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Fernando Garćıa-Redondo‡ and Ricardo Riaza§
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Abstract

The memory-resistor or memristor is a new electrical element characterized by

a nonlinear charge-flux relation. This device poses many challenging problems, in

particular from the circuit modeling point of view. In this paper we address the index

analysis of certain differential-algebraic models of memristive circuits; specifically, our

attention is focused on so-called branch-oriented models, which include in particular

tree-based formulations of the circuit equations. Our approach combines results coming

from DAE theory, matrix analysis and the theory of digraphs. This framework should

be useful in future studies of dynamical aspects of memristive circuits.
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1 Introduction

The memory-resistor or memristor is considered as the fourth basic element in circuit theory,

besides resistors, inductors and capacitors. It is defined by a nonlinear charge-flux charac-

teristic, which may have either a charge-controlled form ϕ = φ(q) or a flux-controlled one

q = σ(ϕ). The existence of such a device was already postulated for symmetry reasons by

Chua in 1971 [9] (see also [11]), and the actual appearance of memristors in nanoscale elec-

tronics announced in [40] has raised a renewed interest in these devices. A lot of analytical
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aspects of memristors and memristive-based circuits, as well as many applications, have been

reported in the last two years; cf. [3, 8, 21, 22, 28, 29, 30, 35, 37, 39, 45, 46] and references

therein.

Modeling and analyzing memristive circuits pose many challenging mathematical prob-

lems. The nonlinear character of memristors naturally leads to the use of time-domain

circuit models. These models may be state-space ones, based on explicit ordinary differen-

tial equations (ODEs); nevertheless, in the presence of a high number of devices, the circuit

equations are usually set up in terms of semistate models based on differential-algebraic

equations (DAEs) [12, 17, 18, 20, 34, 42, 43]. As detailed below, the analysis of memris-

tive circuit models involves in turn a systematic use of digraph theory and matrix analysis,

including matrix pencil theory. This drives the study of modeling aspects of memristive

circuits to an interdisciplinary framework.

In this paper we undertake the analysis of the DAE index of the memristive circuit models

arising from the so-called branch-oriented approach. These models are closely related to tree-

based systems and hybrid analysis [20, 33, 41], and play a key role in the study of many

analytical features of circuit theory, not only to set up the networks equations but also to

address different problems which include, among others, the state formulation problem and

several dynamic properties, including stability aspects [34, 38].

The above-mentioned index of a differential-algebraic circuit model can be introduced in

different ways. The reader is referred to [5, 15, 19, 23, 25, 31, 34] for detailed discussions

of the different index notions, which include the differentiation, geometric, perturbation,

strangeness and tractability indices. The tractability index concept will be of particular in-

terest and is presented in Section 3. All the index concepts can be understood to generalize

the Weierstrass-Kronecker index of a matrix pencil [14] to time-varying and/or nonlinear

settings. Within the circuit context, the tractability index of different DAE models of clas-

sical circuits does not exceed two under passivity assumptions [12, 17, 18, 33, 34, 42, 43];

index one configurations are of special interest, because they allow for the use of efficient

theoretical and numerical tools in their analysis. Some of these results have been recently

extended to nodal models of memristive circuits [37]. In the present paper we address the

index analysis of a different family of circuit models, which arise from a branch-oriented ap-

proach and require different graph-theoretic techniques. Our results will apply in particular

to tree-based formulations, very often used in practice.

The paper is structured as follows. Section 2 compiles some background on digraph

theory and also on memristive circuits. Section 3 introduces the tractability index notion,

which supports the index analysis presented in Section 4. Some concluding remarks can be

found in Section 5.
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2 Background

2.1 Some results from digraph theory

Some background on digraph theory is necessary before introducing the circuit models to be

analyzed throughout the paper. Specifically, we will make systematic use of the loop and

cutset matrices introduced below and, occasionally, of the so-called fundamental loop and

cutset matrices arising from the choice of a spanning tree.

