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ABSTRACT

An automatic detection and tracking framework for visual surveil-
lance is proposed, which is able to handle a variable number of
moving objects. Video object detectors generate an unordered set
of noisy, false, missing, split, and merged measurements that make
extremely complex the tracking task. Especially challenging are
split detections (one object is split into several measurements) and
merged detections (several objects are merged into one detection).
Few approaches address this problem directly, and the existing ones
use heuristics methods, or assume a known number of objects, or
are not suitable for on-line applications. In this paper, a Bayesian
Visual Surveillance Model is proposed that is able to manage unde-
sirable measurements. Particularly, split and merged measurements
are explicitly modeled by stochastic processes. Inference is accu-
rately performed through a particle filtering approach that combines
ancestral and MCMC sampling. Experimental results have shown a
high performance of the proposed approach in real situations.

Index Terms— Split detections, merged detections, moving re-
gions, multiple object tracking, variable number of objects.

1. INTRODUCTION

Automatic detection and tracking of a variable number of objects
is the core of any surveillance system. Object detectors produce a
set of unordered noisy measurements that need to be appropriately
associated to the existing tracked objects to satisfactorily estimate
their trajectories. In addition, some of the measurements can be false
detections due to the clutter. Also, detectors can fail in detecting
some objects (missing measurements). Object trackers have to be
able to manage these kind of measurements to robustly estimate both
the number of objects and their trajectories. This task is usually
carried out by a data association stage that tries to compute the best
correspondence between actual measurements and objects.

A wide range of data association techniques have been pro-
posed [1] that can handle noisy, false and missing measurements.
The majority of them impose a one-to-one mapping between objects
and measurements. This restriction consists in that one measure-
ment can be associated with at most one object and viceversa. This
restriction is reasonable for point based measurements, in which
an object is considered as having neither physical volume nor re-
solvable features. Nevertheless, in visual surveillance systems, the
measurements are regions that cannot be satisfactorily modeled by
a single point. In particular, visual moving object detectors produce
moving regions that ideally represents moving objects. However,
object occlusions, changes in illumination, varying object appear-
ances, shadows, reflections, and complex backgrounds give rise to
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split MRs (one object is split into several MRs) and merged MRs
(several objects are merged into one MR). Few works that have
explicitly addressed this problem. An interesting approach is pre-
sented in [2] that augments the set of MRs with virtual MRs to
represent possible split and merged events. A similar strategy is
followed in [3] where the virtual MRs are derived from the region
overlapping between prediction and detection. However, the previ-
ous methods do not provide an explicit model for split and merged
measurements limiting their performance. In [4], a model for sim-
ulating split and merged MRs is introduced, which uses a Markov
Chain Monte Carlo method (MCMC) to draw association samples
spatial and temporally. Nonetheless, this approach performs a batch
processing that uses MRs of several time steps. This fact makes it
unsuitable for on-line applications that either cannot delay the detec-
tion and tracking results, or have restriction in computational cost.
In [5], split and merged MRs are generated by a different MCMC
method that draws association samples sequentially. However, this
paper assumes a known number of targets, and therefore it can not
handle the entrance and exit of objects in the scene.

In this paper, an automatic detection and tracking framework for
visual surveillance applications is presented, which is able to detect
and track a variable number of moving objects in complex situations.
The main contribution is the Bayesian modeling of the detection and
tracking tasks that takes into account specific problems that arise in
video based systems. These problems are mainly related to the split,
merged, noisy, false and missing MRs that generate a real video ob-
ject detector. The developed Bayesian model not only manages all
the previous types of MRs to efficiently perform the tracking of mul-
tiple objects, but also infers the number of existing moving objects.
The inference in the proposed Bayesian Visual Surveillance Model
(BVSM) is performed by means of a particle filtering method that
approximates the posterior distribution of the tracked objects by a set
of unweighted samples. The procedure to compute these samples is
based on a combination of several techniques such as ancestral sam-
pling and MCMC simulation. Experimental results in indoor video
sequences have shown that the proposed Bayesian framework is able
to reliably detect and track a variable number of moving objects in
real operating conditions.

