, 1966:20, Eq. (5)):

V =
1

2

{(

1

P
+

1

Q

)

· V +

(

1

P
−

1

Q

)

· C

}

(4)

where —following Michell’s notation— P,Q are the al-
lowable stresses in tension and compression, respec-

tively; and C is the “static constant” of Owen (1965)—

see Michell (1904:Eq. (1)): C = − 1

2
PL(1 + µ) in this

example. Notice that in doing so we do not account any

cost for vertical and horizontal reactions because these
reactions are invariable—their cost are constant and fi-

nite for all the solutions in the search space. Of course,

once a solution is selected as the appropriated one, the

designer adds to the cost of the structure the cost of
the foundations.

It should be noted too that the optimal layout will

be independent of P,Q for any given µ—but, never-

theless, volume varies as indicated by (4). This fact is

important and its proof is simple. Let us consider the
variation of V within the feasible solution space:

δV =
1

2

(

1

P
+

1

Q

)

· δV (5)

as δC = 0. Hence ∀P,Q : δV = 0 ⇔ δV = 0 and any

optimal layout for V will be optimal too for V for any

P,Q couple.

The non-optimal solutions in Fig. 1 were obtained
by a simulated annealing code (Vázquez Esṕı, 1995). All

they suggest the existence of Michell solutions that fulfil

his second theorem. These solutions seem to correspond

to a fan CDE (a T-region following Authors’), and a

region EDB, see Fig. 1a. The latter will be composed
of a T-region (EDFG) and a R-region (GFB). With

µ = 0, GFB area leads to zero; on the other hand CDE

and EDFG areas will be zero with µ = 1. With this

hypothesis, the internal force in the arch CDFB will be
constant and equal to NCDFB = P

√

1 + µ2/2 and the

angle of the arch in B with the vertical direction will

be exactly arctanµ. The angle of the fan can then be

obtained by elementary equilibrium calculations, and

the frontier GF would be obtained by the minimum
condition on V . The dashed-lines in Fig. 1 represents

the first part of these calculus.

It should be stressed that when a given optimal de-

sign —completely defined— will be analysed with any
standard, suitable code, the Michell virtual displace-

ment field will not be obtained, because the difference

between this field and the actual field of the designed

structure: in the latter the horizontal displacement of

foundations is non-linear in respect to its contact with

the ground—including a perfect rigid one—, the yield

tension strain can be different than that of the com-

pression —e.g., because difference in Young’s Modulus
yet when allowable stresses have equal value—, or the

self-weight of both structure and foundations have to be

accounted, etc. This fact is a consequence of the static

approach of Maxwell and Michell (“free loading” with-
out any kinematic support conditions): the displace-

ment fields used in the theory are virtual ones ever,

and that of the Michell’s theorems is only required to

be of bounded absolute strain and continuous.

This point is a key one to formulate any design the-

ory, and it is worth of further analysis. The design prob-
lem with an unique load conditions is defined by given

useful loads and some planes for support the structure

(e.g., the soil plane for a standard building). Accord-

ingly with Hemp (1958:1), “The theory [of structural

design] ought to be in a position to tackle the design
problem directly, that is, to begin with the given forces

and to produce by calculation the best structure that

will safely carry them”. The first pass in the designing

process is to look for some appropriate shapes. As at
this very time the designer has not selected any struc-

tural material, the theory must be formulated without

any constitutive equations. Moreover, the designers nei-

ther has any structure to be analysed, hence it makes

no sense to use structural analysis models as rolled or
pinned supports. The outstanding merit of Maxwell in

1870 was to formulate his design theory only with equi-

librium equations so it could be useful for the designer.

And the equal remarkable improvement of Michell was
to use the compatibility equations only to derive his

optimality criterion on optimal solutions for Maxwell’s

problems, being respectful with Maxwell’s fundamental

axioms.

5 Conclusion

The case of simple foundations with friction has solu-

tion within the standard design theory of Maxwell &

Michell—the “free loading” of Cox—, but it is not ob-

vious that it can be tackled with the method proposed

by the Authors.

The Writer will be grateful to the Authors for fur-
ther comments and criticism.
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versidad Politécnica de Madrid, Madrid, 2008. URL
http://oa.upm.es/189/. 222 pp.

H. L. Cox. The design of structures of least weight. Perga-
mon, Oxford, 1965.

WS Hemp. Theory of structural design. Report 214, North
Atlantic Treaty Organization, Advisory Group for Aero-
nautical Research & Development, Palais de Chaillot,
Paris, 1958.

WS Hemp. Optimum structures. Clarendon, Oxford, 1973.
Anthony George Maldon Michell. The Limits of Economy

of Material in Frame-structures. Philosophical Maga-

zine S.6, 8(47):589–597, 1904. also available at http:

//habitat.aq.upm.es/gi/mve/dt/.
J. B. B. Owen. The Analysis and Design of Light Structures.

Edward Arnold (publishers) Ltd., London, 1965.
W. Prager and G.I.N. Rozvany. Optimization of Structural

Geometry. In A.R. Bednarek and L. Cesari, editors, Inter-
national Symposium on Dynamical Systems, pages 265–
293, New York, 1977. University of Florida, Academic
Press Inc.

W. Prager and R. T. Shield. A General Theory of Optimal
Plastic Design. Transactions of the ASME—Journal of

Applied Mechanics, pages 184–186, March 1967.
George I. N. Rozvany. Optimal design of flexural systems.

Pergamon, London, 1976.
George I. N. Rozvany and T. Sokó l. Exact truss topol-
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