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A B S T R A C T 

The application of diffraction gratings to solar cells is a promising approach to superseding the light trapping limits of 
conventional Lambertian structures. In this paper a mathematical formalism is derived for calculating the absorption that 
can be expected in a solar cell equipped with a diffraction grating, which can be applied to any lattice geometry and grating 
profile. Furthermore, the formalism is used to calculate the upper limit of total absorption that can theoretically be achieved 
using a diffraction grating. The derived formalism and limits are valid when the solar cell thickness is greater than the 
coherence length of the illuminating solar spectrum. Comparison is made to the upper limit achievable using an angularly 
selective Rugate filter, which is also calculated. Both limits are found to be considerably higher than the Lambertian limit 
within the range of sunlight concentration factors practically employed in photovoltaic systems (l-1000x). The upper limit 
of absorption using the diffraction grating is shown to be equal to the thermodynamic limit for all absorbances and 
concentration factors. The limit for the Rugate filter is generally lower, but tends to the thermodynamic limit for lower cell 
absorbances. Copyright (Ü) 2011 John Wiley & Sons, Ltd. 
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1 . INTRODUCTION 

The purpose of this paper is to formulate mathematically 
the optical behaviour inside a solar cell with a diffraction 
grating attached to either face, and to apply the formalism 
to analytical calculation of the upper limit of absorption 
enhancement using a diffraction grating. The formalism 
and results are valid in the limit where the solar cell 
thickness is greater than the coherence length of the 
illuminating solar spectrum. 

The use of optical designs to enhance absorption, known 
as light trapping, is of interest for solar cells that absorb a 
certain part of the solar spectrum weakly. Historically, this 
has been of major importance for thin film cells, and to 
a lesser extent, for bulk cells based on indirect 
semiconductors such as crystalline silicon. A more recent 
solar cell technology in need of light trapping is the 
quantum dot intermediate band solar cell (QD-IBSC): a 
particular implementation of the intermediate band solar 
cell (IBSC) concept [1]. The IBSC is capable of generating 
photocurrent from sub-bandgap photons due to the 

existence of a metallic intermediate band between the 
valence band and the conduction band. In a QD-IBSC, 
the intermediate band is formed from the confined states of 
quantum dots, the absorption in which is extremely weak. 
QD-IBSCs are fabricated by epitaxial growth on crystalline 
wafer substrates [2]. This presents renewed motivation for 
the study of light trapping in bulk structures. 

Light trapping is conventionally realised by texturing of 
either or both of the cell surfaces. One approach is rough 
texturing [3], which tends to produce close to isotropic 
(Lambertian) scattering. It has been shown that if the 
surface is sufficiently textured, there is a tendency towards 
an absorption enhancement factor of An2; the so called 
Lambertian limit [4]. For mono-crystalline Si solar cells, 
another approach is anisotropic etching of the (1,0,0) 
oriented surface to reveal the close packed (1,1,1) and 
(1,1,-1) planes. This leads to a surface of square based 
pyramids, which are shown to scatter light into certain 
angles favourably [5]. In Ref. [6], a number of surface 
geometries based on this approach were studied theoreti­
cally using ray tracing. A tendency toward the Lambertian 
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limit was found, the best studied structure exhibiting a 
4% higher short-circuit current enhancement than a 
Lambertian structure for the studied solar cell parameters. 

The overall thermodynamic limit of light trapping has 
been found to be significantly higher than the Lambertian 
limit in all cases other than for a very weakly absorbing 
cell under isotropic illumination [7]. This has motivated the 
study of alternative light trapping schemes. One such 
scheme employs a diffraction grating on either cell 
surface to scatter incident light into laterally propagating 
diffraction orders with high optical path lengths. Thick 
solar cells equipped with gratings have been fabricated 
[8,9], and their light trapping properties have been studied 
numerically [10-12]. 

In Section 2 of this paper we derive a mathematical 
formalism for calculating the absorption enhancement 
from the far-field grating efficiencies; this is appropriate in 
bulk structures where most absorption takes place in the 
far-field of the grating. A simple transfer matrix method is 
employed in which all re-interactions of confined orders 
with the grating are considered. We assume the cell to be 
illuminated by a cone of light; this corresponds to direct 
solar illumination or illumination from a concentrator. The 
method may be applied to a solar cell equipped with an 
arbitrary diffraction grating on the front or rear surface. 

In Section 3, the formalism developed in Section 2 is 
applied to analytical calculation of the upper limit of light 
trapping using a diffraction grating, and determination 
of the conditions under which this limit can be met. 
For comparison, the upper limit of light trapping using 
a Rugate filter is also calculated. This alternative light 
trapping scheme combines a Lambertian scatterer with an 
angularly-selective photonic crystal (Rugate filter) on the 
front surface [13]. Analyses are made both in the limit of 
very weak absorption and for the more general case where 
absorption effects are more significant. In both instances, 
comparison is made to the Lambertian baseline and to the 
overall thermodynamic limit. 

2. MATHEMATICAL 
FORMULATION OF THE GRATING 
PROBLEM; CALCULATING THE 
ABSORPTION FROM THE 
SCATTERING MATRIX 

Figure la and b shows solar cell structures in which a 
diffraction grating is located on the front face (configur­
ation (a)) and rear face (configuration (b)), respectively. 
In each case a perfect reflector is placed at the rear. 
In configuration (b), it is assumed there is zero reflectivity 
at the front surface. The coordinate axis is such that the cell 
faces and the grating lie in the xy plane. The grating's 
lattice geometry may be either a uni-periodic line grating, 
or a bi-periodic square or triangular lattice. It may have 
any profile (by profile we mean the shape of the 
periodically repeated grating elements). It is assumed that 
all constituent materials of the grating are lossless (either 
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Figure 1. Two possible solar cell structures. In configuration 

(a) the grating is placed on the front face of the solar cell and in 

configuration (b) it is placed on the rear. A perfect reflector is 

placed at the rear in both. Confined orders, source-illuminated 

escaping orders and non-source-illuminated escaping orders 

are represented by black, red and blue arrows, respectively. 

