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Abstract 

We present a suite of algorithms designed to obtain aecurate numerical solutions of the generalised ei-
genvalue problem governing inviscid linear instability of boundary-layer type of flow in both the incom
pressible and compressible regimes on planar and axisymmetric curved geometries. The large gradient 
problems which oceur in the governing equations at critical layers are treated by diverting the integration 
path into the complex plañe, making use of complex mappings. The need for expansión of the basic flow 
profiles in truncated Taylor series is circumvented by solving the boundary-layer equations directly on the 
same (complex) grid used for the instability calculations. Iterative and direct solution algorithms are em-
ployed and the performance of the resulting algorithms using nonlinear radiation or homogeneous Di-
richlet far-field boundary conditions is examined. The dependence of the solution on the parameters of the 
complex mappings is discussed. Results of incompressible and supersonic flow examples are presented; their 
excellent agreement with established works demonstrates the aecuracy and robustness of the new methods 
presented. Means of improving the efficieney of the proposed spectral algorithms are suggested. 
© 2002 Elsevier Science Ltd. All rights reserved. 

1. Introduction 

Interest in boundary-layer linear flow instability developed in the late parts of the 19th and the 
early parts of last century in the quest for the description of deterministic routes of laminar-
turbulent flow transition. Linear theory is still erroneously taken to be exclusively applicable to 

* Corresponding author. Tel.: +49-551-709-2430; fax: +49-551-709-2404. 
E-mail address: vassilios.theofilis@dlr.de (V. Theofilis). 

mailto:vassilios.theofilis@dlr.de


flows in which two out of three spatial directions are taken to be homogeneous and treated as 
periodic, as required by the early analyses (the reader is referred to Drazin and Reid [5] for an 
overview), or to flows in which weak basic (boundary-layer type) flow variation is admitted in one 
spatial direction, the second spatial direction is taken to be periodic and the third is resolved [14]. 
Today we are in a position to redefine the boundaries of a linear analysis by considering the 
instability of flow to small-amplitude disturbances which are periodic in one spatial direction 
alone, the other two spatial directions being resolved numerically (e.g. [32], and references 
therein). Discussion of the latter global linear theory is beyond the scope of the present paper; here 
we confine ourselves to the bounds of the classic linear analysis which is concerned with wave-like 
disturbances whose amplitudes are functions of one spatial direction alone. Such disturbances 
have been observed experimentally, although comparisons with the theory have been met with 
mixed success. Most notable verification of the classic linear theory has been the experiments of 
Schubauer and Skramstad [27] where Tollmien-Schlichting (TS) instabilities were observed in 
incompressible flat-plate boundary-layer flow at a time when only the Góttingen school of Prandtl 
had faith in the theory; probably the most notable failure of the theory is its prediction of stability 
of pipe Poiseuille flow at all Reynolds numbers, although instability is known to exist in this flow 
at low Reynolds numbers at least since Reynolds [26] conducted his famous experiments in 
Manchester. 

Strong ímpetus was offered to the theory of linear flow instability by the development of nu-
merical techniques, based on finite-differences, for the solution of both the inviscid and the viscous 
linear eigenvalue problem. The pioneering eflbrts of Mack [18,19] were crowned with the dis-
covery of a sequence of new modes particular to compressible flow which have been verified 
experimentally to exist in both planar and axisymmetric geometries [21]. Here the term 'mode' is 
used to describe members of either the discrete or continuous finite spectrum of eigenvalues re-
sulting from numerical solution of the generalised eigenvalue problem which forms the basis of a 
temporal or spatial linear instability analysis. The first mode of instability is the compressible 
analogue of the discrete TS mode of incompressible flow, while the second and higher so-called 
Mack modes are unique to supersonic (and hypersonic) flows. Mack's work on the problem of the 
linear instability of boundary-layer flow in planar geometries was complemented by the seminal 
work of Duck [6] who dealt with the inviscid instability problem of boundary-layer flow in axi
symmetric geometries. Duck and Shaw [8] (DS) and Shaw and Duck [28] considered the eflects 
that wall curvature has on the planar compressible observations of Mack, concentrating on the 
first two unstable modes. 

What makes inviscid linear instability theory interesting from a physical point of view is that in 
compressible flow the existence of inflectional profiles of the basic flow results in the instability 
mechanism to be inviscid in nature with viscosity acting to diminish the growth rates of insta
bilities. On the other hand, what makes the inviscid instability problem interesting from a 
numerical point of view is the possible existence of what are termed critical points which cor-
respond to singularities of the governing equations. In temporal linear instability theory these are 
locations where the disturbance phase speed equals that of the streamwise basic flow velocity, 
while in spatial theory it is where the ratio of frequency to wavenumber equals the streamwise 
basic flow velocity. Singularities only occur when the eigenvalue being sought is real, Le., neutral 
disturbances. However, for complex eigenvalues (both growing and decaying disturbances) the 
imaginary part is typically small and thus results in sharp gradients in a región termed the critical 



layer. The existence of critical layers in an inviscid framework prohibits the use of straightfor-
ward spectral collocation techniques (e.g. [17]) for the numerical solution of the inviscid 
incompressible or compressible linear instability problem. The numerical algorithms of Duck [6] 
are typical of methods currently used in linear instability analysis. The steady basic flow is 
obtained by employing the boundary-layer approximation, in which the resultant system of 
equations is solved using a Crank-Nicolson finite-difference scheme with suitable boundary 
conditions. The instability equations are solved using a fourth-order accurate Runge-Kutta 
shooting scheme, beginning the shooting process at a suitably chosen valué in the far field where 
radiation (as opposed to homogeneous Dirichlet) boundary conditions are imposed and the 
computation proceeds inwards to the fixed boundary. The eigenvalues are determined so that 
the impermeability condition on the surface of the axisymmetric bodies is satisfied. This is 
achieved by making an initial guess and then, through the use of a Newton-iteration scheme, the 
shooting process is repeated until preset convergence criteria are met. To deal with critical 
layer problems the contour indentation method of Zaat [33] and Mack [18] is employed, 
with basic flow quantities being approximated by truncated power series in the complex 
plañe. 

While (real-grid) spectral methods have long been applied to the solution of the basic flow 
problem [25] their application to the resultant inviscid instability analysis has proved prohibitive 
due to the existence of the critical layers, as remarked upon above. Note, in many cases the 
eigenvalue lies sufficiently far from the real axis such that convergence rates are only slightly 
affected. In such cases a standard (real-grid) spectral discretisation is adequate. However, for 
most of the boundary layers of the type considered in this paper the imaginary parts of the 
eigenvalues are of the order of 10~3 or less, as can be seen in Section 4. The simple-minded 
approach of grid refinement, aside from being computationally intensive on account of the dense 
spectral collocation matrices, does not alleviate the problem for neutral disturbances or where the 
eigenvalue imaginary part is very small. Two solutions are known to us in order to regain spectral 
accuracy. The first is to use a standard Chebyshev Gauss-Lobatto (real) grid [4] but Taylor-
expand the basic flow around the critical layer. The second, followed herein, is to extend the 
Zaat-Mack technique for the integration of the instability equations in the complex plañe and 
introduce complex collocation grids, forcing a spectral method to intégrate the equations on a 
complex contour suitably adapted to avoid the critical layer. Use of this second approach was 
first suggested by Boyd and Christidis [2] and further investigated by Boyd [1] in the context of 
atmospheric and hydrodynamic instability calculations. These works were extended by Gilí and 
Sneddon [11], who gave an analytic formula for optimizing one family of complex (quadratic) 
maps. Gilí and Sneddon [12] also developed a new technique based on composite complex maps 
to handle near-boundary critical points. Their work involved calculating the eigenvalues of 
linearized hydrodynamic instability and Sturm-Liouville eigenproblems of the fourth kind. 
Mayer and Powell [23] investigated the instability of a trailing vortex, while in the recent work of 
Fang and Reshotko [9,10] the inviscid spatial stability of a developing axisymmetric mixing 
layer was investigated. Mayer and Powell [23] state that in the instability problem they consid
ered: 

"Without any deformation, the eigenvalue corresponding to the primary mode is inaccessi-
ble no matter how many basis functions are used." 



They showed that the combination of a complex grid and the spectral method is essential for the 
inviscid linear analysis of their trailing vortex model problem. Duck et al. [7] also found that the 
same approach for the instability equations of compressible plañe Couette flow delivers accurate 
results (prívate communication, 2000) although no discussion of this issue using a spectral method 
was presented in [7]. 

Here we revisit typical inviscid linear instability problems encountered in wall-bounded 
boundary-layer type of external aerodynamic flows and discuss a novel spectral scheme for the 
solution of the incompressible inviscid linear eigenvalue problem in planar geometries and that 
pertaining to supersonic flow in both planar and axisymmetric curved geometries. The first 
problem is governed by the classic Rayleigh equation while compressibility and curvature are 
discussed using the equations of Duck [6] or their planar limits. We employ complex spectral 
collocation grid techniques first to the solution of the basic flow problem and subsequently to 
both the incompressible and the compressible inviscid linear eigenvalue problems. The accuracy 
and the efficiency of the proposed algorithms are assessed in comprehensive comparisons of re
sults obtained using our spectral approach against the work of Mack [19,20] and the finite-dif-
ference algorithm of Duck [6]. In either the incompressible or the compressible case several 
concerns arise. First, the effect of closing either the incompressible or the compressible system of 
governing equations by the straightforward homogeneous Dirichlet boundary conditions or by 
the appropriate radiation far-field boundary conditions is unknown and must be examined. This 
issue has been successfully resolved by Macaraeg et al. [17] in the context of viscous real-grid 
spectral collocation calculations; here we extend the discussion to inviscid calculations based on 
complex spectral collocation grids for the case of compressible boundary layers. Second, the 
performance of complex-grid techniques in combination with the two most widely used strategies 
for the calculation of the eigenspectrum, namely global and local methods, must be examined; 
results have been obtained using the QZ algorithm as well as a Newton-iteration scheme. Algo
rithms for the solution of the individual numerical problems cited are combined to form a 
spectrally accurate method for the solution of inviscid linear instability problems in boundary-
layer type of flows. In Section 2 we present the theoretical framework for the compressible inviscid 
linear instability problem in axisymmetric geometries from which the compressible and incom
pressible planar problems are derived. In Section 3 the building blocks of our numerical ap-
proaches are detailed. Results are presented first for the basic flow and subsequently for the 
incompressible and compressible eigenvalue problems in Section 4. Conclusions are furnished in 
Section 5. We use Appendices A and B to present technical details. 