2. PROBLEM DESCRIPTION

The main goal of BVSM is to detect and track a variable num-
ber of moving objects. Moving objects are represented by a state

vector X[ = [x[t,imﬂiz =1,..., Nobj], where Nop; is the num-
ber of moving objects at the time step ¢ that varies along the time.
Each component X ;,] = [F[t,i0]> Vitsin]> S[t,in]> Lt,i,)] cONtains

the tracking information of a moving object. r[ ;,] is the object
position over the image plane, vy, ;] is the object velocity, sy ;.1 is
the object size represented by orientable bounding box, and 1(; ;) is
a label that univocally identifies the object along the video stream. .
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In order to estimate the vector state, a sequence of noisy mea-
surements zj;) = [z[tyiz]|iz =1,..., Nms] are used, where N,
is the number of measurements at the time step ¢ that varies along
the time. Every component contains the information of a measure-
ment zp; ;] = [r[mz] 2 S[ti] l[t,izﬂ , which is the position, size and
a label of a moving region (MR), respectively. MRs represent poten-
tial moving objects and they are obtained by means of a background
subtraction technique. In this paper, it has been used the background
subtraction technique presented in [6]. Measurements between con-
secutive time steps are unordered, which means that the correspon-
dence between MRs and tracked objects is unknown. In addition,
the correspondence is not one-to-one in general. Interactions among
objects, changes in illumination, varying object appearances, shad-
ows, reflections, and complex backgrounds give rise to missing MRs
(missing measurements), objects split in several MRs (split measure-
ments), MRs merging several objects (merged measurements), and
false MRs (clutter). To deal with this problem, a data association
stage is introduced to compute the correspondence between MRs and
tracked objects. This correspondence is represented by the variable
ay) = [a,,)/ia = 1,..., Nims|, where each component expresses
the association of a MR as

{ializ= €{1,...,Nobj}} if cond:
ap,i,] = . )]
0 if conds.
condy is a logical condition that is true if z[; ;,) is associated to
{X[1,i,1}> and conda is another condition that is verified if z[; ;) is
not associated to any object.

The set of MRs not associated to any object, Zna = {2Z[,i,]|a[t,i,] =

0}, can be originated by clutter or by the entrance of new ob-
jects in the scene. This information is encoded by the variable
by = [b[t,ib] lip =1,... ,Nzna], where N.,. is the number of
components of Zna. The by ;,) component indicates the origin of
the it MR in z,,, as

1 new object,
[£.%] {0 clutter. @

On the other hand, there can be also objects without any
MRs associated to them, Xna = [X[¢,i,)|"Fia,Alt,1,) = iz, be-
cause either the MR is missing, or the object has exited from
the scene. This information is given by the variable dj; =
[dpt,iglia =1,..., Nona] where Nana is the number of com-
ponents of Xpq. The d[; ; ;) component indicates the state of the it
object in Xyq as

1 object has exited,
die, { ! &)

0 object still present (missing measurement).

The number of tracked objects in the scene at each time step is
then directly determined by the birth (entrance of new object) and
dead events The variables b;; and d[;; controls the size of x[;) by
adding or removing components (moving objects). Thus, the number
of tracked objects in the scene at each time step is obtained.

3. BAYESIAN VIDEO SURVEILLANCE MODEL

From a Bayesian perspective, the goal is to estimate the posterior
probability density function (pdf) of the state vector, p(x(t]|z[1.4]),
using the prior information about the object dynamics and the se-
quence of available measurements (moving regions) until the cur-
rent time step z(1. = {2z z(y }. This probability contains all

1438

®, O,
i~

7

N

Fig. 1. Graph model showing the dependence of all the variables.

the required information to optimally compute an estimation of the
number of moving objects and their trajectories.

To derive a tractable mathematical expression of p(x(t]|z[1.4)),
the conditional independence properties of all the variables involved
in the surveillance system are used. Fig. 1 depicts these conditional
dependencies according to Sec. 2. Then, the mathematical expres-

sion of p(x(t]|z[1.,) can be expressed as
p |th ZZZP X[, t]: [t]s t]|Z1t]) 4
aqy) by dp
where p(xpy,ap), by, djy |z 1:4)) is the joint posterior pdf of all

the variables. Deﬁnmg Vi = {x (1>, by, dpy b and using the
Bayes’ theorem [7], the Jomt posterior pdf can be expressed in a
recursive way as

(2112011, Y1)
VARE = — X
p(Y[t]| [1.z]) P(Z[t]|Z[1;t71])

></p(}’[t]\Z[u_mY[t—u)p(}’[t—u\Z[1zt—1])d}’[t_1] ®)

where p(yi—1)|2[1:¢—1)) is the joint posterior pdf at the previous
time step, p(y(y|2[1:t—1], Y[e—1)) is the joint transition probability,
(Z[)|2[1:4—1), Y[)) 18 the likelihood, and p(zp|z[1:¢—1]) is just a
normalization constant given by

p(Z[t]|Z[1:t71])=/p(Z[t}|Z[1:t71}7 Vi) P(Y | 2n—1))dy - (6)

Making use of the concept of “d-separation” [8] to analyze the
conditional independence among variables, the likelihood can be
simplified as

p(zi|2p:—1), yi) = P(2p [Xp0, agg) ™

since z[y.;—1) are d-separated from z[;) by X}, and by, and d,) are
d-separated from z[;) by aj. The hkehhood evaluates how Well a
candidate state vector along with a specific data association accounts
for the set of measurements, i.e. how well a configuration of tracked
objects accounts for the set of MRs taking into account a particular
correspondence between and MRs. The likelihood can be factorized
according to the MRs that have not been assigned to any object z,q,
and the ones that do have z,