In configuration (b) the lighter shaded triangular area represents 

the escape cone, which is defined by the critical angle of the front 

surface interface 9C. 

perfect dielectrics or perfect conductors). Hence power 
dissipation in the grating and generation of surface 
plasmons is ignored. 

2.1. Plane-wave illumination 

In this subsection the solar cell is considered to be 
illuminated by a plane wave incident from above whose 
unit propagation direction vector in a vacuum is 
fio — ux0&x + "yô y + uzO&z> where éx, éy, éz are unit vectors 
parallel to the coordinate axes and the so 
called direction cosines made with those axes. In either 
configuration the wave is incident on the grating and is 
diffracted into a number of reflected and transmitted 
propagating orders. The vector components of these orders 
tangential to the xy-plane (flu — uxéx + Uyéy) are given by 
the Fraunhofer equation: 

\\(m1,m2) 
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2JT 2JT 
(1) 

bi and 62 are the reciprocal lattice vectors of the diffraction 
grating (bj — 0 for a uni-periodic line grating) and (m1,m2) 
are the integer diffraction order indices, n is the refractive 
index of the medium in which the order propagates and X0 

and uno are the wavelength and tangential direction vectors 
in a vacuum. Equation (1) describes all propagating 
orders in either configuration. In configuration (a) there are 



reflected and transmitted orders whereas in configuration 
(b) there are only reflected orders. In configuration (a) 
all reflected orders escape and all transmitted orders, which 
propagate internal to the cell, are confined by the rear 
reflector. In configuration (b) all internal orders that 
make an angle with the z axis that is less than the critical 
angle 6C escape; all which make an angle greater than 6C are 
confined at the front surface by total internal reflection. 
This defines the escape cone which is represented by the 
lighter shaded triangular area in (b). All confined orders are 
represented by black arrows. 

In both configurations all confined rays re-impinge on 
the grating, their tangential component unchanged. These 
produce further sets of diffracted orders, the directions of 
which are identical to the original set due to the discrete 
translational symmetry of (1) [14]. This follows for all 
subsequent steps; radiant power is redistributed between 
orders at each diffraction event, but orders that are distinct 
from the original set are never created. The problem can 
therefore be formulated as a discrete system of N diffracted 
orders which can be decomposed into Í and p polarizations 
giving 2Npolarized diffracted orders. These can be divided 
into confined and escaping orders. For the purpose of the 
formalism all orders are considered to be diffracted from 
and incident on the grating. The initially incident plane 
wave is considered to be an incident order whose diffracted 
counterpart is the reflected zero order (mi — m2 — 0 in 
Equation (1)) which has the same uy and therefore 
escapes the solar cell. This pair is denominated a source-
illuminated escaping order and is shown as two red 
arrows in Figure 1. All other escaping orders are 
denominated non-source-illuminated escaping orders 
and are incident on the grating with zero amplitude; these 
are represented by blue arrows in Figure 1. 

Following conventional grating theory, the complex 
electric field amplitude of the ith polarized order 
immediately after diffraction from the grating is linearly 
related to that of all other polarized orders immediately 
before incidence on the grating: the coefficients of this 
linear equation are the elements of the scattering matrix 
S — [Sij] 2N 2N, which are complex and hence act on the 
amplitude and phase of the time-harmonic field [15]. 

£ f f = ] T StjE™ (2) 
l<j<2N 

The scattering matrix is a property of the specific 
grating profile and depends on the incident wavevector. 
There are a variety of methods available to calculate the 
scattering matrix computationally, based on rigorous 
solution of Maxwell's equations [16]. 

2.2. Conical illumination 

We now consider the solar cell to be illuminated by a cone 
of light whose axis is aligned with the z axis. This 
corresponds to direct illumination from the solar disc in a 
flat panel system with a solar tracker, or illumination from a 

two-axis solar concentrator. Diffuse illumination is ignored. 
Conical illumination can be considered as illumination by 
a manifold of plane waves. The waves in the manifold 
are diffracted as described above producing distinct sets of 
diffracted orders which themselves constitute diffracted 
cones [14]. The tangential components (ux, Uy) of the cones 
diffracted from a triangular lattice grating, which are internal 
to the solar cell substrate, are depicted as filled circles in 
Figure 2, for different values of the wavelength to grating 
period ratio XIA. On decreasing X/A the number of 
diffracted cones increases until there are sufficient cones to 
fill all directions within the cell completely (Figure 2d). 

The scattering matrix takes a different form for each 
wave in the incident manifold. To treat conical illumination 
it is therefore necessary to divide the illumination cone into 
sub-manifolds across which there is very little variation in 
the scattering matrix elements. Each sub-manifold can then 
be considered as a discrete system. When the wavelength to 
grating period ratio X/A is small and diffracted orders are 
densely spaced, some orders of certain sub-manifolds may 
fall within the illumination cone and therefore coincide 
with another sub-manifold of the illumination cone. 
These must then be considered as pertaining to a single 
system which has multiple source-illuminated orders. 

2.3. Brightness calculations 

The brightness (defined as power flux per unit area per 
unit solid angle - also known as radiance) in a ray of 

Figure 2. Direction cosine plots of illuminated directions interna 

to the cell for different wavelength to grating period ratios: (a) XI 

nk = 0.87, (b) X/nA = 0.43, (c) X/nA = 0.22 and (d) X/nA < 0.15. The 

red, black and grey filled circles represent the illumination cone and 

the confined and escaping diffracted cones, respectively. The 

larger circle around the red filled circle is the escape cone which 

is only relevant when the grating is placed on the rear. 



infinitesimal solid angle dfl is related to the intensity / and 
hence electric field amplitude E by [17]: 

B 
I 

dñ: 
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(3) 

where s0 is the vacuum permittivity. The brightnesses 
of diffracted rays can therefore be calculated by substitut­
ing (2) into (3). The modulus squared of the sum in 
Equation (2) contains a number of interference terms 
between the fields of different incident orders. If the cell 
thickness is greater than the coherence length of the 
light inside the cell, the orders lose coherence between 
diffraction from and incidence on the grating. The 
statistical net contribution from all interference terms is 
then zero [17]. Hence, the brightnesses of incident and 
diffracted orders can be related by: 
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depending on their trajectory. Taking this into account (8) 
can be reduced to: 

BT 
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which is applicable to configuration (a) by considering 
that in this case the distance l¡ travelled through the active 
layer is zero for all source-illuminated orders. 