2. Inviscid linear instability theory of boundary-layer flow in axisymmetric geometries 

We start by introducing the axisymmetric geometry, from which the planar limit is derived. The 
general layout of the problem is shown in Fig. 1. The z*-axis lies along the body axis, r* is the 
radial coordínate and 6 the azimuthal coordínate (superscript * denotes dimensional quantities). 
The curved body surface is taken to lie along r* = a* + X\z*, z* > 0, where a* is the tip radius, 
nonzero in the case of a cone and X\ denotes the slope parameter. The velocity vector has com-
ponents v\, v*2 and v*3 in the r*, 9 and z* directions respectively. Also, U^ is the free-stream velocity 
in the axial direction, and p*^, ff^ and T^ represent the free-stream density, the first coefficient of 



Fig. 1. Schematic representation of the axisymmetric geometry. 

viscosity and the temperature of the fluid, respectively. Central to the classic linear theory used 
herein (and a point of frequent criticism against it) is the parallel-flow assumption (Le., v*2 = 0). A 
further assumption we make is that (owing to the symmetry of the chosen geometry) the basic flow 
is independent of 9, an assumption only valid if the direction of the laminar steady upstream flow 
and the axisymmetric-body radius coincide. For generality, we present the equations from the 
compressible point of view and derive the corresponding incompressible equations by applying 
the relevant limits. The scaled disturbances are taken to be wave-like three-dimensional functions 
according to the Ansatz 

qb + eq + c . c , :i: 

where q denotes the vector of primitive variables in compressible flow, qb = (p, v\, 0, u3, T) is the 
O(l) steady basic flow, qp = (p, i>\, v2, h, T) is the perturbation field superimposed at 0(e <C 1) 
upon the basic flow and the complex conjugation is introduced on account of qp being complex in 
general while q and qb are real. 

Furthermore we assume that the gas is ideal and a linear Chapman law, p* = CT*, holds where 
p* and T* denote viscosity and temperature respectively and C is a constant. The reasons for the 
latter assumption are twofold. Firstly, for modérate Mach numbers reasonable accuracy is 
maintained while the number of working parameters is reduced by one (no need for T^ valúes). 
This aids the focus of the present work which is numerical in nature as opposed to a physical 
study. Secondly, such a choice allows us to compare directly our results to those of Duck [6], 
Duck and Shaw [8] and Shaw and Duck [28]. For the same reason we adopt the approach of [6,8] 
and [28] in the following derivations. 

2.1. Basic flow 

We assume that the axisymmetric body-tip radius is of the same order as the boundary-layer 
thickness. This in turn permits us to impose the boundary-layer approximation [6]. Thus, intro-
ducing the nondimensional variables 
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qb = (p,vh0,V3,T) = — , 7 ^ 7 7 , 0 , — , — , (2) 

and, in addition 

( '•"'-(¿•¡SF)1- (3) 

where slender body divergence is assumed, i.e., X\ = CRe^1! where 1 ~ O(l), and implementing 
the transformation [8] 

Vl=r%(ri,0, v3 = v3(r,,0, T = T(ri,0, (4) 

where 
2 

the boundary-layer equations read [8] 

_ 8Ü3 £hdh_- í tf+H\ ^1 = L— (rT—\ (7) 
Qr¡ 2 9£ V 2 / 8/7 r 8/7 l 8/7 i ' 

! - • <»> 

where r = 1 +1£2 + C ,̂ and y is the ratio of specific heats, Mx the free-stream Mach number and 
a the Prandtl number. The boundary conditions, in the case of insulated walls with no mass 
transfer, are 

6T 
vx =v3 = 0, — = 0 at n = 0, (10) 

8?7 

Ü3 - • 1, f ^ 1 as ?Í - • oo. (11) 

2.2. Linear instability analysis 

In order to determine the instability of the basic flow predicted by Eqs. (6)-(8)jve now perturb 
this flow by small-amplitude nonaxisymmetric disturbances qp = (p,üi,ü2,ü3, T) which have 
wavelengths of the same order as the boundary-layer thickness. The chosen frequency range of 



disturbances also means that the parallel-flow approximation is asymptotically correct. At a given 
streamwise location z0 we represent the flow parameters by 

P*=P*00[\/Mr)+sp{r)E]+0{s2), 

v\ = EW*Jx{r)E + 0{E2), 

v; = £U^v2(r)E + 0(82), 

v; = U*JW0(r)+£v3(r)E]+O(82), 

r = T*O0[T,{r) + 8T{r)E)+0{82), 

p*=plR*T^[\+8p(r)E}+0(82), 

where 

£ = expi<9, W0{r)=v3{r,z0), T0{r) =T{r,z0), 

t={U*Ja*)f, z = z*/a*. 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

Here qp = q E, e is a small parameter, 0 = a.z — cot + n6 with co the frequency and a the nondi-
mensional wavenumber in spatial theory, while 0 = a.{z — ct) + n6 with a and c respectively de-
noting wavenumber and wavespeed in temporal theory; in both cases n is the wavenumber in the 
azimuthal direction 6 (thus, a¡ < 0 implies spatial instability while c¡ > 0 implies temporal in
stability). Note, R* denotes the universal gas constant. Substituting the above into the full Navier-
Stokes, energy and continuity equations and taking the 0(e)-terms with the leading order in 
Reynolds number (Le., ignoring viscous terms), a sixth-order system is obtained which can be 
reduced to the system [8] 

% + 
í 

•<P 
W0n<p 1/7 

\+K2 + ín w,-fi yMi(W0-P) 

2r2 

1+- nK 
a 2 ( l+ lC 2 + Cí7) 

•MKWO-P)1 

•w2(Wü-p) Pn 
yMV 

(20) 

(21) 

where cp = v\/t„ a. = a.t,, co = a>[, and P = c (c complex and a real) for temporal instability cal
culations while /? = co/a (a complex and co real) for spatial instability calculations. The boundary 
conditions are [8] 

co =pn = 0 on r¡ = 0, 

<P~^f{Kn+M+K^{n)} as oo, 

(22) 

(23) 
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where fj = ±a[ l — M¿(1 — /?)2]1/2(1/C + 1C + >7)J the sign of which is chosen such that the real part 
of the argument is positive in order for boundedness as r¡ —> oo to be ensured, cp^ is a constant 
and Kn{z\) denotes the modified Bessel function of order n and argument z\. 

Alternatively, one may combine the system (20) and (21), into a single equation 

2,^2 [Wo-PYM-
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subject to the boundary conditions 

pn =0 for r¡ = 0, 

P ~ T<PooM2J«.y{\ - P)Kn{n) / íl - Ml{\ - P) 

:m-P) 
ToPn 

ár] a2(W0-p) 
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(25) 
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(27) 

2.3. Planar limiting cases 

To achieve the planar limits, we firstly set 1 = 0 in (20) and (21), Le., consider the cylinder form. 
Subsequently, the limit t, —> 0 is applied, corresponding to flow in planar geometries. This yields 

W0tl(p _ 
<Pn _ 1P 

W*-P yM2jW0-p) 
T0-M

¿JW0-PY 

w2(Wü-p) Pn 
yM2J 

(28) 

(29) 

which describe the inviscid linear instability of compressible boundary-layer flow in planar ge
ometries. Note, on applying the limit t, —> 0, one collapses onto plañe polar coordinates and not 
plañe cartesian coordinates. The corresponding boundary conditions are 

(p=p =0 atf/ = 0, 

and 

<P ~ <Poo exp a.\ 1 ^-PfMln 

ia.cPooyM^{\ - /?)exp 

P 

ccJi-ii-pYMin 

I-(I-PYMÍ 
as r¡ —> oo. 

(30) 

(31) 

(32) 



Combining Eqs. (28) and (29) results in 

[Wo-p)<pn-Wto,<p d_ 
dr¡ 

a? 
TM-P)<P. (33) 
¿0 T0-Mi(W0-p)2 

In the incompressible limit Mx —> 0 and T0 —> constant, so that 

T^;[(W°-P)<P>I-
W°>I<P]=T(W°-P)<P> 

lo ar¡ i0 

which may be rearranged to obtain the classic Rayleigh equation 

{Wo-p) [<pm - a2 y] - W0mcp = 0, (34) 

governing inviscid linear instability of incompressible boundary-layer flow in planar geometries. 

3. Numerical methods 

In this section we outline the numerical algorithms employed in this paper. We begin by pre-
senting the complex mappings used in the wall-normal direction for both the basic flow and the 
instability calculations. Then the marching scheme for the basic flow is presented. We follow this 
with a discussion of the problems inherent in an inviscid linear instability analysis and present 
both global and iterative algorithms for their successful solution. The section concludes with a 
presentation of the boundary conditions used to cióse the alternative forms of the linear inviscid 
instability eigenvalue problem. All the calculations presented in this work were performed using 
64-bit arithmetic. 

