
A REVIEW OF COMPONENT INTERACTION
APPROACHES FROM THE TESTING PER-

SPECTIVE

Angelina Espinoza-Limón, Juan Garbajosa
Technical University of Madrid (UPM)

Ctra. de Valencia, Km. 7. E-28031.Madrid, Spain
T.: (+34)-913365081/7885, Fax. (+34)-913367520

aespinoza@zipi.fi.upm.es, jgs@eui.upm.es

ABSTRACT

Complex systems are usually made of heterogeneous components, ei-
ther hardware or software or both. Component interactions, mostly those
unexpected, are a source of conflict, since one of the main concerns for
system reliability and predictability is precisely this component interac-
tion. This paper reviews a number of approaches, produced over an eight
year period, to component interaction focussing on component interaction
modelling, testing and testing coverage. Other topics such as component
interaction observation and pure monitoring/visualization of component
interactions are outlined.

1 INTRODUCTION

Complex systems are usually made of heterogeneous components, either
hardware or software or both. An increasingly common trend in system
and software engineering is assembly of components, either built on pur-
pose of components of the shelf. The justification of this trend is outside
of the scope of this paper. Component interactions, mostly those unex-
pected, are a source of conflict, since one the main concerns for system
reliability is precisely this component interaction. As Williams and Probert
outline in [11] a common the risk is magnified when, for each element in a
system, there are a number of interchangeable components.

Therefore there a number of issues that are of interest to designers and
testers, and having good approaches to achieve them must be consid-
ered as goals:

Systems Testing and Validation Workshop 2004

117

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148659789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

- Modelling of component interaction, in order to get a better under-
standing of the “fact” of interaction.

- Approaches to test applications in the presence of component in-
teraction

- Measurements of the test coverage considering component interac-
tion

Additionally two more complementary issues are related though they are
just outlined within this paper:

- Component interaction observation intended for integration testing
- Pure monitoring/visualization of component interactions

While some approaches search for test generation, system validation re-
lies heavily on the tester experience and knowledge. This work intends to
provide new inputs to the system validation process, and indirectly to pro-
vide new requirements to environments such as the presented in [XX]
This paper reviews a number of approaches to component interaction.
These approaches have been produced over an eight year period. Some
of the researchers reviewed in this work, study component interaction as
a result of searching better methods for system integration and testing. In
any case each one provides an interesting contribution to the above men-
tioned goals. Last section, Conclusions, provides a critical and compara-
tive analysis of each approach contributions and to the two complemen-
tary issues.

2 THE JORGENSEN AND ERICKSON APPROACH

Jorgensen and Erickson study in [1] integration testing for Object oriented
systems. Object orientation raised a number of issues, and brought up
discussion, even when some of these topics were well known before.

Jorgensen and Erickson raise the attention about structure versus behav-
iour, and they introduce two constructs that are behavioural rather than
structural to test OO system interactions. This is still true nowadays, since
too often software engineers focus their attention mainly on structure,
probably because behavioural issues are much more complex to model,
more if modelling is intended to be consistent with that of structure. But its
importance respect to system testing and correctness is proportional to its
complexity.

Systems Testing and Validation Workshop 2004

118

Jorgensen and Erickson assert that the event-driven nature of object ori-
ented systems forces a "declarative spirit", as opposed to imperative, on
testing; and state that this is not evident at the unit level (as most object-
oriented languages are imperative), but it is pronounced at the integration
and system levels.

According to [1] functional decomposition has been the natural extension
of system analysis, either prescriptive, such as development with func-
tional languages (such as Lisp) or descriptive. This one has become more
popular because is more tolerant of the way people work and exhibits
several senses of hierarchy: levels of abstraction, lexical inclusion, infor-
mation hiding and corresponding data structures. The problem is that
functional decomposition has deep implications for testing as it empha-
sizes levels of testing, creates questions of integration order(bottom-up or
top-down) and, last but not least, stress structure over behaviour. This is
because the objective of integration, more in the context of the waterfall
model, is to fit the units together into the functional decomposition tree.
Thus the structure is the goal, not the behaviour.

Module interconnection usually focuses on interfaces, stressing functional
decomposition, usually ready at preliminary design, and addresses struc-
tural issues, rather than behaviour. Therefore correct behaviour can be
inferred from correct structure.

Both the event-driven nature and dynamic binding creates an indefinite-
ness that resembles of declarative programming. The shift to composition
adds another dimension of difficulty to object oriented software: it is im-
possible to know the full set of "adjacent" objects with which a given ob-
ject may be composed: two objects maybe correct but when composing
errors may result.

Another issue is execution threads: for [1] authors a sequence of method
executions linked by messages in the object network. Threads can be
considered individually and in terms of interaction.