Equations (6), (7) and (9) constitute a linear map from 
gdiff t o g i n c . 

n¡ is the refractive index in which the ith order 

propagates and uzi the direction cosine the ¡th order makes 

with the z axis. In matrix form this is 

adiff _ I T U T T - I I g a i n = U H U i g m e ._ R g r r (5) 

j d i f f B a l I t a n d B m c are 2N dimensional vectors with elements 

BfB In2 and Bfc In2, respectively. U is a diagonal matrix 

with ¡th element n, u7, and H = |S,-;| 
3 L1 •" J2WX2W 

Equation (5) defines what we denominate the redis­
tribution matrix R. 

The confined orders undergo a double pass of the 
solar cell active layer before returning to the grating. The 
active layer is modelled as a homogeneous material of 
width w and absorption coefficient «.The brightness of 
the ¡th incident confined order is then given by the 
Lambert-Beer law: 

Bf •- Bf ffexp( -2a/,)¡econfined orders (6) 

where l¡ — w/uz¡ is the length travelled by the ¡th order 
in a single pass across the active layer. 

All incident non-source-illuminated orders are fictitious 
and have zero brightness: 

. non-source-illuminated 
escaping orders 

Bf : 0 ie (7) 

Finally, the total escaping power leaving the grating is 
equal to the power incident on the grating from the source 
less the power absorbed in confined orders. As all 
diffracted orders have the same product of étendue and 
refractive index squared, this implies: 
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escaping 
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Bf E Bf 
(l— exp(—2a/j)) 

(8) 

In configuration (b) of Figure 1, source-illuminated 
orders make a single pass through the active layer before 
reaching the grating and suffer different attenuations 

B u CB d CRB" (10) 

where C is the confinement matrix which can be 
partitioned into 6 blocks: 

escaping 
orders 

I 

confined 
orders 
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"Iescaping orders 
rnon source illuminated 

"Iescaping orders 
— {confined orders 

Sub-matrices Ci , C2 and C3 are defined by: 

exp(-aZ¡) 
CiiJ •• 

Y, exp ( - a t ) 
source 
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orders 
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exp(—al¡) (l—exp(—2a^)) 

Y, exp(-alk) 
source 

illuminated 
orders 

C3Í.J = exp(-2a/¡)á , ; 

(11) 

(12) 

(13) 

(14) 

Indices i and j are made with reference to the row 
and column numbers of C. For example, for a system 
with two source-illuminated escaping orders, two non-
source-illuminated escaping orders and two confined 
orders in configuration (a), the confinement matrix 
would be: 

"1/2 1/2 1/2 1/2 ( l - e - 2 o * ) / 2 ( l - e - 2 o * ) / 2 ~ 
1/2 1/2 1/2 1/2 ( l - e - 2 o * ) / 2 ( l - e - 2 o * ) / 2 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 e-2°* 0 
0 0 0 0 0 e-2°* 

(15) 

c = 



Equation (10) is a system of 2N linear equations with 2N 
unknowns that, where a solution exists, is readily 
soluble. The exact form of CR depends on the device 
and illumination conditions in question. However, as a 
result of conservation of energy and time reversal 
invariance, R must be doubly stochastic for any lossless 
grating (all rows and all columns sum to 1 - see Appendix 
for proof). C is clearly left stochastic (all columns sum to 1) 
and hence the product CR is also left stochastic. This is an 
important result and ensures that a solution to (10) always 
exists and, where all entries of R are strictly positive, is 
unique up to a scalar multiple [18]. 

Once Btoc has been calculated, Bm can then 
be calculated from (10). Repeating the procedure for all 
sub-manifolds in the illumination cone yields a full 
description of the angle dependent brightness within the 
cell. This allows calculation of the quantities described in 
the following sections. 

2.4. Calculation of the mean path length of 
light rays inside the solar cell 

The mean path length of light rays inside the solar 
cell active layer is a geometrical property of the device 
structure. For its calculation zero absorption in the 
active layer is therefore assumed. Following Miñano [7], 
the mean path length enhancement is calculated from: 

(I) _ J {B™(ux,uy) + B&íí{ux,uy)Y 
w Bo J k du*duy 

(16) 

where the numerator integral is made over all directions in 
the cell and the denominator integral over the illumination 
cone fio- So is l n e brightness of the illuminating light 
and Bmc and Bditt are calculated using the preceding steps 
taking a — 0. 

2.5. Direct calculation of the absorption 

The fraction of incident power absorbed in the solar cell 
active layer can be calculated directly from: 

escaping orders fall within the same section. Taking 
Figure 2a as an example, only the bottom half of the 
illumination cone will produce the diffracted order at 
the very top of the figure, hence this should form a 
separate section. Convergence testing should be used 
to decide how many further subdivisions are required to 
achieve the desired accuracy. 

• For a single ray in each sub-manifold, calculate the 
scattering matrix as defined in Equation (2) for the result­
ing system of diffracted orders using an appropriate com­
putational method. There are a variety of methods available 
to calculate the scattering matrix computationally, based 
on rigorous solution of Maxwell's equations [16]. 

• Generate the confinement and redistribution matrix follow­
ing geometrical considerations (taking a — 0 to calculate 
the mean path length or a j^ 0 to calculate absorption). 

• Solve (10) and apply (5) to give the brightnesses of 
incident and diffracted orders. Repeating for each sub­
section gives a full description of the angle dependent 
brightness inside the solar cell. 

• Apply (16) or (17) to calculate the quantity of interest. 