3.1. Complex grids and corresponding mappings used 

In all numerical work that follows we employ Chebyshev spectral collocation schemes for wall-
normal calculations. The physical range of the type of boundary layer being considered extends 
from zero at the solid boundary to suitably chosen far-field positions. This necessitates the use of 
mapping transformations between this range and the domain upon which the Chebyshev spectral 
collocation points are defined. The nature of the problems addressed in the past (for example, 
[25,30]) permitted the use of real transformations. In the present work, for reasons which will be 
explained in detail later in this section, use of complex grids and associated complex mappings is 
required for both the incompressible and compressible problems considered. The standard (real) 
Gauss-Lobatto collocation points 

x7. = c o s ^ , (j = 0,...,N), (35) 

form the basis of all complex grids constructed. 
The first of the complex grids employed (and the most straightforward) is based on trans

ió rming [—1,1] to a parabolic contó ur in the complex domain [1]. There are two ways to construct 
a complex grid which passes from the point r¡ = 0 to r¡max, the location on the real axis where the 
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Fig. 2. The Gauss-Lobatto collocation points before (o) and after (x) the complex mapping (36) and the final com
putational grid (-&) on which the basic flow and the instability equations are solved. 

calculation domain is truncated. One way is to apply first the complex quadratic transformation 
[1] 

y¡ =xj + iS1(x
2
j - 1), i (36) 

taking the parábola that cuts the real axis at y = — 1 and 1; this is shown in Fig. 2a. Here ¿h is a 
parameter whose effect on the resultant solutions will be discussed in Section 4. The physical 
domain is then mapped onto the computational domain using the following algebraic transfor
mation [29] 

1-yj 
r¡j = l- (37) 

1+s + yj' 

where s = 21/r¡max and / is a stretching parameter. Fig. 2b displays a typical complex grid used by 
the present algorithm, with ¿h = —0.05 and r¡max = 1 = 25. The grid defined by (37) is parabolic 
and avoids the critical point/layer by passing below it. 

Alternatively the interval [—1,1] is transformed to the computational interval [0, jmax] (where 
) using the algebraic transformation 

1 — Xj 
y} = l 

1 + S + Xj ' 
(38) 



and then mapped onto the complex domain, passing through the real points r¡ = 0, r¡ = t]max, using 

f/ • = y¡ + ic2 

fmax 
(39) 

where m is an integer with m ^ 2 and c2 is a parameter, both of which determine the character-
istics of the integration path; as m increases (assuming that c2 < 0 and remains constant) the 
máximum depth of the complex integration path increases and its mínimum shifts towards the 
Re(r¡) = 0 axis, thus enabling the handling of critical points/layers which lie cióse to r¡ = 0. This is 
useful in calculations of inviscid instability of incompressible wall-bounded flows. On the other 
hand, by changing the sign of c2, one can intégrate above or below the real axis, for c2 > 0 or 
c2 < 0, respectively. Further, by increasing the absolute valué of c2 one can increase the máximum 
depth/height of the complex integration path. Note, the real parts of the complex-grid points (37) 
and (39) constructed using these altérnate approaches are not identical. In other words, the real 
grid generated by setting 5\ = 0 is not the same as the one obtained for c2 = 0. 

The second complex grid considered in this paper is dependent on the availability of an estímate 
of the critical layer position. If an estímate exists, then the grid can be deformed locally into the 
complex plañe using an exponential complex mapping such as that proposed by Boyd [1] 

yj=Xj + i52e-{xj-Xo)2/c\ (40) 

where S2, c0, x0 are parameters. This mapping, combined with the algebraic transformation (37), 
allows for a short detour around the critical layer while hugging the real axis for the rest of the 
interval. Alternatively, the algebraic mapping (38) combined with the transformation 

r¡j = yj + iciyjer», (41) 

could be used. Note, this complex grid may result in serious convergence problems in the 
Chebyshev polynomials expansión of the eigenfunctions [1]. Fig. 3 shows two typical grids, one 
exponential with c\ = —3.0 and one polynomial with c2 = —1.2. 

As in the case of real-grid calculations, the chain rule is used to derive the modified collocation 
derivative matrices [4] which are employed in the computations. 

3.2. Basic flow algorithm 

The numerical scheme employed in this work to solve the boundary-layer equations for su-
personic flow past axisymmetric bodies is a mixed finite-difference-spectral collocation marching 
algorithm. At the tip of the axisymmetric bodies (£ = £* = 0), as a result of the transformation (4) 
and (5), the system of nonlinear partial differential equations reduces regularly to a system of 
nonlinear ordinary differential equations, in which only derivatives with respect to r¡ appear. Note, 
if transformation (4) and (5) is not employed then the boundary-layer equations would be singular 
at the body tip. This system is discretised using the transformed Chebyshev collocation derivative 
matrices, providing the initial conditions for a marching procedure. For £ > 0, the streamwise 
derivatives (C-derivatives) are discretised using a Crank-Nicolson type scheme, where derivatives 
with respect to t, are approximated at a virtual point £¡+i/2 midway between two successive 
C-stations, using central finite differences. 
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Fig. 3. Typical complex grids. 

Applying this discretisation scheme, then for N + 1 collocation points the basic flow terms v\, 
V3, T at C¿ are known while their valúes at £¡+i, Le., 

vl = K + i . o ^ l m . n - ' - ^ U . vh-l¡+l,iV-l ' " íi+lfl ) ' 

«3 = (i>3i+li„ , i > 3 i + M , . . . , Ü3 ¡ + 1 ; W_ 1 , Vi¡+l¡N ) , (42) 

^ — (7¿+i,0) 7¿+i,i) • • •) T¡+\,N-\, Ti+\r N 

are to be determined. Evaluations at the virtual point do not enter explicitly into our calculations 
since the unknown functions and their derivatives are expressed in the following way: 

_f{íun])+f{íi+un]) 
ñC^nj) (43) 

8C 
i + 2 

^ 2 
+ o 4 

(44) 

^Djknci+L,m) 
t. í'ij 

k=0 
¿D,i/(C¿,í7i) + ¿^/(U,%) 
k=0 k=0 

(45) 



where/is one of v>\, ü3 or T. Thus, in the resultant discrete nonlinear system 3 (TV + 1) unknowns 
appear, i.e., the valúes of the three unknowns v>\, ü3, T at the (TV + 1) grid points, while the co-
efficients of these equations contain the known valúes of these quantities at the previous C-station, 
£¡. In this way, at each streamwise station £¿+1 (for £ > 0), a 3 (TV + 1) x 3 (TV + 1) complex non-
linear algebraic system is formed. The real and imaginary parts of this system are separated 
yielding a 6(/V + 1) x6(7V+l) nonlinear real algebraic system which is then solved using Broy-
den's and/or Newton's methods. In the present study, since the dimensión of the nonlinear system 
is rather low (typical valúes range from 192 x 192 to 384 x 384) use of preconditioning may be 
circumvented. We will return to this issue in more detail later. 

Compared with the solution approach of Pruett and Streett [25] ours is algorithmically simpler 
but their scheme discretises the C-derivatives with fifth-order accuracy as opposed to the second-
order accuracy that our scheme provides. However, since the type of boundary-layer flow we 
consider evolves slowly in the downstream spatial direction and we concéntrate our instability 
analysis on the región cióse to the leading edge, which previous studies have shown to be the most 
important in the context of linear instability analysis from a physical point of view, it was not felt 
that a scheme of higher formal order of accuracy in the streamwise direction was necessary. 
Another difference between the algorithm of Pruett and Streett [25] and our scheme, is that ours 
solves the boundary-layer equations directly in the complex r¡ plañe; on the other hand, the 
techniques described herein could be combined with the scheme of [25] without conceptual dif-
ficulties. It should be clear that in choosing the outlined simple approach for the solution of the 
basic flow problem we did not aim at improving efficiency in comparison with the work of [25]; 
rather, our intention has been to design an adequate and simple algorithm which is capable of 
providing reliable solutions of the basic flow problem for the subsequent instability analysis. The 
characteristics of the algorithm from the point of view of both accuracy and efficiency will be 
examined in what follows. 

3.3. Inviscid instability algorithms 

Methods for the determination of the eigenvalues of the inviscid linear instability equations can 
be divided into two classes—global or local. In a global calculation the eigenvalue problem is 
written as a matrix eigenvalue problem whose full spectrum is then calculated, typically using the 
QZ algorithm [13]. However, on account of the memory and corresponding CPU time require-
ments scaling with the square and the cube of the leading dimensión of the matrix, respectively, 
global methods are often replaced by local methods where the focus is on the calculation of a 
single eigenvalue. Care has to be exercised here in the interpretation of the term 'local', which is 
also used in the context of the method utilised for the numerical calculation of derivatives. Within 
the framework of a local algorithm for the recovery of the eigenvalue one may use 'local' finite-
diflerence based shooting algorithms, such as Runge-Kutta or Adams-Bashforth schemes, to 
calcúlate the eigenvalue. This was not done in the present work, but we rather use a 'global' 
spectral method to set up the matrix eigenvalue problem. The advantage of local methods for the 
calculation of the eigenspectrum is that all one's computing resources may be devoted to the 
resolution of a single eigenvalue/eigenvector pair. However, there is a need for a reasonably ac-
curate initial guess. Both methods are described in what follows; in practice a combination of both 



is used with a global solution providing an estímate of the eigenvalue which is subsequently re-
fined by a local search. 