P(Zna)p(ZalX(, A7), (8)

where p(zn,) is modeled by a multivariate uniform distribution that
does not depend on the state vector, and p(za|x), aj,) follows a
multivariate Gaussian distribution given by

p(zp X, ap) =

P(za|xy, apy) = N(Hi1y2a; Hy 21X (1), Bieim))- &)
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The matrices Hy,1) and Hy 1) are set to satisfy the MRs-objects
correspondence defined by ap;;. The matrix H; 1; can encode as-
sociations involving several MRs and one object (split measure-
ments), and H[; 5 associations involving one MR and several
objects (merged measurements). The rows of Hp, 1) (Hp, 2)) are
normalized to reflect that an association of several MRs (objects)
creates a virtual MRs (object) whose position and size parameters
are the average of the involved MRs (objects).

By applying first the product rule of probability and then the
conditional independence properties, the joint transition probability
can be simplified as

P(¥l2—1, Yie—1]) = P(Xpg|X—1], br—1), dp—1)) %
XP( )p(brlag) x p(dilag), (10)

where it has been taklng into account that z[;.,_) are d-separated
from xp) by x(;—1]; {Zp—1),ap—1)} are d-separated from x[
by bp_1); {Zp:4-1), x[t 1, a[—1], b[ 1), dg—1)} are d-separated
from ap,) by x[y; X[y is d-separated from ajy by X175 {Z:0-1),
X[t—1:4], A —1] b[t,lzt], d;_q)} are d-separated from dp;) by {ap,
Xpe1 o and {zp_1), Xje—1:4), App—g), Pre—1:4, A1)} are d-
separated from dpy) by {ap), X141}

The term p(afy) is used to impose the following restriction over
the data association: a MR cannot be associated at the same time
to clutter and objects, since it makes no sense in the visual track-
ing. The term p(by;|af)) expresses the probability that the measure-
ments that have not been assigned to any object, z,,q, be considered
as new objects, rather than clutter. It is modeled by a multinomial

distribution
Huz; o (11)

where 113, is the probability that the it" MR in z,, be a new ob-
ject. The term p(dyy|ag) is the probability that the objects not as-
sociated with any MR, x,,4, leave the scene,and it is modeled by a
Gamma distribution. This distribution simulates the “time to death”
of one object according to the last time a MR was associated to it.
Finally, the term p(x[y|X[—1), by—1), dz—1)) predicts the number
of objects and their tracking information between consecutive time
steps.  This prediction is accomplished in three stages. First, the
tracked objects that have left the scene, indicated by d};_,), are re-
moved from x(;_1). Then, the tracking information of the alive ob-
jects is predicted using a constant model for the velocity and size
with Gaussian uncertainty [5]. Lastly, the new objects according to
b(;_1) are added to X[, and their parameters are initialized by a
Gaussian distribution, whose parameters are set in accordance with
the MR parameters that gave rise to the new object.

Once the expression of the joint posterior pdf has been derived,
an optimal estimation of the state vector Xy, is obtained by means
of the Minimum Mean Squared Error (MMSE) estimator. However,
P(¥[t—1]|Z[1:)) can not be analytically solved due to the non-linear
and non-Gaussian processes involved in the surveillance system [9].
To overcome this problem, a particle filtering strategy based on an-
cestral sampling is used to approximate the joint posterior pdf.

bplag)

4. PARTICLE FILTERING APPROXIMATION

The joint posterior pdf can be approximated by a set of Ngq4m, un-

weighted samples y[[j = {x{;]] , a{z]], b{ﬂ, dm }, also called particles,
as
Nsam

)= > 3 (v —vl]). (12)
i=1

(Y2004
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where §(z) is a multivariate Dirac delta function. According to
Monte Carlo simulation, samples are drawn from a function pro-
portional to the own joint posterior pdf

p(ymlzie) < q(y|z1:e) = p(2 |21, Y1) ¥

X /p(y[t]|z[1:t—1]7y[t—l])p(y[tfl]|Z[1:t71])dy[t—1]~ (13)

Assuming that joint posterior pdf has been approximated in the
previous time step by a set of unweighted samples as in Eq. 12,
q(y[y|21:t) can be expressed as

Neam
q(ylz1:e) = p(z1|211:0-1), Y1) Z p(y[t]|z[1:t_1]7y[[z],1]) =
=1
= p(z¢|xe, ar)p(ap)p(brglag )p(di ap) x
Noam
[2] 2]
X Z [t 1]7b[t—1]’d[t—1])' (14)

The procedure to draw samples from q(yp|z[1.) is based on

the ancestral sampling technique [10]. First, a sample y[[itl]

is drawn from p(yp_1j|z1:¢—1), which has been approximated

[é ]

by a discrete probability. Second, a sample X[ is drawn from

p(x t]|x 1 b{t] 1],d%t] 17)> which was essentlallyaGaussian dis-
[ [i]

tribution. Then, ay;) is sampled from ¢(a [t]) = p(zt|x£i],at)p(a[t]).