Consider a directed graph with n nodes, m branches and k connected components. Cho-

sen an orientation in every loop, the loop matrix B̃ is defined as (bij), where

bij =







1 if branch j is in loop i with the same orientation

−1 if branch j is in loop i with the opposite orientation

0 if branch j is not in loop i.

The rank of this matrix can be shown to equal m − n + k. A reduced loop matrix B is any

((m− n+ k)×m)-submatrix of B̃ with full row rank.

A subset K of the set of branches of a digraph is a cutset if the removal of K increases

the number of connected components of the digraph, and it is minimal with respect to this

property, that is, the removal of any proper subset of K does not increase the number of

components. In a connected digraph, a cutset is just a minimal disconnecting set of branches.

The removal of the branches of a cutset increases the number of connected components by

exactly one. Furthermore, all the branches of a cutset may be shown to connect the same

pair of connected components of the digraph which results from the deletion of the cutset.

This makes it possible to define the orientation of a cutset, say from one of these components

towards the other. The cutset matrix D̃ = (dij) is then defined by

dij =







1 if branch j is in cutset i with the same orientation

−1 if branch j is in cutset i with the opposite orientation

0 if branch j is not in cutset i.

The rank of D̃ can be proved to be n − k; any set of n − k linearly independent rows of D̃

defines a reduced cutset matrix D ∈ R
(n−k)×m. In a connected digraph, any reduced cutset

matrix has order (n− 1)×m.

Certain submatrices of B and D characterize the existence of so-called K-cutsets and K-

loops (that is, cutsets or loops just defined by branches belonging to a given set of branches

K), as stated below. We denote by BK (resp. BG−K) the submatrix of B defined by the

columns which belong (resp. do not belong) to K; the same applies to the cutset matrix D.

The reader is referred to [34, Sect. 5.1] for explicit proofs of the following assertions.

Lemma 1. Let K be a subset of branches of a given digraph G. The following assertions

are equivalent:

(a) K does not contain cutsets;
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(b) BK has full column rank;

(c) DG−K has full row rank.

Analogously, the following statements are equivalent:

(d) K does not contain loops;

(e) DK has full column rank;

(f) BG−K has full row rank.

The following digraph analog of Tellegen’s theorem will also be useful in our analysis (see

e.g. [13] (Section 7.4)).

Lemma 2. If the columns of the reduced loop and cutset matrices B, D of a digraph are

arranged according to the same order of branches, then BDT = 0, DBT = 0.

Actually, the relations imDT = kerB and imBT = kerD hold true. Hence, the cut space

imDT spanned by the rows of D can be described as kerB and, analogously, the cycle space

imBT spanned by the rows of B equals kerD [4]. These spaces are orthogonal to each other

since (imDT )⊥ = (kerB)⊥ = imBT .

A particular form of the loop and cutset matrices follows from the choice of a spanning

tree in the digraph (see e.g. [10, 34]). The branches in the tree are called twigs, whereas the

remaining ones are called links. A well-known property in digraph theory states that every

link defines a unique loop together with some twigs, and every twig defines a unique cutset

together with some links. Because of this property and Lemma 2, the so-called fundamental

loop and cutset matrices constructed from a given tree read as

B = (F I), D = (I − F T )

for a certain submatrix F .

2.2 Memristive circuits

Consider a nonlinear, connected, time-invariant circuit composed of capacitors, inductors, re-

sistors, memristors, and independent voltage and current sources. Capacitors and inductors

will have C1 voltage- and current-controlled characteristics qc = ψ(vc), ϕl = η(il), respec-

tively; we denote by C(vc) and L(il) the incremental capacitance and inductance matrices

ψ′(vc), η
′(il).