As was discussed in the introduction a major difficulty faced in conducting inviscid instability 
calculations is how to treat the critical layer región [31]. Since most of the eigenvalues correspond 
to growing/decaying (Im(/? ^ 0)) disturbances a singularity will not explicitly exist in the critical 
layer, but strong gradients do cause solution problems. Finer grids in the neighbourhood of the 
critical layer might be one solution but this increases computational cost substantially on account 
of the dense spectral matrices introduced. As has been mentioned, the method we employ to 
alleviate the strong gradients problem is the use of complex grids, Le., we solve the instability 
equations directly in complex space away from the strong gradients. This however presents a 
different problem in that how do we obtain the relevant basic flow velocity and temperature 
profiles at the complex-grid points? A common practice, which has been used by many investi-
gators is the extensión of the real basic flow profiles into the complex plañe by means of truncated 
Taylor series expansions. This technique has been successfully adopted for both local shooting 
(for example, [6,8,19]) and global spectral [9,10] schemes. For example, to determine the 
valid streamwise basic flow velocity valué Wo at the complex-grid point r¡ = r¡r + ir¡¡ one would 
evalúate 

WM = w,{nr) + if/Xfo) - 1 <(f/,) - i | <'(f/,) +1- <"(f/,) + otó). (46) 

Clearly the accuracy of this approach is dependent on the truncation error and for the problem 
considered here effects the accuracy of the instability calculations (see Section 4.1.2). The existence 
of an alternative scheme can assist in assessing the accuracy and efficiency of the Taylor-expansion 
approach. The alternative we consider in this work is to solve the basic flow (boundary layer) 
equations in the í,-direction directly in the complex plañe using the same grids as those used for 
the subsequent instability analysis [16]. 

3.3.1. Global algorithm for the entire eigenspectrum 
The global algorithm which we employ in order to derive an approximation of the entire 

spectrum of eigenvalues is the standard QZ scheme. In order to formúlate a generalised eigenvalue 
problem the inhomogeneous far-field boundary condition (27) was replaced by a homogeneous 
boundary condition, Le., p(r¡max) = 0 or by the asymptotic boundary condition p' + cp = 0 at 
r¡ = r\m¡ÍX. Alternative boundary conditions will be presented in what follows in this section; their 
effect on the accuracy of the instability calculations will be examined in Section 4.3.3. In this work 
we only present (and consider) the spatial versión of the QZ algorithm, although there is no 
conceptual problem in deriving the analogous temporal matrix system. As a first step, Eq. (25) is 
written in the following form: 

d , ,_ d2 , , 2 ft«2c2ro , cor0c d 
a)T0n- + a)T0 — + aSM^ — + 

úv] ÚY}¿ úv] r úr¡ 

P dr¡ dr¡2 °° r2 r dr¡ 
2 

W0T0„i- + W0T0i^-2W0„T0i- + ^ ^ i- + 3W0M
2m 

d , „ r r r d 2 ,7TA „, d , ÍT0W0 d , „ 7 T _ 2 2 n2ÍT0W0 
P 

+ a2 [- 3 W0
2Mloj + ojT0]p + a3 [M¿ W¡ - T0 W0]p, (47) 



where r = 1 +1£2 + £r¡. Then, the companion matrix approach of Bridges and Morris [3] is em-
ployed; using the appropriate collocation derivative matrices the above eigenvalue problem is 
approximated by a nonlinear algebraic eigenvalue problem of the form 

EX = txFX + tx2GX + a.3 HX, (48) 

where X = \p0,p1:... ,pN] are the valúes of the pressure eigenfunction at the collocation points 
(Le., pj =p(r¡j) for j = 0,... ,N). The nonzero entries of the matrices E, F, G, H are given in 
Appendix A. The above (TV + 1) x (TV + 1) nonlinear eigenvalue problem is then converted to the 
following 3 (TV + 1) x 3 (TV + 1) linear eigenvalue problem: 

BY = aCY, (49) 

where 

B 
E 
0 
0 

0 
I 
0 

0~ 
0 
I 

, c = 
F G H~ 
I O O 
O I O 

, Y = 
' X ' 

aX 
éX 

(50) 

while / is the unitary and O the zero matrix. Finally, the QZ algorithm is employed to solve the 
eigenvalue problem (49) for a. 

3.3.2. Iterative algorithm for a single eigenvalue 
In order to use the iterative algorithm at a given streamwise position £¿ Eqs. (20) and (21) are 

discretised at the (TV + 1) spectral collocation grid points yielding a linear inhomogeneous alge
braic system which can be expressed in the form 

AX 
Ax 
A, 

A2 

A4 
(51) 

where q> = (q>0, q>\,..., q>N) , p = {Po,p\, • • • ,pN) • The elements of the submatrices Ai, A2, A3, A4 

and the vector b are given in Appendix B. The Nth and 2/Vth lines of matrix A are reserved for the 
boundary conditions. All but two elements of the vector b are zero. The nonzero elements appear 
at the Nth and 2/Vth positions corresponding to the asymptotic valúes of cp and p at the far-field 
position r¡max, Le., conditions (23) and (24). 

Starting with a suitable initial guess of the required eigenvalue, the algebraic system (51) is 
solved iteratively, by means of a Newton-iteration scheme [19], until the impermeability condition 
on the surface (Le., (p(0) = 0) is satisfied. The above described scheme is able to perform temporal 
as well as spatial instability calculations giving spectrally accurate results at the same level of 
computing effort. A similar iterative scheme was proposed by Malik [22] for the solution of 
viscous, compressible instability equations on a real grid. Standard numerical library subroutines 
were used for the solution of the linear system (51) and the evaluation of the modified Bessel 
functions. 

3.3.3. Far-field boundary conditions 
Finally we discuss the boundary conditions closing the inviscid linear instability equations, 

which determine the strategy used for the recovery of the most interesting unstable/least damped 
eigenvalues; if the latter appear nonlinearly in the boundary conditions the iterative algorithm 



must be used, otherwise either the local or the global procedure for the recovery of the eigen-
spectrum may be applied. Boundary conditions considered in this work are: 

(a) Asymptotic (inhomogeneous): The instability equations are used in the form (20) and (21) 
combined with the asymptotic valúes for the disturbance amplitudes (23) and (24) in the far field. 
The discrete system is inhomogeneous, so the iterative spectral technique, as described in Section 
3.3.2, is employed. 

(b) Homogeneous: The instability problem is described by Eq. (25) and homogeneous far-field 
conditions are imposed; setting/5 (0) = 0, a nonlinear generalised eigenvalué problem as described 
in Section 3.3.1 may be formulated. The far-field boundary conditions are 

/K>Wx) = 0. (52) 

(c) Homogeneous far-field-normalized pressure: The instability equations are used in the form 
(20) and (21) but the far-field asymptotic conditions are discarded. Instead of the homogeneous 
boundary condition on the pressure derivative at the wall ¿5(0) = constant is imposed and, further, 
this constant is taken to be equal to unity. This assumption is equivalent to a normalization of the 
eigenfunctions by the valué of pressure amplitude on the solid surface (r¡ = 0). Thus, the boundary 
conditions now read 

¿5(0) = 1, <KVax)=0. (53) 

The discrete system (51) remains inhomogeneous and the spectral iterative technique described 
in Section 3.3.2 can also be used here. One only needs to redefine vector b in Eq. (51), which now 
becomes¿ = (0,0, . . . ,0,0,1)T . 

4. Results 

We now turn to the presentation of the results obtained by application of the algorithms 
discussed in the previous section. The effect of a critical layer location which progressively moves 
away from the solid wall is examined by focusing first on incompressible flow on flat-plate ge-
ometries, where critical layers form in the immediate vicinity of the wall, and then proceeding to 
the study of compressible flow over both planar and axisymmetric configurations, in both of 
which critical layers are present in the neighbourhood of the respective free-streams. Owing to the 
numerical nature of this work parametric studies are confined to those parameters related to the 
complex mappings which form the central theme of this paper. The remaining physical parameters 
were chosen to match those of the respective established works against which we compare our 
predictions. 

4.1. Basic flow 

In this section we ascertain the capability of the proposed coupled finite-difference/spectral 
collocation scheme to obtain accurate solutions to the compressible boundary-layer equations 
(6)-(8). We assess the efficiency of the spectral methods in which dense matrices must be inverted 
at each streamwise location against the standard finite-difference scheme in which a much larger 
number of nodes is required to obtain the same order of accuracy, but sparse matrices are being 



inverted. Within spectral computations, we quantify the overheads incurred by the complex-grid 
algorithm and, finally, we compare basic flow results obtained by spectral solutions in the complex 
plañe against those delivered by Taylor-expansion of profiles obtained on a real spectral collo
cation grid. 

4.1.1. Direct solution in the complex plañe 
As a part of the validation process we first compare the numerically determined streamwise 

velocity Ü3 and temperature T profiles, obtained using the combination of mappings (36) and (37), 
with the corresponding predictions of the Crank-Nicolson scheme employed by DS at several 
streamwise locations for adiabatic flow over a cone (1 = 1) at Mx = 3.8. Both algorithms used a 
streamwise step size of A£ = 0.001 and the results obtained were found to be independent of the 
wall-normal location r¡ = r¡max at which the far-field boundary conditions (11) were employed, 
when taking 25 ^ r¡max ^ 40. Since the Crank-Nicolson scheme integrates along the real axis, while 
the spectral collocation scheme integrates directly in the complex plañe, it was felt that a direct 
comparison could only be made for the mapping parameter Si = 0, Le., only when the collocation 
scheme is forced to intégrate along the real axis as well. Line-thickness agreement of the results for 
the profiles of ü3 and T obtained by the two schemes can be seen in Fig. 4. 

Next, we establish the computing requirements of each algorithm in order for results of 
comparable accuracy to be obtained. Table 1 displays three sets of results for the nondimensional 
wall temperature Tw at the streamwise location £ = 0.05—those obtained using the spectral 

M =3.8, *=1 
Velocity profile Temperature profile 

Fig. 4. Profile of streamwise velocity v3 and temperature T at ( — 0.05 computed using finite differences (—) and 
spectral collocation (*). 