3. UPPER LIMITS OF LIGHT 
TRAPPING IN SOLAR CELLS 
USING DIFFRACTION GRATINGS 
AND ANGULARLY SELECTIVE 
RUGATE FILTERS 

3 .1 . Light trapping in the weak absorption 
limit 

If / is the length a ray path travels through the solar cell 
active layer, the weak absorption limit is defined as the 
regime wherein all illuminated ray paths satisfy al « 1. 
Within this regime, absorption in the solar cell relative to 
the incident power can be approximated to [7]: 

A = a{l) (18) 

where (I) is the mean path length of light rays within the 
active layer. Within the weak absorption limit, a discussion 
of mean path lengths is therefore sufficient for comparison 

A = 
J ((exp(cw/wz) — \)Bmc(ux, Uy) + (1— exp(—aw/uz))B

Aiii(ux, Uy))duxduy 

Bo In,, du*duy 

2.6. Procedure for application of the 
formalism to computational calculations 

The procedure for computational calculation of the 
absorption and optical mean path length in a solar cell 
equipped with any proposed grating structure is summar­
ised as follows: 

• Divide the illumination cone into sub-manifolds. Firstly, 
divisions must be made so that all incidence directions 
which produce the same confined orders, source-
illuminated escaping orders and non-source-illuminated 

(17) 

of different light trapping techniques. This is a geometric 
property; hence we consider the solar cell to be transparent 
throughout this section. 

3.1.1. Thermodynamic and Lambertian 
limits. 
The brightness theorem [17] states that the brightness Bmt 

of a given internal ray path is limited to: 

Bm, < n¿B o (19) 



Miñano [7] states that if all ray paths within the cell are 
illuminated with the maximum brightness then the mean 
path length of light rays in a cell illuminated by a light cone 
of half angle 6$ is: 

= 4n^ 
\ /max &in20 

(20) 

which represents the thermodynamic upper limit. It 
should be noted that this result assumes nothing of the 
light trapping mechanism; it therefore serves as an upper 
limit for any light trapping scheme. The upper limit for any 
specific scheme (diffraction grating, Rugate filter, etc.) 
is already restricted to being no greater than (20), though it 
may be lower. 

In the Lambertian scheme, Yablonovitch and Cody [4] 
show by detailed balancing of the incident and escaping 
power flux that the internal brightness is given by: 

Bmt = n2B0sm200 (21) 

yielding the mean path length for ideal Lambertian light 
trapping to be: 

(OLambertian^ A^W ( 2 2 ) 

The factor of sin2$o by which (21) and (22) are lower 
than (19) and (20) is the ratio of the étendues of the incident 
and escaping light. In the absence of angular selectivity, 
isotropic internal illumination implies isotropic escaping 
illumination and where incident illumination is not 
isotropic the escaping and hence internal brightness must 
be less than the incident brightness to compensate. It 
should therefore be clear that any light trapping scheme 
which attempts to supersede the Lambertian scheme must 
seek to satisfy the following conditions: 

Condition 1: maximise the number of ray paths 

within the cell that are illuminated. 

Condition 2: minimize the escaping étendue and 

hence maximise the brightness of illuminated paths 

inside the cell (the étendue cannot be decreased by an 

optical system without light loss; hence the escaping 

étendue cannot be lower than the incident étendue). 

3.1.2. The upper limit for the Rugate filter. 
A Rugate filter is an angularly-selective photonic crystal 
which only allows light incident at certain angles to pass 
through in either direction. It may be applied to light 
trapping by placing it on the front surface of the solar cell 
and placing a Lambertian scatterer on the rear [13]. The 
purpose of the filter is to increase the proportion of internal 
rays which are internally reflected whilst maintaining 
transmission of the incident light into the cell. The ideal 
Rugate filter would admit total transmittance of all light 
within the incidence cone and total reflectance for all other 
directions. The escaping étendue would then match exactly 
the incident étendue, and the vacuum brightness of the 

escaping light equal the vacuum brightness of the source. 
The brightness of the escaping light inside the cell is 
greater than that in a vacuum by a factor of n2 [4] and 
the internal illumination is isotropic by virtue of the 
Lambertian scatterer. It clearly follows that all internal ray 
paths would be illuminated with the maximum possible 
brightness in Equation (19). The upper limit of the mean 
path length for a Rugate filter therefore coincides with the 
overall thermodynamic limit in Equation (20). 

3.1.3. The upper limit for a diffraction 
grating. 

3.1.3.1. Internal brightness for large X/A. When 
X/A is sufficiently large that there are no escaping orders 
other than the zero-order for all rays in the incidence 
cone (as illustrated in Figure 2a and b), the middle row of C 
in Equation (11) vanishes and C is doubly stochastic 
(remembering that C2 — 0 and C3 — I for a transparent 
cell). For a lossless grating, the product CR is therefore 
doubly stochastic and the solution to (10) is that all internal 
orders have the maximum thermodynamically allowed 
brightness of n2B(¡. Using a diffraction grating in this X/A 
range ensures that the escaping étendue is no greater 
than the incident étendue; hence it is guaranteed that 
Condition 2 in Section 3.1.1 is satisfied for any grating 
profile. This result holds if all elements of CR are strictly 
positive, which automatically excludes trivial situations 
such as a perfect reflector on the front surface, or a grating 
with no surface modulation (a flat surface). 

3.1.3.2. The mean path length for an ideal 
grating. It should be clear from Figure 2 that it is 
impossible to illuminate all internal directions without 
allowing non-zero diffracted orders to escape. To satisfy 
Condition 1 it is therefore necessary to work in the lower 
X/A range where maximum brightness is not guaranteed. 
To seek an upper limit for light trapping we must therefore 
find the maximum brightness which can be achieved in this 
regime without violating conservation of energy or time 
reversal invariance. Both constraints combined require that 
R be doubly stochastic. 