In [1] the concept of method/message path is proposed. It is a sequence
of method executions linked by messages. It starts with a method and
ends when it reaches a method which does not issue any messages of its
own. Objects, as themselves, are not represented by this path. This is
complementary to another concept that reflects the event-driven nature of
object-oriented software: execution begins with an event that triggers the
method-message sequence of a method/message path. Finally coverage
can be obtained from this approach.

Systems Testing and Validation Workshop 2004

119

3 THE JIN AND OFFUTT APPROACH

Jin and Offut main objective in [3] and [4] was to present and approach
for integration testing based on couplings between software components,
and also provided some test coverage guidelines.

Therefore, from the Jorgensen and Erickson´s perspective presented in
the former section, Jin and Offutt focus on structure rather than on behav-
iour. Following [3] coupling between two units reflects the interconnection
between units; faults in one unit may affect the coupled unit. Coupling
provides summary of information about the design and the structure of
the software.

Jin and Offutt state that coupling is exactly where faults found during inte-
gration testing typically occur and therefore. They propose a new cou-
pling-based testing technique, and assert that only three coupling types
are needed with this objective, as opposed to a former work of Offut et al.
[5], which in 1993 considered up to 12 levels. Coupling between two units
increases the interconnections between the two units and increases the
likelihood that a fault in one unit may affect others. The coupling levels
are used to evaluate the complexity of software system designs. In [3]
they define criteria that require that each connection between pro-
grammes units be covered. The three types of coupling they considered
are:

o Parameter coupling: Refers to all parameter passing.
o Shared data coupling: Refers to procedures that refer to the same ob-

jects. This type combines non-local coupling and global coupling.
o External device coupling: Refers to procedures that both access the

same external medium. It is analogous to external coupling.

The coupling-based criteria are based on the design and data structures
of the program, and on the data flow between the program units: Control
flow graph (CFG): Of a program is a directed graph that represents the
structure of the program; nodes: Are basic blocks, and edges represent
potential control flow from node to node; definition (def): It is an occur-
rence of a variable where a value is stored into memory (assignment, in-
put, etc); use: It is an occurrence of a variable where its value is ac-
cessed; caller: It is a unit that invokes another unit, the callee; actual pa-
rameter: An actual parameter is in the caller, its value is assigned to a
formal parameter in the callee; and, interface: Between two units is the
mapping of actual to formal parameters.

Systems Testing and Validation Workshop 2004

120

Jin and Offutt propose in [3] a coupling-based testing scheme starting
from a number of definitions. Coupling-based testing requires that the
program executes from definitions of actual parameters through calls to
uses of the formal parameters. Therefore, it is defined different coupling
paths based on the three types of couplings.

The concept of testing path, used as the testing criteria, also defined in [3]
helps us to get a better understanding of component interaction. Three
types are proposed: Parameter Coupling path, shared Data coupling
path, and external Device coupling path. Each of the three coupling crite-
ria can be applied to four testing levels. Testing criteria levels are requires
issues such that the set of paths executed by the test set T covers the
call-site where A calls B; or that for each coupling-def of a variable x in A,
the set of paths executed by the test set T contains a def-clear subpath
from the coupling-def to at least one coupling-use of variable y in B.

Finally, coverage is defined in terms of a coupling graph. This coupling
graph comes out as a result of the needed structural coverage analysis. A
coupling graph is structured hierarchically and root node is the main pro-
gram that calls a sequence of the other modules; this sequence of mod-
ules then becomes the next layer of the coupling graph, and they can call
other sequences of modules and son on. The approach is describing
coverage measurement schemes for each call-coupling, all-coupling-defs,
all-coupling-uses, and all coupling paths.

4 THE LIU AND DASIEWICZ APPROACH

Liu and P. Dasiewicz in [6] describe a major issue in testing the integra-
tion of software components: the selection of tests to ensure that the
components work together correctly. Their goal is to detect subtle interac-
tion errors without duplicating the work performed in unit testing. The ap-
proach they use is to capture the assumptions made by each component
about how other components should interact with it. The assumptions
become new and formal test requirements that specify what test cases
are needed to exercise the interactions. Interactions of components are
model using a mathematical model that allows concurrency and synchro-
nous communication. It is similar to creating test cases for conformance
testing of communication protocols, but focussing in modelling software
components, and errors in interactions.

For Liu and P. Dasiewicz, most problems in interaction come from the fact
of using an object in an improper order (try to read a file before opening

Systems Testing and Validation Workshop 2004

121

it). Since a “protocol” describes what order things are expected to hap-
pen, then the interaction problems can be described as “violations of the
correct protocol”.