Table 1 
Adiabatic boundary-layer flow on a cone (1 — 1) at M^ = 3.8 

Spectral methods 

Real grid 

N Tv 

32 3.372683 
48 3.372180 
64 3.372164 
80 3.372164 
96 3.372164 

CPU time 

Total 

(s) 
16 
51 

122 
237 
417 

/Iter/node 
(ms) 

0.5 
1.0 
1.4 
2.2 
3.1 

Complex 

Tv 

3.373363 
3.372250 
3.372170 
3.372164 
3.372163 

grid 

CPU time 

Total 

(s) 
116 
401 
919 

1726 
2946 

/Iter/node 
(ms) 

1.2 
2.5 
4.8 
6.5 
8.9 

Finite-difference method 

N 

501 
1001 
2001 
4001 
8001 

Tv 

3.372118 
3.372152 
3.372160 
3.372162 
3.372163 

CPU ti 

Total 

(s) 
61 

122 
246 
529 

1153 

me 

/Iter/node 
(LJS) 

43 
43 
43 
46 
50 

Basic flow results for the temperature at the wall (rw) at f — 0.05 and respective timings as a function of the number iV 
of collocation points used in real (¿i — 0) and complex (¿i — —0.05) grid spectral calculations and of the number of 
nodes iV used in the Crank-Nicolson finite-difference calculations, respectively. A( — 10~3. 

method using S\ = 0 and S = —0.05 alongside results obtained using the Crank-Nicolson scheme. 
For a fair comparison to be made, the number of collocation points used in the spectral calcu
lations and that of the nodes on which the finite-difference algorithm was set up were chosen so as 
to deliver results of comparable accuracy for Tw. Basic flow timings were obtained on a work-
station and the conclusions which may be drawn from these results are the following. Firstly, the 
finite-difference and both spectral algorithms predict the same converged results for the param-
eters chosen, a result which was confirmed to hold for all the parameter valúes examined. This 
holds for the results delivered by the two spectral calculations, pointing at the independence at 
convergence of the spectral predictions on the complex-grid parameter mappings chosen in these 
runs. Secondly, the number of discretisation points used by the complex-grid spectral and the 
finite-difference schemes is similar to known comparisons of real-grid spectral and finite-difference 
viscous linear instability calculations [17]; typically, an order of magnitude larger number of 
points is required by the latter in order for the accuracy of the former scheme to be met. Thirdly, 
from the point of view of efficiency several points are highlighted by the total CPU time consumed 
by the algorithms examined. 

Focusing on the two real-grid calculations, it is interesting to note that the advantage offered by 
the superior convergence properties of the spectral scheme over the finite-difference algorithm at 
the same level of discretisation is not offset by the inversión of sparse matrices in the latter as 
opposed to the dense matrices required by the former scheme; in addition to requiring less 
memory, the real-grid spectral algorithm is over a factor two faster than its finite-difference 
counterpart. On the other hand, obtaining the basic flow solution on the complex grid is the most 
computationally intensive of the three algorithms. However, one should note that the solution on 
the complex grid can be used directly in the subsequent instability analysis, while the real-grid 
solutions need to be transferred onto a complex grid by Taylor-expansion, as will be discussed in 
the next section. In view of the additional overhead that the latter procedure requires, obtaining 
the basic flow directly on a complex grid becomes a competitive alternative from the point of view 
of efficiency also. 



4.1.2. Taylor expansión of the basicflow 
The most widely used approach for calculating the basic flow on the complex plañe is that of 

performing real-grid basic flow calculations first and subsequently determining the necessary 
profiles for the instability analysis by a truncated Taylor expansión approach. Solutions have been 
obtained on the grid defined by (38) and then interpolated onto the complex grid defined by (39) 
via a fourth-order Taylor series expansión. In line with the parameters chosen in the previous 
section, adiabatic flow over a cone (1 = 1) was considered at Mx = 3.8. The complex-grid pa
rameters were r¡max = 1 = 25, c2 = 0.1, m = 2, N = 64. The step size for the marching scheme was 
again taken to be A£ = 0.001. Fig. 5 displays respective variations of the real and imaginary parts 

Re(v3) 

Re(T) 

;XXXXX>OOOO»«HI 

x T a y l o r e x p a n s i ó n 

— d i r e c t s o l u t i o n in c o m p l e x p l a ñ e 

lm(v3) 

10 15 20 25 
Re(n) 

x Taylor expansión 

direct solution In complex plañe 

00000(M>00000000<H>*«M 

l m ( T ) 0.1 

5 10 15 20 25 

Re(n) 

Fig. 5. Distributions of the real and imaginary parts of v3 and T with the real part of t¡ given by (a) Taylor expansión 
(x) and (b) the solution of the base flow equations directly in the complex plañe (—) (1 — 1, M^ — 3.8 at ( — 0.05). 



of velocity and temperature profiles with the real part oí r¡ at £ = 0.05. For the complex 
streamwise velocity profiles agreement was obtained to the second decimal place for the real parts 
and the third decimal place for the imaginary parts, while a larger deviation was observed for the 
temperature profiles, with agreement to the first and second decimal places having been obtained 
for the real and the imaginary parts of this quantity for the same parameters. This level of ac-
curacy of the Taylor-expanded basic flow in comparison to that obtained directly on the complex 
grid is to be expected for the parameters chosen since the complex grid has max(j7¿) ~ —0.6 which 
results in a máximum truncation error 0(max(t]¡) ) ~ — 8 x 10~2. We will return to this issue 
when we present our instability results. 

Summarising our basic flow calculations, we have demonstrated that accurate results may be 
obtained by spectral methods on either real or complex collocation grids, in line with the analogous 
result of Pruett and Streett [25] obtained on real collocation grids. Results agreeing reasonably well 
with each other have been obtained either directly on the complex plañe or interpolated from real-
grid calculations using a Taylor series expansión. The adequacy of either approach from the point 
of view of accuracy will be quantified shortly by reference to the eigenvalue problem results. Re-
garding efficiency, both spectral timings may be improved by use of preconditioning; this is beyond 
the scope of the present work, the objective of which is provisión of basic flow quantities for the 
instability analyses, and could be undertaken as an extensión of the present work. 

4.2. Incompressible inviscid linear instability 

We commence with the presentation of the linear instability results by considering the classic 
Rayleigh equation which, despite its apparent simplicity, provides a good test for our proposed 
algorithms due to the fact that for incompressible boundary-layer flows the critical layer is typ-
ically located very cióse to the wall. The complex grids which we employ need to coincide with the 
real point on the fixed boundary, where the boundary conditions are applied. Thus the compu-
tational grid must be deviated around the critical layer an extremely short distance away from the 
boundary. In the case of Sturm-Liouville eigenproblems of the fourth kind and certain kinds of 
barotropic instability problems [1,11] this was achieved by considering nonzero imaginary parts 
for the complex mapping parameters (Si,S2,ci,C2) or, additionally, by applying composite 
complex maps, as proposed by Gilí and Sneddon [12]. Gilí and Sneddon also provide explicit 
formulae for the calculation of the optimal valúes for the complex mapping parameters which 
depend on the location of the critical point [11]. For the problem at hand, the optimal complex 
grid given by the formulae of Gilí and Sneddon was found to cause serious convergence problems 
and degraded the accuracy of the basic flow calculations. If such a grid were to be used, the basic 
flow and the instability equations must be solved on different grids. 

Here we have chosen to solve the boundary-layer equations directly on the complex plañe and 
use the same grid for the instability calculations. Although this is not the optimal grid in the sense 
of Gilí and Sneddon [11], it offers accuracy and robustness as will be shown next. In what follows 
we use two sets of complex mappings resulting from a combination of (38) with either (39) or (41), 
both of which have the ability to divert the complex grid over short distances. The test cases 
considered are two model inviscid linear instability problems, that of the Blasius boundary layer 
[19] and a modified asymptotic suction pro file [24]. Both problems share the characteristic of 
critical layer location cióse to the solid wall. 



4.2.1. The Blasius boundary layer 
The basic flow pro file Wü{r\) was obtained by solving the Blasius equation on a real grid (i.e, 

c2 = 0 or c\ = 0) or directly on a complex grid. If the former case, a Taylor expansión along the 
lines of Section 3.3 was used to calcúlate the valúes of W(r¡) on the complex nodes. The Rayleigh 
equation was discretised on the complex grid resulting from the combination of (38) and (39) or 
(38) and (41), using the appropriate collocation derivative matrices. The discrete eigenvalue 
problem was thus formulated as a generalised eigenvalue problem which was solved using the QZ 
algorithm. 

In order to study the accuracy and efficiency of the proposed algorithm we compare our results 
to those of Mack [19] (Table 3.1, p. 3-16) who computed eigenvalues with an indented integration 
contour. For a = 0.179 Mack quotes the eigenvalue co = 0.05750554 — iO.00657109 while the 
present spectral method yields co = 0.05750493 — iO.00657192 when the exponential mapping with 
c\ = —3.0 is employed, and co = 0.05750493 — iO.00657191 when the polynomial mapping with 
C2 = —0.15, m = 5 is used. For both spectral method calculations 100 collocation points were used 
with r¡max = / = 50. The effect of varying the complex mapping parameters c\ and C2 on the re-
sultant accuracy of the inviscid eigenvalue for the wavenumbers a = 0.128 and 0.180 is shown in 
Table 2. In this table we also compare eigenvalues calculated using a basic flow determined by 
Taylor expansión of the Blasius solution into the complex plañe (case I) against the case where the 
Blasius equation is solved directly in the complex plañe (case II). The conclusión which may be 
drawn from these results is that case II calculations are more robust, with results depending more 
weakly on the complex-mapping parameter valúes than those in the case I calculations; 
this conclusión holds for both exponential and algebraic mappings. In Table 3 we keep the 
complex-grid mapping parameters fixed and vary the number of collocation points. Exponential 

Table 2 
Dependence of the eigenvalue on the exponential and the polynomial mapping parameters, for the case of the Blasius 
boundary layer using N — 100 collocation points (m — 5, t¡m¡¡x — l — 50) 