Consider the decomposition of R into the following 
block matrix 

non source 
illuminated 
escaping 

orders 

source 
illuminated 

escaping 
orders 

I 

confined 
orders 

R 1 2 : 

f\j. R e R , 

— {escaping orders 

—{confined orders 

(23) 



We wish to minimise R3: the coupling from confined to 
escaping orders, whilst maximising R4: the coupling from 
source illuminated to confined orders. Double stochasticity 
of R requires that the sum of all elements in R3 be at least 
the sum of all elements in R4 because: 

E 
columns 

R3 

Re 
-^confined - E I R 4 R5 R« ] 

orders (24) 
=• E R J > E R4 

Physically this means that the degree of coupling 
out of the confined orders must be greater than or equal 
to the degree of coupling into confined orders, there being 
more orders escaping the cell then illuminated orders 
coupling into it. Confinement is maximised when these 
sums are equal which is achieved if R5 — 0: a zero matrix. 
The grating then acts as an angle selector; restricting 
coupling of un-illuminated incident directions into the cell. 
Under this ideal grating condition we have: 

non source 
illuminated 
escaping 

source orders 
illuminated 

escaping 
orders 

I 

confined 
orders 

CR= 0 0 
R4 0 

CXR: 

0 
R. 

r source illuminated 
escaping orders 
non source ilium 
escaping orders 

— {confined orders 

r non source illuminated 

(25) 

and the solution to (10) is that the brightness in 
all confined orders is again n2B(¡; the brightness limit 
for confined orders coincides with the thermodynamic 
brightness theorem limit. It must be emphasized that 
no grating is proposed here which would satisfy this 
condition. It is merely stated that a grating with such a 
property would offer maximum light trapping without 
violating the thermodynamic or reciprocal constraints to 
which diffraction gratings are subject. It is therefore 
appropriate to refer to such a grating as an ideal grating in a 
discussion of limits. 

In configuration (a) in Figure 1, all orders internal 
to the cell are confined orders. The mean path length 
enhancement for an ideal grating placed on the front face is 
therefore calculated from (16) by considering that the 
upward and downward travelling brightnesses are n2Bo 
within the diffracted cones and zero everywhere else. 
The result is dependent on two parameters; firstly, on the 
number and orientation of cones within the solar cell, 

which are directly related to the quantities |bi |A-o /2JT and 

J b2 J A-o / 2JT by the Fraunhofer Equation (1); and secondly, 

on the half angle illumination cone, which is directly 
related to the concentration factor C of the illuminating 
light by sin^o — y/CsmO^ where 0acc is the acceptance 
angle at the concentrator aperture [19] ( C = l x corre­
sponds to a flat panel system). We make the simplifying 

assumption that, for bi-periodic gratings, both periods are 

equal so that IbJ — 162.1 = |b|. 
In Figure 3 mean path length enhancements (l)/w 

for gratings satisfying the ideal grating condition (R5 = 0) 
placed on the front face are plotted as a function of 

b|Xo 2JI, where \\>\\Q 2JT = X/A for line and square 

lattice gratings and |b |Xo/2j r= (2/\/3)x/A for a 

triangular lattice grating. Figure 3a shows results for 
an illumination cone of half angle 9Q = Io and 
Figure 3b for 9Q = 33.5°, these correspond to an 
acceptance angle of Io and concentration factors of 
(a) l x and (b) 1000 x, respectively. The cell refractive 
index is taken to be n = 3.33 corresponding to GaAs. 
Red, green and blue curves show results for ideal 
triangular lattice, square lattice and line gratings, 
respectively, all placed on the cell's front surface. 
The lattice geometries are pictured in (b), and the 
internal diffracted cones pictured at certain points on 

Figure 3. Mean path length enhancement as a function of 

wavelength to grating period ratio for (a) 1x and (b) 1000x 

concentration and an acceptance angle of 1°. n = 3.33 (GaAs). 

The red, pink and blue curves show path lengths for idea 

triangular lattice, square lattice and line gratings, respectively. 

The dashed red curves show results from simulation of a grating 

geometry consisting of a triangular lattice of cylindrical wells. 



the curves in (a). Local peaks occur at points where 
highly oblique orders are introduced. The thermodyn­
amic limit is achievable by the bi-periodic triangular 
and square lattice gratings at low X/A where the 
diffracted cones fill the cell. This will also hold for 
bi | =£ t>2 since diffracted cones can always be made to 

fill the cell completely. 

The uni-periodic line grating only diffracts light along a 
single axis and is incapable of filling all directions 
within the cell with light (see lower left inset in (a)). The 
upper limit for a line grating is therefore considerably lower 
than the thermodynamic limit. In fact, at lOOOx the uni-
periodic line grating limit is lower than the Lambertian limit. 

The range to the right of the vertical dotted line in both 
figures corresponds to that in which only the zero order 
escapes and maximum brightness is guaranteed for a 
transparent cell, as described at the beginning of Section 
3.1.3. To the right of the line, the plotted mean path length 
would be achieved by any grating profile. To the left, it 
would only be achieved by a grating satisfying R5 — 0 in 
Equation (23) as previously discussed. 

To clarify this, {l)/w has been calculated numerically 
for a simple grating geometry consisting of a triangular 
lattice of cylindrical wells with well depth d — 0.3A and 
well radius r — 0.35A, placed on the solar cell front 
surface. The scattering matrix elements were calculated 
using commercial software package Gd-Calc®: an 
electromagnetic simulation program based on rigorous 
coupled-wave (RCW) theory, and the formalism of Section 
2 was applied. The results are plotted as dashed red 
curves in Figure 3a and b. No results are shown for 
|b|A,o /2TT < 0.5 as the high number of propagating orders 

makes calculations computationally costly in this region. 
Above the vertical dotted line, {t)/w for the simulated 
grating coincides with the ideal grating as discussed. 
Below the line, it falls dramatically: multiple escaping 
orders now exist and the simulated grating is not restricting 
coupling between these and confined orders, causing 
the internal brightness to decrease. It should be noted 
that, although the simulated grating fails to approach the 
thermodynamic limit, a significant improvement is made 
on the Lambertian limit over a wide wavelength range for 
both lx and lOOOx. 