The method proposed, the CIT method, is a method to test interaction er-
rors called Component Interaction Testing (CIT). The method requires
creating a model that shows how each component should be used, and a
list of problematic sequences of interactions, called test requirements,
used to select the test cases that will exercise the interactions or se-
quences of interactions.

The basis of the CIT model is to use a simple, formal model of component
interactions, similar to finite state machines used in many OOA/D meth-
ods. It views interactions as exchanges of messages between concur-
rently executing objects. It is a simplified model of an object that applies
well to all levels of abstraction.

The model can be defined in TTCN or PROMELA languages, to show ab-
stract states and transitions. An example would be to specify the model
for forwarding a telephone call. Then test requirements are defined, also
in TTCN, as specified in [7], or PROMELA [8]. An example of a test re-
quirement is “whatever happens when a user forwards an extension for a
phone, the call has to terminate”. Then the authors of [6] generate test
cases from the test requirements and the model. Model and test require-
ments graphs are combined representing interaction models and tests are
generated.

The main limitation of the method is scalability, due the to state explosion
problem. This problem is worse for software as many more components
have to be considered, as outlined in [6].

In [9] Liu and P. Dasiewicz evolved their approach using a formal exten-
sion of UML, called ObjectState. This extension is made of an architec-
tural description language (ADL), with a representation of connections
and components in line with UML for Real Time; a behavioural language,
with finite state machine representation of the behaviour of each compo-
nent; and a data manipulation language, for detailed modelling of the ef-
fect of transitions on local component data. The formal basis for Object-
Store is provided by labelled transitions systems [10].

To write formal test requirements, as in the case of [6], ObjectStore has to
be extended, according to [9]. Interactions, similarly to the Jorgensen and
Erickson approach are defined with paths, to show sequencing. Authors

Systems Testing and Validation Workshop 2004

122

of [9] claim that only important interactions have to be specified. A usual
model checking approach is then followed.

Finally test coverage is related to paths. It is noticeable that asynchro-
nous communication and dynamic component creation, and dynamically
allocated data structures are left outside, since they result in large mod-
els.

5 THE WILLIAMS AND PROBERT APPROACH

Williams and Probert in [11] present a metric that can be used to measure
component interaction coverage of a system test configurations. The
trade–off that a system tester faces is the thoroughness of test compo-
nent configuration coverage, versus limited resources of time and ex-
pense.

A manufacturer of these system components would want to test as many
of the potential system configurations as possible, to reduce the risk of
interaction problems. The tester will have to select a subset of all possible
configurations to use during testing.

Following Williams and Probert [11] there are two approaches for select-
ing a set of test configurations: one would be to decide in advance what
the interaction test coverage criterion will be, and generate a set of test
configurations directly to meet this criterion. In general this approach is
used to generate a complete set of test configurations all at once. The
second is to evaluate the interaction test coverage of any set of test con-
figurations; in particular a set not specifically created to meet an interac-
tion test coverage criterion. One case is, for instance, an operational pro-
file.

The approach is based on the concept of interaction element. An interac-
tion element consists in selecting a subset of parameters, and a number
of specific values assigned to these parameters. Interaction degree is the
size of the subsets of parameter values for which it wishes to detect un-
wanted interactions. This approach uses somehow the pair-wise cover-
age approach. A number of references related to this approach and the
results of applying it can be found in [11]. The objective is that every in-
teraction element be covered by a selected test configuration. In [11] in-
teraction elements are used as test units for system interaction testing, as

Systems Testing and Validation Workshop 2004

123

one would use control flow branches or definition-use associations in
other type of test coverage criteria.

Authors of [11] take the view that an unwanted interaction is usually not
caused by the particular values of the entire set of parameters, but by the
values of only a (hopefully, small) subset of parameters. The aim is to re-
duce the number of test configurations to the point where the testing can
be conducted with a feasible cost in time and money, and still have a
good probability of detecting unwanted system interactions. The coverage
metric measures the coverage of potential interaction-degree-way interac-
tions in a selected set of test configurations.

6 CONCLUSIONS

Jorgensen and Erickson make a thorough study of the topic, which they
use to justify their approach. But the analysis they provide deals with top-
ics simplified in the rest of the approaches, such as the case of the
“event” nature. This could lead us to topics such as combining synchro-
nous and asynchronous aspects within the same system. The approach
makes a number of assumptions and, as Liu and Dasiewicz mention,
Jorgensen and Erickson view interaction as exchange of messages be-
tween objects in an object oriented programme, but they do not provide
guidelines to produce them, while Liu and Dasiewicz do.

Jorgensen and Erickson also point out that it is not sufficient to test struc-
ture but also behaviour. Being this obvious, structural approach seems
more common as in the case of Jin and Offutt, and then in Williams and
Probert, though in this last case using somehow pair-wise testing. A con-
clusion can be that behaviour issues are still a great concern from testing
and to understand component interaction. Jin and Offut´s approach is
purely structural. It presents some for real systems with a big component
number.