C\ 

Exponential mapping 
-0.5 
-2.0 
-3.0 
-4.0 

Polynomial mapping 
-0.05 
-0.08 
-0.12 
-0.15 

[19] 

co 

Case Ia 

a = 0.12* 

0.03327 -
0.03328 -
0.03325 -
0.03322 -

0.03323 -
0.03329 -
0.03326 -
0.03323 -

0.0333 -

i 

- iO.00228 
- iO.00231 
- iO.00237 
- iO.00246 

- iO.00224 
- iO.00228 
- iO.00230 
- iO.00235 

iO.00233 

a = 0.180 

0.05683 -
0.05802 -
0.05801 -
0.05800 -

0.05695 -
0.05798 -
0.05793 -
0.05786 -

0.0580 -

- iO.00672 
- iO.00674 
- iO.00687 
- iO.00707 

- iO.00679 
- iO.00667 
- iO.00671 
- iO.00685 

iO.00680 

Case IIb 

a = 0.128 

0.03330 -
0.03329 -
0.03329 -
0.03329 -

0.03334-
0.03329 -
0.03329 -
0.03329 -

- iO.00229 
- iO.00229 
- iO.00229 
- iO.00229 

- iO.00234 
- iO.00229 
- iO.00229 
- iO.00229 

a = 0.180 

0.05809 -
0.05801 -
0.05801 -
0.05801 -

0.05830-
0.05802-
0.05801 -
0.05801 -

iO.00615 
iO.00668 
iO.00668 
iO.00668 

iO.00621 
iO.00668 
iO.00668 
iO.00668 

a Using Taylor expansión for the calculation of the base flow profile in the complex plañe. 
b Solving the Blasius equation directly in the complex plañe. 



Table 3 
Dependence of the eigenvalues on the number of collocation points (N) for the case of the Blasius boundary layer using 
the exponential mapping with c\ — —3.0 and the polynomial mapping with c2 — —0.15, m — 5 (f?max — l — 50) 

N (o 

a = 0.128 a = 0.1É 

Expone) 
32 
64 
128 

Polynor, 
32 
64 
128 

ntial mapping 

nial mapping 

0.03326355 -
0.03329428 -
0.03329427 -

0.03153209-
0.03330043 -
0.03329427 -

- iO.00230571 
- iO.00229008 
- iO.00229008 

- iO.00458334 
- iO.00228242 
- iO.00229008 

0.05798192 - iO.00670441 
0.05801718-iO.00668277 
0.05801718-iO.00668277 

0.04369888 - iO.00637252 
0.05802486 - iO.00667460 
0.05801718-iO.00668277 

convergence of the results is demonstrated when using either complex mapping in the present case 
II calculations. 

4.2.2. A modified asymptotic suction profile 
Another example of flow of the same class is asymptotic suction flow [15]. Theofilis [31] has 

shown that convergence of the instability results obtained for this flow on a real calculation grid 
does not necessarily imply accuracy of the instability results; reliable eigenvalues can only be 
obtained when the critical layer is well resolved. Since the profile Wo(r¡) = 1 — e~*> is inviscidly 
stable we adopt a modified versión 

W0{ri) = l-e-'>{l+Kri), (54) 

which is inviscidly unstable if K > \ [24]. We solve the Rayleigh equation for this basic flow with 
K = \ using both the exponential and the polynomial (with m = 5) complex mappings and 
/ = V a x = 30. 

The convergence history of the unstable eigenvalué at a = 0.25 for several valúes of the 
mappings parameters is shown in Table 4. The accuracy of the eigenvalue calculation clearly 
depends on both the number of collocation points used to discretise the problem and the inte-
gration path. More precisely, highly accurate results may be obtained either by deviating the 
integration path far enough from the critical layer or by simply increasing resolution. Focusing on 
the exponential mapping, the dependence of the results on the parameter c\ may be clearly seen. 
Although convergence may be achieved in a relatively wide range of c\, with valúes varying from 
c\ ~ —3.5 to -1.0, valúes outside this parameter range are inaccurate. The reason for this is that if 
c\ takes valúes lower than -3.5 the computational grid becomes too sparse, while when c\ is 
higher than -1.0 the integration path passes too cióse to the critical layer. In both cases accuracy 
improves by increasing resolution. On the other hand, choosing c\ to lie within the interval quoted 
above, results are converged to ten digits using upwards of 64 collocation points. The qualitative 
difference between the polynomial and the exponential mappings is that in the former mapping 
the length of the complex integration path is larger, resulting in coarser effective resolution for the 
polynomial mapping grid compared with the exponential mapping when the distance between the 
complex grid and the critical layer is kept the same in the two mappings. Results obtained but not 
shown here demonstrated the effectiveness of either mapping in the case of relatively small valúes 



Table 4 
Dependence of the eigenvalues on the polynomial (m • 
modified asymptotic suction boundary layer with a = 

- 5) and the exponential mapping parameters, for the case of the 
0.25 ( ^ = / = 30) 

N 

32 

64 

128 

256 

32 
64 
128 

Exponential 

0.05 
0.20 
1.00 
3.50 

0.05 
0.20 
1.00 
3.50 

0.05 
0.20 
1.00 
3.50 

0.05 
0.20 
1.00 
3.50 

0.0 
0.0 
0.0 

mapping 

c 

0.04965691+Í0.02962094 
0.04994569+ Í0.02979507 
0.05012831+Í0.03003293 
0.05025326+ Í0.02988863 

0.05011701+Í0.03003178 
0.05012035+ Í0.03003584 
0.05012071 +Í0.03003734 
0.05012081+Í0.03003745 

0.05012071 +Í0.03003734 
0.05012071 +Í0.03003734 
0.05012071 +Í0.03003734 
0.05012071 +Í0.03003734 

0.05012071 +Í0.03003734 
0.05012071 +Í0.03003734 
0.05012071 +Í0.03003734 
0.05012071 +Í0.03003734 

0.04949124+ Í0.02954801 
0.05011380+ Í0.03002892 
0.05012071 +Í0.03003734 

Polynomial 

0.01 
0.50 
0.70 
0.80 

0.01 
0.50 
0.70 
0.80 

0.01 
0.50 
0.70 
0.80 

0.01 
0.50 
0.70 
0.80 

0.0 
0.0 
0.0 

mapping 

c 

0.04979209+ Í0.02979623 
0.05011460 + Í0.03001620 
0.05002570+ Í0.02758054 
0.06883226+ Í0.04042802 

0.05011857 + Í0.03003536 
0.05012072+ Í0.03003735 
0.05007835+ Í0.03008955 
0.04303149+ Í0.03093147 

0.05012071 +Í0.03003734 
0.05012071 +Í0.03003734 
0.05012066+ Í0.03003726 
0.05097925+ Í0.02934364 

0.05012071 +Í0.03003734 
0.05012071 +Í0.03003734 
0.05012071 +Í0.03003734 
0.05012715+ Í0.03000329 

0.04949124+ Í0.02954801 
0.05011380 + Í0.03002892 
0.05012071 +Í0.03003734 

of a (a < 0.01), in which case the critical layer is very cióse to one of the boundaries of the (real) 
computational interval. A further result of interest, also shown in Table 4, is that in this flow 
example, unlike the Blasius boundary layer, real-grid instability calculations are adequate given 
sufficient resolution. We attribute this to the relative size of the imaginary part of the calculated 
eigenvalues, which implies that the critical layer in the second flow example is sufficiently far from 
the real-?? axis such that no observable numerical difficulties were encountered. 

4.3. Compressible inviscid linear instability 

It is well known that as the Mach number increases the critical layer moves away from the wall 
outwards towards the edge of the boundary layer [19]. Thus for compressible calculations it is 
easier to determine a suitable complex grid which avoids the large gradient problems in the critical 
layer. We commence by presentation of compressible inviscid linear instability results in planar 
geometries, which may be viewed either as the compressible extensión of the results of the pre-
vious section or as the limiting case of the compressible inviscid linear instability results in axi-
symmetric geometries, which will be presented shortly. By contrast to the Blasius boundary layer, 
where an inviscid linear instability analysis is of largely academic interest, linear instability of 
(viscous) compressible flow on both flat-plate and axisymmetric geometries can be well approx-
imated by an inviscid analysis. Interest in inviscid linear instability theory in both geometries may 



Table 5 
Dependence of the eigenvalue c on the number of collocation nodes and the complex mapping parameter c2 in the case 
of planar, compressible, adiabatic flow for a — 0.365 (mode II) and M^ — 3.8 

N 

48 
64 
80 
96 

c 

c2 = 0 

0.856328+ Í0.000000 
0.856543+ Í0.000000 
0.856937+ Í0.000000 
0.857174+ Í0.001755 

c2 = 0.05 

0.856333+ Í0.000418 
0.856357+ Í0.000407 
0.856356+ Í0.000408 
0.856356+ Í0.000408 

c2 = 0.1 

0.856129+ Í0.000355 
0.856382+ Í0.000395 
0.856354+ Í0.000412 
0.856356+ Í0.000408 

c2 = 0.15 

0.855075 - iO.000462 
0.856723 - iO.000134 
0.856228+ Í0.000550 
0.856324+ Í0.000356 

thus be justified from a physical point of view, although it should be noted that current hardware 
technology permits performing a viscous linear instability analysis for routine design purposes. 