These observations have important implications for the 
practical application of gratings to solar cells. Approaching 
the ideal grating condition requires the complicated 
task of designing a grating such that many scattering 
matrix elements are simultaneously zero or close to zero 
over a range of wavelengths. It is reasonable to speculate 
that the profile such a grating would be complex with 
many different elements in each unit cell. When designing 
a simple grating for light trapping, it could therefore 
be advisable to choose the grating period such that 
the wavelength range of interest falls into or overlaps the 

region 1 < |b|A,o /2ir < 2. Light trapping in this region 

has much less potential than for lower X/A, but it can be 
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Figure 4. The mean path length for ¡deal triangular lattice grating 

placed on the rear surface as a percentage of the mean path length 

for the same grating placed on the front. Black and red curves 

show results for 1 x and 1000x concentrations, respectively. 

achieved more easily. More generally, on decreasing X/A, 
the number of diffracted orders and hence the complexity 
of the system increases. This makes design more difficult. 
There is therefore a trade-off between overall potential and 
achievability in practice. 

Finally, when X/A is very low, diffracted orders become 
so dense they form a continuum and the geometric optics 
regime is entered. We argue that as long as the grating 
profile is sufficiently complex to diffract some light into all 
directions, it is still correct to state that the grating limit is 
no lower than the thermodynamic limit. 

3.1.3.1. The upper limit for a grating placed on the 
rear face. Figure 3 shows the upper limit for a grating 
placed on the front face of the solar cell. If the grating is 
placed on the rear of the cell, all downward directions 
within the escape cone but outside the illumination cone 
are un-illuminated (this is the grey area in Figure 2d). Also 
the requirement that the ideal grating restrict escaping 
étendue implies some un-illuminated upward directions 
within the escape cone. The thermodynamic limit is 
therefore unachievable by a grating placed on the rear 
under all conditions other than isotropic illumination of 
the front surface (ideal concentration). The mean path 
length enhancements {l)/w for a triangular lattice grating 
satisfying the ideal grating condition (R5 — 0) when placed 
on the rear face is shown in Figure 4 as a percentage of 
the same grating placed on the front, for l x and lOOOx 
concentrations. The upper limit (achieved at low X/A) for a 
grating placed on the rear face is 4.6% and 3.7% lower than 
the limit for a grating placed on the front at 1 x and lOOOx 
concentrations, respectively. 

3.2. Light trapping outside of the weak 
absorption limit 

Outside the weak absorption limit, the mean path length 
alone is not sufficient to describe total absorption. Using 



the properties of the exponential function, it is shown in 
Ref. [7] that for a given mean path length, cells with a 
narrow distribution of path lengths will absorb more 
than cells with a wide distribution. Hence we have a third 
condition to achieve maximum absorption outside the 
weak absorption limit: 

Condition 3: minimize the variance of the distribution 

of path lengths within the cell. 

3.2.1. The thermodynamic limit. 
The maximum possible absorption is achieved when the 
internal rays have the maximum mean path length from 
(20) and when all rays travel the same length [7]. The 
thermodynamic limit of total absorption relative to the 
power incident on the cell is then 

= l-exp(-a</)n (26) 

3.2.2. The upper limit for a diffraction 
grating. 
For a single incident ray, condition 3 is fulfilled by any 
grating whose redistribution matrix R consists of zeroes 
and ones (a single one in each row and column and zeroes 
elsewhere; this does not violate double stochasticity of 
R—also, note that this implicitly implies an asymmetric 
grating). A single path is then followed which, if R5 — 0 
as before, will traverse all confined orders. If a single 
system of diffracted orders has multiple source 
illuminated orders, then these incident rays must divide 
the diffracted paths between them. Condition 3 is best 
fulfilled when the set of diffracted paths is most evenly 
partitioned between the source illuminated orders. For 
a given system this partition cannot necessarily be 
perfectly even. What's more, each ray in the illumina­
tion cone corresponds to a different system with 
different associated path lengths. This introduces the 
possibility for path length variance. It is not, therefore, 
trivial that the thermodynamic limit is achievable. 

The fraction of incident power absorbed by a cell 
equipped with an ideal grating has been calculated as a 
function of XIA. using an algorithm. The incidence cone is 
divided into a finite number of rays and the absorption 
calculated for each by summing the path lengths of 
the corresponding diffracted orders and applying the 
Lambert-Beer law. Where multiple rays pertain to a single 
system, the diffracted paths are partitioned between them 
using a 'greedy' algorithm. This chooses the largest path in 
the system and puts it in the emptiest partition then does the 
same with the next largest and so on. The greedy algorithm 
does not guarantee an optimum partition but this can only 
serve to underestimate the result. 

The calculated absorptions are shown in Figure 5 for 
(a) l x and (b) lOOOx concentration. The acceptance 
angle and refractive index are Io and n — 3.33, respectively, 
as before. Results for absorbances of aw — 1 x 10~ , aw — 
1 x 10~ , aw = 0.01 and aw = 0.1 are displayed in black, 

Figure 5. Absorptionasafunctionofwavelengthtogratingperiod 

ratio for (a) 1x and (b) 1000x concentration and an acceptance 

angle of 1°. n = 3.33 (GaAs). Calculated absorptions in cells with 

absorbances of aw=\ x1CT4, aw=\ x1CT3, aw=0.01 and 

aw=0A are displayed in black, red, blue and green, respectively. 

Solid curves and dashed curves show absorptions achieved using 

ideal triangular lattice and square lattice gratings, respectively. In 

each case the grating is placed on the cell's front surface. Closely 

spaced and widely spaced dotted lines show thermodynamic and 

Lambertian limits, respectively. 

red, blue and green, respectively. In each case the 
absorption for a triangular lattice grating (solid line), a 
square lattice grating (dashed line), the respective 
thermodynamic limit (closely spaced dotted line) and 
Lambertian limit (widely spaced dotted line) is plotted. For 
lx concentration the thermodynamic absorption limit is 
unity for all absorbances. 