Since the likelihood p(zt|xt ,a¢) is a discrete probability over a,
given x,[f], q(aﬁ]]) is a discrete distribution from which is straight-
forward to draw samples. However, the fact that several MRs can be
associated to several objects gives rise to a combinatorial explosion
of possible associations whose computational cost is prohibitively.
To deal with this problem, the MCMC based sampling approach pre-
sented in [5] is used, although lifting the restriction that a MR cannot
split and merge at the same time. This approach defines a Markov

Chain whose stationary distribution is just the desired q(aﬁ]]). Fi-

nally, bH and d ] are drawn from the multinomial probability

p(by |a[t]) and the gamma distribution p(dp, |a ) respectively.

As a result, a sample y[t] = {x[t] [t],b{t],dm} is obtained from

P(¥l2[:)-
5. RESULTS

The proposed Bayesian Video Surveillance Model has been tested
using a dataset consisting of several indoor situations with a variable
number of moving objects. The main challenge is the proper man-
agement of merged, split, missing and clutter MRs that occur in the
operation of a typical moving object detector based on background
subtraction.

An illustrative example of the tracking procedure is shown in
Fig. 2. The first shows the detected moving regions (white regions)
computed by the detector. The second row shows the position and
size information relative to the vector state samples that approxi-
mate the posterior pdf p(x(s|z[1.4)). Lastly, the third row shows the
tracked objects marked by bounding boxes, which result from the
MMSE estimation over the joint posterior pdf. On the other hand,
the estimated number of objects per time step is shown in Fig. 3 for
the previous sequence. The solid line indicates the number of es-
timated objects, and the dashed line the actual number of moving
objects.
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Fig. 2. Tracking a variable number of objects

PYITITITY

True Number of Targets
Estimated Number of Targets

| | Time | I I |
0 50 100 150 200 250 300 350 400 450

Fig. 3. Estimated number of objects across time.

The overall tracking performance has been evaluated by means
of two different measures: the number of tracking errors. N;. and
the average number of miscounted track objects, A,,,. Regarding
Nyie, it is considered that a tracking error occurs when the estimated
bounding box of an object and the one corresponding to the ground
truth do not overlap each other. The other measure is defined as
Amo = ., do,t/T, where do ¢, is the absolute value of difference
between the actual and the estimated number of moving objects at
the time step ¢, and 7" is the length of the sequence. Tab. 1 shows
global tracking results in the aforementioned dataset using the de-
fined performance measures. As can be observed from the low val-
ues of A,,,, the proposed BVSM is able to accurately infer the num-
ber of moving objects, since the model has the ability to create and
remove objects in order that the estimated number of objects be con-
sistent with the existing detections. On the other hand, the low val-
ues of Ny prove a great efficiency in the tracking task thanks to the
robust management of false, missing, split and merged MRs.

6. CONCLUSIONS

Automatic detection and tracking of multiple moving objects for vi-
sual applications is a challenging task. The main problem arises
from the fact that set of unordered detections (MRs) and the set of ex-
isting moving objects in the scene can not be mapped one to one. The
reason is that visual detectors produces undesirable false, missing,
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| Video description [ Nie [ Ao [ T ‘

2 people, 1 cross 0 0.013 | 500
3 people, 1 cross 0 0.017 | 450
3 people, 2 crosses 3 0.021 | 500
4 people, 2 crosses 3 0.025 | 550
5 people, 2 crosses 9 0.031 | 650
5 people, 4 crosses | 14 | 0.033 | 600

Table 1. Overall tracking performance.

split and merged MRs. In this paper, a novel Bayesian model for vi-
sual object detection and tracking has been presented, which is able
to handle the complex set of detected MRs to successfully estimate
the number of moving regions and their trajectories. This is accom-
plished by means of an reliable modeling of the causes that originate
the undesirable detections, especially the split and merged ones. On
the other hand, the high complexity of the proposed Bayesian model
has forced the use of approximate inference. For this purpose, a
particle filtering approach that combines ancestral and MCMC sam-
pling techniques has been used, which allow to accurately simulate
the data association between MRs and tracked objects, and thus to
reliably estimate the number of objects and their trajectories. Exper-
imental results have proven the efficiency of the this approach in real
situations.
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