4.3.1. Supersonic flow in planar geometries 
In this section we perform mode I and II inviscid linear instability calculations for supersonic 

boundary-layer flow over a flat píate, choosing the relevant parameters from the related work of 
Duck [6] who monitored the planar limit of the equations presented in [6] against the calculations 
of Mack [20]. The basic flow solution is obtained using Eqs. (6)-(8) at t, = 0 subject to boundary 
conditions (10) and (11). Basic flow calculations were performed on the complex collocation points 
defined by the combination of (38) and (39) with m = 5. The subsequent instability analysis was 
pursued in a temporal framework in order for comparisons with the aforementioned works to be 
possible. The analysis is based on Eqs. (28) and (29) together with boundary conditions (30)-(32). 
First, we consider the incompressible planar limit taking M^ = 10~4 and the mapping parameters 
of the incompressible calculations, N = 100, r¡max = 1 = 50, c2 = 1.5. The calculated eigenvalue at 
a = 0.179 is co = ac = 0.05750493 — iO.00657192, which agrees with the incompressible result in all 
decimal places. Next, supersonic inviscid linear instability calculations are performed atMoo = 3.8 
for flow over an insulated flat-plate. We chose for all subsequent calculations r¡max = / = 25 and 
present in Table 5 the combined effect of grid resolution and variation of the single remaining 
complex-grid parameter c2 on the mode II eigenvalue obtained at a = 0.365. In these results it may 
be seen that a real grid is inadequate to cope with this instability problem The same conclusión may 
be drawn for calculations performed with c2 5* 0.15 at modest resolutions, while calculations at 
c2 « 0.05 deliver the most accurate results at low resolutions. Finally, the results of Table 5 as well 
as others not shown here show that grid refinement in combination with a small positive valué of c2, 
corresponding to a short detour into the complex plañe, can deliver the converged eigenvalue. 
Taking the optimal parameters resulting from the present study, N = 64 and c2 = 0.05, we present 
in Fig. 6 the dependence of the eigenvalue c on the wavenumber parameter a for both mode I and 
mode II calculations. Excellent agreement with the superimposed relevant inviscid instability 
analysis results of Duck [6] may be seen. At máximum growth rate conditions the viscous analysis 
of Mack [20] predicts a mode II instability wave that is about 10% more stable than the invis
cid result of Duck [6] reproduced herein by the complex-grid analysis. l As pointed out by 

1 The accuracy by which the result of Mack [20] can be reproduced from his Fig. 7(a) p. 176 is limited by the visual 
means utilised. 
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functions of the wavenumber a in a M^ = 3.8 boundary-layer flow over an insulated fíat píate. Superimposed, denoted 
by open symbols, are the results of Duck [6]. 

one Reviewer, the quality of the complex grid utilised, including resolution of the metric, can 
be assessed by presenting the eigenfunctions obtained by our algorithm; this result is shown in 
Fig. 7. 

4.3.2. Supersonic flow on a cone 
The accuracy of the complex-grid spectral collocation algorithms presented in solving the linear 

instability equations for supersonic flow past axisymmetric bodies is now assessed. The temporal 
linear instability analysis results of DS are used for comparisons with our predictions. Fig. 8 
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Fig. 7. Mode I eigenfunctions of the problem presented in Fig. 6 at neutral conditions; corresponding temporal ei-
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Fig. 8. Temporal instability results. Distribution of the temporal growth rate ac, with a for modes I and II, ( — 0.05 and 
various azimuthal wavenumbers. For comparison, the results of DS are also shown indicated by symbols. 

displays results obtained with the Runge-Kutta technique of DS and our algorithm for the modes 
I and II of instability, for the case of a cone (1 = 1), at t, = 0.05, M^ = 3.8 and azimuthal 



Table 6 
Dependence of the eigenvalue a on the complex mapping parameter ¿i in the case of compressible, adiabatic flow over a 
cone (1 = 1) at C = 0.1 for M^ = 3.8 with f?max = / = 25, JV = 64 

¿1 

0.0 
-0.007 
-0.02 
-0.05 
-0.08 

a 

Mode I (n 

w = 0.065 

0.083527 -
0.083725 -
0.083896 -
0.083944 -
0.083946 -

= 1) 

iO.001297 
iO.001108 
iO.001012 
iO.000995 
iO.000994 

w = 0.08 

0.101533-
0.101341 -
0.101187-
0.101147-
0.101146-

-iO.001071 
- iO.000796 
- iO.000642 
- iO.000605 
- iO.000604 

Mode II (n = 0) 

w = 0.45 

0.531913-
0.531872-
0.531769-
0.531728 -
0.531727-

- iO.000000 
- iO.000222 
- iO.000408 
- iO.000457 
- iO.000465 

w = 0.385 

0.423720 -
0.423281 -
0.422901 -
0.422796 -
0.422793 -

-iO.004167 
- iO.003698 
- iO.003460 
- iO.003414 
- iO.003417 

Table 7 
Dependence of the eigenvalues on the number of collocation nodes and the mappings parameters, for the case of 
adiabatic cone flow with M^ — 3.8 and l — 1, at ( — 0.05 

N 

32 
64 
80 
96 
80 
90 

*7max 

25 
25 
25 
25 
40 
60 

/ 

25 
25 
25 
25 
40 
60 

¿i 

-0.05 
-0.05 
-0.05 
-0.05 
-0.04 
-0.04 

a 

Mode I 
w = 0.0386, n = 3 

0.050338-iO.003137 
0.050338-iO.003137 
0.050339-iO.003136 
0.050339-iO.003136 
0.050339-iO.003136 
0.050339-iO.003136 

Mode II 
m = 0.334, n = 0 

0.367236 - iO.004590 
0.366888 - iO.004487 
0.366903 - iO.004485 
0.366903 - iO.004485 
0.366905 - iO.004483 
0.366902 - iO.004483 

wavenumbers, n, as shown. The complex grid used is defined as a combination of (36) and (37) 
with N = 64, Si = —0.05, r¡max = 1 = 25. The graphical agreement of the results is very satisfac-
tory. Next, we perform spatial calculations for the same physical parameters. We use a combi
nation of (36) and (37) and the iterative algorithm of Section 3.3.2 at variable resolutions. The 
dependence of the eigenvalues determined by the spectral collocation scheme on the complex-grid 
mapping parameters is shown in Tables 6 and 7. The bracket of ¿i valúes in which we were able to 
obtain accurate results is rather narrow; erroneous results were obtained when the mapping pa
rameter exceeds a threshold valué. For this set of physical parameters the threshold was found to 
be c\ « —0.05, as can be seen in the results of Fig. 9. In Fig. 10 the effect on the spatial eigenvalues 
determined using basic flows calculated either by truncated Taylor series (case I) or by direct 
solution in the complex plañe (case II) is shown. Line-thickness agreement of the results obtained 
by using either basic flow can be seen over much of the respective mode range. The discrepancies 
are quantified at approximately máximum growth rate conditions in Table 8. Returning to the 
discussion of Section 4.1.2, such discrepancies may well be tolerated in the context of the inviscid 
instability analysis. 

Next we turn to the issue of efficiency; representative convergence history calculations and the 
respective CPU timings for the recovery of eigenvalues using both the spectral iterative technique 



Mode I, £=0.05, n=3, M =3.8,1=1 

6, = -0.05 

5, = -0.01 

Mode II, £=0.05, n=0, M =3.8,1=1 

Fig. 9. Effect of the mapping parameter valué on the accuracy of growth rate calculations for mode I nonaxisymmetric 
(n — 3) instabilities (upper) and mode II axisymmetric (n — 0) instabilities (lower), at ( — 0.05. 

and the QZ algorithm are displayed in Table 9. The complex grid is defined as a combination of 
(36) and (37) with ¿h = —0.05, r¡max = / = 25 and the basic flow is calculated directly on the 
complex grid (case II). Results on two different platforms are presented here—a 100 MHz PC 
processor and a EV6 500 MHz Alpha processor. The timings presented were found to be 
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Fig. 10. Results of the iterative algorithm using a basic flow calculated on the complex grid by Taylor expansión (—) 
and by direct solution of the boundary-layer equations in the complex plañe (—). Upper: mode I calculations (n — 3). 
Distribution of the spatial growth rate -a, (left) and the wavenumber ar (right) with the frequency a>. Lower: analogous 
results for mode II calculations (n — 0). 

quantitatively the same for either spatial or temporal instability calculations. Table 10 displays the 
analogous result for a typical calculation of an eigenvalue using the Runge-Kutta shooting 
technique on the PC. Comparison of the results of the two spectral methods is satisfactory from 
the point of view of the ability of either of the proposed schemes to recover the converged ei
genvalue. The decisión on which type of calculation should be performed clearly depends on the 
platform used. On the modest machine a global search should be confined to calculations pro-
viding an estímate of the eigenvalue, to be subsequently refined by the iterative algorithm. On the 
fast processor the overhead of performing such operations sequentially may be larger than the 
time taken by the QZ algorithm to deliver the entire spectrum. 



Table 8 
Effect of Taylor expansión truncation error on the spatial instability calculations for the case of adiabatic flow with 
M^ = 3.8 and X = 1, at C = 0.05 (f?max = 1 = 25) 

C2 

Case I 
0.10 
0.05 
0.02 
0.01 
0.00 

Case II 
0.10 
0.05 
0.02 
0.01 
0.00 

a 

Mode I (n = 3) 

w = 0.0386 

0.050248 -
0.050335 -
0.050334 -
0.050331 -
0.050323 -

0.050339 -
0.050340 -
0.050339 -
0.050337 -
0.050323 -

- iO.003099 
-iO.003126 
-iO.003131 
-iO.003130 
-iO.003126 

-iO.003136 
-iO.003137 
-iO.003136 
-iO.003135 
-iO.003126 

w = 0.001 

0.001325-
0.001328 -
0.001328 -
0.001328 -
0.001328 -

0.001328 -
0.001328 -
0.001328 -
0.001328 -
0.001328 -

- iO.000149 
-iO.000150 
-iO.000151 
-iO.000151 
-iO.000151 

-iO.000151 
-iO.000151 
-iO.000151 
-iO.000151 
-iO.000151 

Mode II (Í 

ra = 0.1 

0.121614-
0.121641 -
0.121684-
0.121712-
0.121744-

0.121762-
0.121763-
0.121737-
0.121639-
0.121744-

i = 0) 