In all studied cases the absorption reaches the 
corresponding thermodynamic limit within a relative 
margin of 0.25% at low XIA. This can be explained as 
follows: As diffracted orders become dense within the 
cell, the summed path lengths for each system of diffracted 
orders tend to a common value. Additionally, the number 
of source illuminated orders in each system increases 
exponentially while the difference between the number of 
source illuminated orders in different systems remains of 
the same order of magnitude. Hence each system has a 
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Figure 6. The upper absorption limits for cells employing a 

diffraction grating placed on the front face (solid lines) and a 

Rugate filter (dashed lines) as a function of the concentration 

factor of the illuminating light. Limits for cells with absorbances 

of aw=1 x1CT4, aw=1 x1CT3, aw=0.01 and aw=0A are 

displayed in black, red, blue and green, respectively. In each case 

the grating is placed on the cell's front surface. Dotted lines 

represent the Lambertian limit for each absorbance. 

relatively similar number of source illuminated orders; and 
as there are many diffracted orders, their lengths may be 
evenly partitioned. The total variance in path lengths can 
then be made to be arbitrarily small: the upper absorption 
limit for a diffraction grating is equal to the thermodynamic 
limit. The solid lines in Figure 6 represent this limit as a 
function of concentration factor for the aforementioned 
absorbances. The concentration factor is directly related to 
the half angle of the illumination cone as mentioned earlier. 
An acceptance angle of Io is again assumed. 

3.2.3. The Lambertian limit and the upper 
limit for the Rugate filter. 
An analytical method of calculating the absorption for a 
cell equipped with a Lambertian scatterer has been 
presented by Green [20]. This can be extended to include 
the effect of an ideal Rugate filter by simply setting the 
escaping étendue to be equal to the incident étendue 
in Green's formula. The upper absorption limits for 
Lambertian trapping and for the Rugate filter are plotted in 
Figure 6 as dotted and dashed lines, respectively. For 
higher absorbances the upper Rugate filter limit falls 
increasingly short of the diffraction grating/thermodyn-
amic limit. This is a result of the inevitable variance in 
path length distribution caused by the random scattering 
employed in this scheme. 

3.3. Discussion 

Our findings are summarised in Figure 6. Both the Rugate 
filter and diffraction grating limits demonstrate a signifi­
cant improvement on the Lambertian limit. This becomes 

more pronounced at lower concentrations. It should be 
noted that concentration factors currently employed in 
practical systems rarely exceed lOOOx. 

It has been demonstrated that, for both the Rugate filter 
and front face diffraction grating schemes, the upper 
limit of the geometrical mean path length is equal to its 
thermodynamic limit. Hence, for low absorbances, where 
mean path length is the dominant factor, the limits of both 
schemes are similar. 

The thermodynamic absorption limit is only achievable 
by the diffraction grating; the Rugate filter absorption limit 
is generally lower. This difference is significant for all but 
extremely weakly absorbing cells (even for aw — lx 10~ 
at l x concentration the Rugate limit is still 6% lower 
than the diffraction grating limit - see inset Figure 6). The 
essential difference is that although both components are 
capable of acting as an angle selector at the front surface, 
only the diffraction grating has the ability to control the 
paths of light rays inside the cell substrate. 

Finally, although it has been demonstrated that the 
diffraction grating has the higher limit of the two schemes, 
this does not necessarily imply that it will achieve 
better light trapping in practice. The constraints placed 
to the grating to achieve maximum absorption are 
extremely demanding. It is not known what profile a 
grating which approximated to the ideal case would have or 
if indeed such a profile exists. Of course optimising a 
Rugate filter to restrict redistribution to the incidence cone 
perfectly is no minor task either, although some good 
results have been achieved [21]. In stating the upper limits 
explicitly, we hope to have reiterated the motivation for 
research in both fields. 

4. CONCLUSIONS 

A mathematical formalism has been derived to calculate 
the mean path length enhancement and absorption in a 
solar cell equipped with a given diffraction grating of 
given profile and known scattering matrices. To the 
authors knowledge no such formalism has existed to date. 
Applying this formalism, the upper absorption limits of 
light trapping using a diffraction grating has been 
calculated. The upper limit using a Rugate filter has also 
been calculated analytically. The derived formalism and 
limits are valid when the solar cell thickness is greater 
than the coherence length of the illuminating solar 
spectrum. Both limits surpass that of conventional 
Lambertian light trapping. The increase is considerable 
within the range of practically implemented concentration 
factors. The upper absorption limit using a bi-periodic 
diffraction grating placed on the front cell surface is equal 
to the thermodynamic limit for all concentration factors 
and cell absorbances. The upper limit using the Rugate 
filter is generally lower but tends to the thermodynamic 
limit at low absorbances. The upper limits for a bi-periodic 
grating placed on the rear of the cell and for a bi-periodic 
line grating placed on either surface are marginally and 



considerably lower than the thermodynamic limit, 
respectively. Diffraction gratings have greater light 
trapping potential in the higher grating period range where 
many propagating diffracted orders are generated within 
the solar cell, the limit only being achievable when 
diffracted cones fill the cell completely. 

ACKNOWLEDGEMENTS 
This work was supported by the European Commission 
project IB POWER (Contract 211640), the NUMANCIA 
(S2009/ENE/1477) project funded by the Comunidad de 
Madrid, and the Nanogeffes project, which is part of the 
Spanish National Program. Alexander Mellor gratefully 
acknowledges the Comunidad de Madrid for financial 
support through the scholarship Personal Investigador 
de Apoyo. 

REFERENCES 

1. Luque A, Martí A. The intermediate band solar cell: 
Progress toward the realization of an attractive con­
cept. Advanced Materials 22(2): 160-174. 

2. Marti A, Lopez N, Antolin E, Cánovas E, Stanley C, 
Farmer C, Cuadra L, Luque A. Novel semiconductor 
solar cell structures: The quantum dot intermediate 
band solar cell. Thin Solid Films 2006; 511: 638-644. 

3. Deckman HW, Wronski CR, Witzke H, Yablonovitch 
E. Optically enhanced amorphous-silicon solar-cells. 
Applied Physics Letters 1983; 42(11): 968-970. 

4. Yablonovitch E, Cody GD. Intensity enhancement in 
textured optical sheets for solar-cells. IEEE Trans­
actions on Electron Devices 1982; 29(2): 300-305. 