In the Liu and Dasiewicz view, their formal method does not depend on
any programming paradigm or packaging technique, and formal test re-
quirements capture knowledge of problematic interactions. In this case
the main limitation of the method is scalability, due to the state-explosion
problem: the number of states to explore grows exponentially with the
number and complexity of components.

In the Williams and Probert´s view, their approach, though structural, is
more ambitious than that of Jin and Offut´s. It covers interactions not

Systems Testing and Validation Workshop 2004

124

necessarily coming from direct invocation. Profiles as a tool to identify in-
teractions is also interesting. However their investigations are concen-
trated on only degree 2 interactions and the situation where each pa-
rameter has the same number of values. They comment that is needed to
generalize these results to interaction coverage of higher degrees, and
finding efficient ways of handling parameters with varying numbers of val-
ues.

Summarizing existing models focus considerably on structural properties
as opposed to behavioural. Liu and Dasiewicz proposed a model that
deals with behaviour but describing all interactions leads to state explo-
sion, and specific models of interactions must be built for each applica-
tion. Concerning behaviour it is worth while mentioning the efforts re-
ported in [12] and [13]. These efforts address the observation of a number
of issues that could be relevant from a testing point of view, and that
would provide a view on the component interaction, and pure monitor-
ing/visualization of component interactions. Both approaches may help to
improve component interaction models.

Each author proposes tests coverage approaches metrics according to
their approaches, but together with the efficacy of each metric it is not
possible to forget that approaches analysed, mostly, are affected by com-
binatorial explosions, when applied to big systems.

7 REFERENCES

[1] Paul C. Jorgensen, Carl Erickson; Object-Oriented Integration Testing;
communications of the ACM; v 37, n 9, pages 30-38, September 1994.

[2] Hong Zhu, Patrick A. V. Hall, John H. R. May; Software Unit Test Cov-
erage and Adequacy; ACM Computing Surveys; v 29 n 4, 366-427, Dec
1997.

[3] Zhenyi Jin and Jeff Offutt; Coupling-based criteria for Integration Test-
ing; Second IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS ’96); pages 10-17; Montreal, Canada, IEEE
Comp. Soc. Press, October 1997.

[4] Zhenyi Jin and Jeff Offutt; Integration testing based on software cou-
plings; In Proc. of the Tenth Annual Conference on Computer Assurance
(COMPASS 94) pages 13:23, June 1995, IEEE Computer Soc. Press.

Systems Testing and Validation Workshop 2004

125

[5] A. J. Offut et al.; A software metric system for module coupling. The
Journal of Systems and Software, 20(3):295-3008, March 1993.

[6] Wayne Liu, P. Dasiewicz; Formal Test Requirements for Component
Interaction Testing Using Model-Checking.

[7] B. Baumgarten, A. Giessler; OSI Conformance Testing Methodology
and TTCN; North Holland; 1994.

[8] G. J. Holzmann; Design and Validation of Computer Protocols; Pren-
tice Hall, 1991.

[9] Wayne Liu and P. Dasiewicz; Formal Test Requirements for Compo-
nent Interactions; Proceeding of the 1999 IEEE Canadian Conference on
Electrical and Computer Engineering; pages 295-299; Shaw Conference
Center, Edmonton, Alberta, Canada, May 1999.

[10] R. Millner; Communication and Concurrency; Prentice-Hall; 1989.

[11] Alan W. Williams and Robert L. Probert; A Measure for Component
Interaction Test Coverage; Computer Systems and Applications,
ACS/IEEE International Conference on. pages 304-311, 2001.

[12] Zhu, H. and He, X., A Methodology of Component Integration Test-
ing, to appear in Testing COTS Components and COTS-based Systems;
Sami Beydeda (ed.), Springer, 2004-10-29

[13] Harold Batteram, Wim Hellenthal, Willem Romijn, Andreas Hoffmann,
Axel Rennoch, Alain Vouffo; Implementation of an Open Source Toolset
for CCM Components and Systems Testing; Testcom 2004

[14] Pedro P. Alarcón, Juan Garbajosa, Belén Magro, Alberto Crespo;
Automated Support For Requirements And Validation Tests As Develop-
ment Drivers; System Testing and Validation Workshop SV04, published
by Fraunhofer Institute, 2004.

Systems Testing and Validation Workshop 2004

126

	svprocV03 117
	PaperPublished
	svprocV03 118
	svprocV03 119
	svprocV03 120
	svprocV03 121
	svprocV03 122
	svprocV03 123
	svprocV03 124
	svprocV03 125
	svprocV03 126