-iO.001128 
-iO.001191 
-iO.001382 
-iO.001544 
-iO.001794 

-iO.001171 
-iO.001171 
-iO.001192 
- iO.001277 
-iO.001794 

w = 0.334 

0.367630 -
0.368252 -
0.368588 -
0.368844-
0.369448 -

0.366904 -
0.366903 -
0.366939 -
0.367084-
0.369448 -

- iO.004541 
-iO.004515 
- iO.004356 
- iO.004190 
- iO.004021 

- iO.004484 
- iO.004484 
- iO.004463 
- iO.004395 
- iO.004021 

Table 9 
Representative CPU times (in seconds) for the calculation of (a) one eigenvalue using the spectral iterative technique 
and (b) an estímate of the entire eigenspectrum using the QZ algorithm 

N 

32 
48 
64 
80 
96 

Spectral iterative 

a 

0.33995780-iO.00417712 
0.34043177 - iO.00392759 
0.34040925 - iO.00391944 
0.34040814 - iO.00392006 
0.34040822 - iO.00392029 

CPU (s) 

EV6 

0.02 
0.04 
0.10 
0.16 
0.28 

PC 

0.8 
2.0 
4.8 
7.2 

11.2 

Spectral global 

a 

0.33973836 - iO.00458449 
0.34045193-iO.00385331 
0.34040450 - iO.00392688 
0.34040828 - iO.00392228 
0.34040815-iO.00392224 

CPU (s) 

EV6 

0.1 
0.4 
1.0 
2.0 
3.7 

PC 

3.2 
9.8 

27.5 
45.2 
88.5 

Spatial calculations are performed using M^ = 3.8, X = 1, co = 0.3, n = 1 at [ = 0.002. 

Table 10 
Representative CPU times (in seconds) for the calculation of one eigenvalue using the Runge-Kutta shooting technique 
on a PC based on a Pentium 100 MHz processor 

N Finite-difference shooting 

c CPU (s) 

100 
400 
1200 
2000 
4000 
8000 

0.78052142-
0.78005732-
0.78005924-
0.78005930-
0.78005942-
0.78005942-

iO.01048318 
iO.01031010 
iO.01030880 
iO.01030866 
iO.01030864 
iO.01030856 

0.04 
0.13 
0.40 
0.65 
1.30 
2.60 

Temporal calculations are performed using M^ = 3.8, X = 1, n = 0, a = 0.05 at ( = 0.002. 



4.3.3. The effect offar-field boundary conditions 
As a final issue, we discuss the performance of the complex-grid algorithm in combination with 

several different types of free-stream boundary conditions, typical of those used in inviscid linear 
instability analyses. We use the results of Fig. 10 as a reference and consider the combined effect of 
alternative boundary conditions with either the global or the local algorithm for the recovery of 
the eigenspectrum. Spatial instability is considered and three computational grids are used: (i) the 
first employs N = 64 collocation points and the domain is truncated at r¡max = 1 = 25; (ii) in the 
second grid the domain is truncated at r¡max = / = 60, while the number of collocation points is 
kept the same as in grid (i); (iii) and finally, resolution is increased in the third grid to N = 90 while 
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Fig. 11. Results of the iterative algorithm employing the inhomogeneous boundary conditions (a) (—) and the global 
algorithm employing the homogeneous boundary conditions (b) (—, and • • •). Upper: mode I calculations (n — 3). 
Distribution of the spatial growth rate -a, (left) and the wavenumber ar (right) with the frequency a>. Lower: analogous 
results for mode II calculations (n — 0). 



Vax = / = 60. In all three cases, the basic flow equations (6)-(8) are solved directly on the 
complex grids (i)-(iii) using the spectral algorithm described in Section 3.2. 

Fig. 11 presents the dependence of the eigenvalue a on frequency co for both mode I and mode 
II calculations. Here comparison of results obtained using boundary conditions (a) or (b) of 
Section 3.3.3 is shown. Grid (i) is employed for the results of the iterative technique (denoted by 
the continuous line) while all three grids are employed for the results of the global algorithm. It 
can be seen that the homogeneous boundary conditions (b) recover the results of the asymptotic 
boundary conditions (a) provided the solution domain extends sufficiently far away from the wall. 
The wavenumber prediction is good for all the grids and both the global and the iterative tech-
niques. However, the growth rates of mode I are more sensitive to the choice of the grid than those 
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Fig. 12. Results of the iterative algorithm employing the inhomogeneous boundary conditions (a) (—) and the ho
mogeneous far-field boundary conditions (c) ( and • • •). Upper: mode I calculations (n — 3). Distribution of the 
spatial growth rate -a, (left) and the wavenumber ar (right) with the frequency a>. Lower: analogous results for mode II 
calculations (n — 0). 
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of mode II. Although the accuracy of the QZ results improves by taking ?7max further away from 
the cone surface, the number of collocation points considered is not sufficient for convergence. 
Increasing this to N = 90, accurate results for the growth rates of mode I instabilities can also be 
obtained. Fig. 12 again presents spatial results at the same parameter valúes, now obtained using 
the iterative algorithm alone and boundary conditions (a) or (c). An analogous conclusión may be 
drawn regarding the effect of truncating the domain too near the wall, with results being indis-
tinguishable when the domain is truncated far from the solid surface. In other words, within the 
context of an iterative algorithm, necessarily used on account of the inhomogeneity of the 
boundary conditions, either type of boundary condition (a) or (c) may be used; the gains from 
truncating the domain near the wall and applying type (a) boundary conditions is marginal. 

5. Discussion 

Our concern in this paper has been with the generalised eigenvalue problem resulting from an 
inviscid linear instability analysis of wall-bounded boundary-layer type of flows. Such an analysis 
is motivated from a physical point of view by compressible laminar-turbulent flow transition 
prediction and from a numerical point of view by the need to tackle critical layers, the location of 
which cannot be predicted analytically, by appropriate numerical approaches. The numerical 
challenge of the resolution of critical layers has long been successfully met by robust finite-dif-
ference/shooting algorithms [6,18]. The rather large number of discretisation nodes necessary for 
converged results to be obtained in both basic flow and eigenvalue problem calculations when 
using finite-diflerence/shooting algorithms is compensated by the sparse nature of the matrices 
involved; the resulting storage requirements can be handled straightforwardly by current hard
ware technology. 

Here we have discussed alternative self-consistent algorithms based on complex-grid spectral 
methods for the numerical solution of the boundary-layer equations and the resulting inviscid 
linear eigenvalue problem, in a wide variety of flows of both academic and practical interest. We 
focused on examining the robustness of complex-grid calculations against variations of the grid 
parameters and presented both global and local algorithms for the calculation of the eigenvalues. 
Within either approach we posed the question of the effect of alternative forms of the boundary 
conditions on the accuracy of the instability results. Further, we examined the influence on the 
eigenvalue problem results of basic flow data generated either directly on complex collocation 
grids or using the corresponding real collocation points with the large gradients avoided by 
Taylor-expansion around the critical layer. Results were obtained for incompressible flow on 
planar geometries and compressible flow on both planar and axisymmetric curved geometries. In 
all cases studied, adequate resolution of the critical layer by the complex collocation grid spectral 
approach was found to deliver results in excellent agreement with established works. Further-
more, we have identified the following directions for future research. 

The most critical parameters on which instability results obtained on complex collocation grids 
were found to depend were those of the complex-grid mappings used. This is to be expected, 
since these parameters determine the means by which the critical layer is avoided and the re
sulting effective resolution used. Unfortunately, no general theory exists for the determination of 
the mapping parameters in the instability problem at hand and the optimal valúes can only be 



determined by convergence analysis studies and/or comparisons with results obtained by a finite-
difference/shooting algorithm. The development of theoretical arguments for the choice of the 
complex-grid mapping parameters in the framework of a boundary-layer instability analysis is 
one of the needs identified by the present work. The key conclusión drawn from the present 
work, however, is that the complex-grid spectral algorithms presented can be considered as a 
viable alternative to finite-difference/shooting calculations. Further efficiency gains for the spectral 
method can be achieved in both basic flow and instability analysis calculations by preconditioning 
the matrices involved in the respective calculations; this is one possible avenue which could be 
pursued in future studies. 
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Appendix A 

The nonzero elements of the submatrices E, F, G and H of the generalised eigenvalue problem 
(49) are 

Fjk = W0¡T%Djk + W0]T0]D
2

jk - 2W%T0jDjk + , , ° ' "' Djk + W^lf - " ]' °' °' 2, (A.2) 

Gjk = -3W*M2
ooP + pT0j, (A.3) 

Hjk=MÍW0
3.-T0jW0j, (A.4) 

for j = k, while 

Ejk = PT%D]k + pT0jD% + f ^ f f k , (A.5) 

C-Tr, Wi) 
Fjk = W,T%Djk + WoTopl - 2W%T,pjk + l> j Djk, (A.6) 

l + K + Iñj 

for j 7̂  k, where j , k = 0 , . . . , N. 



Appendix B 

The nonzero elements of the submatrices A\, A2, A?, and A4 of the system (51) are 

Mjk = Djk + 
íi W0 % 

1+1C-+C^ w^-p-

-iTn, 
2jt 

AH 

A4jk 

j = k, 
Ah* 

A , 

yM2jw0j 

i « 2 ( ^ -
T0j 

Djk 

and 

Djk 

-P) 

P) 
1 

2 r 2 

1+- n2í 
« 2 ( 1 + 1 ^ + ^ - ) 

i(W0j-P) 

for j 7̂  k, where j , k = 0 , 1 , . . . , N. The elements of vector b are given by 
bj = 0, if j¿N and j ¿ 2N, 

bN=\[Kn+i(rii)+K\n-i\(rii)], 

__Mliay{\-fi)Kn{ñi) 
U2N h 1 i n i 

[\-Mi(\-P)2]1/2 

where 
f/,. = ±a[l - i l £ ( l - /?)2]1/2(VC¿ +1C¿ + Vax), 

and 7, k = 0,1 , . . . , N. 

(B.l) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

(B.9) 
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