5. Fornies E, Zaldo C, Albella JM. Control of random 
texture of monocrystalline silicon cells by angle-
resolved optical reflectance. Solar Energy Materials 
and Solar Cells 2005; 87(1^): 583-593. 

6. Campbell P, Green MA. Light trapping properties of 
pyramidally textured surfaces. Journal of Applied 
Physics 1987; 62(1): 243-249. 

7. Miñano JC. In Physical Limitations to Photovoltaic 
Energy Conversion, Luque A, Araujo G (eds). 
Adam Hilger: Bristol, 1990; Ch. 3, pp. 50-55. 

8. Zhao JH, Wang AH, Campbell P, Green MA. A 19.8% 
efficient honeycomb multicrystalline silicon solar cell 
with improved light trapping. IEEE Transactions on 
Electron Devices 1999; 46(10): 1978-1983. 

9. Zhao JH, Wang AH, Green MA. 24.5% efficiency 
silicon PERT cells on MCZ substrates and 24.7% 
efficiency PERL cells on FZ substrates. Progress in 
Photovoltaics 1999; 7(6): 471^174. 

10. Abouelsaood AA, El-Naggar SA, Ghannam MY. 
Shape and size dependence of the anti-reflective and 
light-trapping action of periodic grooves. Progress in 
Photovoltaics 2002; 10(8): 513-526. 

11. Sai H, Kanamori Y, Arafune K, Ohshita Y, 
Yamaguchi M. Light trapping effect of submicron 

surface textures in crystalline Si solar cells. Progress 
in Photovoltaics 2007; 15(5): 415^123. 

12. Llopis F, Tobias I. Influence of texture feature size on 
the optical performance of silicon solar cells. Progress 
in Photovoltaics 2005; 13(1): 27-36. 

13. Fahr S, Ulbrich C, Kirchartz T, Rau U, Rockstuhl C, 
Lederer F. Rugate filter for light-trapping in solar cells. 
Optics Express 2008; 16(13): 9332-9343. 

14. Tobias I, Luque A, Marti A. Light intensity enhance­
ment by diffracting structures in solar cells. Journal of 
Applied Physics 2008; 104(3): 034502. 

15. Neviére M. In Electromagnetic Theory of Gratings 
(Topics in Applied Physics), Petit R (ed.). Springer: 
Berlin, 1980; Ch. 5, pp. 145-147. 

16. Neviere M, Popov E. Light Propagation in Periodic 
Media: Differential Theory and Design (Optical 
Engineering). Marcel Dekker: New York, 2002. 

17. Born M, Wolf E. Principles of Optics: Electromag­
netic Theory of Propagation, Interference and Diffrac­
tion of Light, (7th Edition). Cambridge University 
Press: Cambridge, 1999. 

18. Berman A, Plemmons R. Nonnegative Matrices in 
the Mathematical Sciences (Classics in Applied 
Mathematics). Society for Industrial Mathematics: 
Philadelphia, 1994. 

19. Swanson RM. In Handbook of Photovoltaic Science 
and Engineering, Luque A, Hegedus S (eds). Wiley: 
Chichester, 2003; Ch. 11, pp. 474-475. 

20. Green MA. Lambertian light trapping in textured solar 
cells and light-emitting diodes: Analytical solutions. 
Progress in Photovoltaics 2002; 10(4): 235-241. 

21. Peters M, Goldschmidt JC, Kirchartz T, Blasi B. The 
photonic light trap-improved light trapping in solar 
cells by angularly selective filters. Solar Energy 
Materials and Solar Cells 2009; 93(10): 1721-1727. 

APPENDIX: PROOF THAT THE 
REDISTRIBUTION MATRIX R IS 
DOUBLY STOCHASTIC 
The redistribution matrix R is defined by (10) in the main 
body of the text as 

^v=-L-£il-s ,vr (A1) 
yijiizj 

We wish to show that 

J > y = IVj (A2) 

I > y = IVi (A3) 

Proof. 
The total power incident on the grating is: 

pmc = Y.nMEiac\2 (A4^ 



If Einc is a column vector with elements EJ10 (not to be 
confused with the directional electric field vector E) then: 

B-t (A5) 

where f denotes the adjoint matrix. If E^g- is similarly 
defined then the total power leaving the grating is: 

*W = E ^ U E a l / / (A6) 

For a lossless grating Pdiff=Pinc s o that: 

Pdiff = E¿,^UE¿,y = (SEinc) U(SE,-„C) 

= E L (StUS)Ei„c = EL(U)E,-„ C = Yinc (A7) 

hence: 

S ^ S = U (A8) 

or 

EE^'K^i (A9) 

U¡j = S¡jn¡uz¡ and S¡j = S*,- so: 

^mUziS^Sij = Sijiijitg =>• ̂ 2J-IL \S¡j\ = lVj (A10) 
i ¡ niuzi 

which proves (A2). 
Maxwell's equations are invariant under time inversion. 

If the vector field in the ¡th diffracted polarized order is: 

É¡(r,/) = Refeexp(i(k¡ • r-cot)J1 v¡ (All) 

where v¡ is the unit polarization vector and non-italic i is 
the imaginary unit, then the time reversed field is: 

H¡{r,t>)=Éi(r,-t>) 

= ReI£,-exp(i(k, • r + cot')J I v¡ 

= Re [£*exp (i (Ü'¡ • r-cot'^j ) ] v,- (A12) 

where k ,• — — k,. The diffracted orders in the original 
system are incident orders in the new system and vice 
versa. Their amplitudes are the complex conjugates of 
those in the original system. E ¡^ — E ^ and E ¿m — Einc. 
If S' is the scattering matrix of the time reversed system 
then: 

É L = É V = S'E ínc = S%¡ff =• S' = (S-1)* (A13) 

Equation (A8) applies to S' as it must conserve power (U 
remains unchanged under time reversal). 

S^US' = U (A 14) 

substituting (A13) into (A14) and performing some 
operations we have: 

SU^S 1 = IT 1 (A15) 

Following similar steps to (A9) and (A10) gives: 

£ ^ | S / i / | 2 = l V « (A16) 
j nJuzj 

proving (A3). Hence R is doubly stochastic. 