Memristors will be defined by the C2 charge-controlled relation ϕm = φ(qm). The incre-

mentalmemristance isM(qm) = φ′(qm). Note that the relations ϕ
′
m(t) = vm(t), q

′
m(t) = im(t)

yield vm(t) =M(qm(t))im(t); the “memory-resistor” name comes from the fact that the de-

vice behaves as a resistor in which the resistance depends on qm(t) =
∫ t

−∞
im(τ)dτ . Resistors

will be assumed to be current-controlled by a C1 map of the form vr = ρ(ir), and we let

R(ir) stand for the incremental resistance matrix ρ′(ir). Under a strict passivity assump-

tion on resistors and memristors, the results will be shown to hold also in the presence of
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voltage-controlled resistors (note that the nonlinear nature allowed for all circuit elements

makes e.g. a diode belong to this class of devices) and/or flux-controlled memristors. Recall

that a given set of devices (capacitors, inductors, resistors or memristors) are strictly passive

if the corresponding matrix P (standing for C(vc), L(il), R(ir) or M(qm), respectively) is

positive definite, that is, it verifies uTPu > 0 for any non-vanishing vector u.

Writing the excitation terms coming from the voltage and current sources, respectively,

as vs(t), is(t), the circuit equations can be written in the form

C(vc)v
′
c = ic (1a)

L(il)i
′
l = vl (1b)

q′m = im (1c)

0 = vm −M(qm)im (1d)

0 = vr − ρ(ir) (1e)

0 = Bcvc +Blvl + Bmvm + Brvr + Buvs(t) + Bjvj (1f)

0 = Dcic +Dlil +Dmim +Drir +Duiu +Djis(t), (1g)

where we are expressing Kirchhoff laws in terms of the loop and cutset matrices as Bv = 0,

Di = 0. Note that the loop matrix B is split as (Bc Bl Bm Br Bu Bj), where Bc (resp.

Bl, Bm, Br, Bu, Bj) corresponds to the columns accommodating capacitors (resp. inductors,

memristors, resistors, voltage sources, current sources). The same applies to the cutset

matrix D.

It is worth emphasizing that system (1) covers, in particular, models coming from the

choice of a given spanning tree in the circuit; these tree-based models are very often used in

circuit theory (cf. for instance [10, 34, 44]). In that case, B and D take the form B = (F I),

D = (I − F T ); this means that the voltages of link devices are expressed in terms of twig

voltages in (1f) and, analogously, twig currents are written in terms of link currents in (1g).

The results will therefore apply in particular to such tree-based models. In our analysis we

will not make use of the special form of these fundamental matrices, though.

The circuit model (1) has the form of a quasilinear (or linearly implicit) differential-

algebraic equation (DAE), namely,

A(x)x′ = g(x, t), (2)

where A stands for a block-diagonal matrix block-diag(C,L, I, 0) and x comprises all the

branch variables entering the model. The right-hand side can be actually written as

g(x, t) = f(x) + s(t), (3)

because the excitation terms Buvs(t), Djis(t) coming from the voltage and current sources are

decoupled from the remaining terms. Section 3 provides some general background on DAEs

and their index; we will then tackle, in Section 4, the characterization of the tractability

index of (1) in the light of its linearly implicit form (2).
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In the sequel, all circuits will be assumed to be well-posed; this means that V-loops (loops

just defined by voltage sources) and I-cutsets (cutset defined by current sources only) will be

precluded. The same terminological convention will be used in the index analysis of Section

4, where a VC-loop will stand for a loop defined just by voltage sources and/or capacitors,

and an IL-cutset will be a cutset including only current sources and/or inductors.

3 Projector-based analysis of DAE circuit models

Differential-algebraic equations, also known as semistate systems, constrained equations or

descriptor systems, arise in different application fields; in addition to circuit theory, these

include mechanics, control theory, power systems theory, and others [5, 15, 19, 23, 25, 31, 34].

Many analytical and numerical properties of DAEs rely on their index: we present in this

section the tractability index concept and some projector-based results which will be useful

in the computation of this index.

The characterization of the tractability index of a given DAE model is of major im-

portance, not only because it paves the way for an appropriate numerical treatment in

simulation, but also because it reduces the description of the dynamical behavior to that

of an inherent explicit ODE; this is performed by means of a decoupling of the different

solution components [25, 34, 43]. Note that the tractability index has been already proved

to be a very useful tool in circuit theory, specially regarding the analysis of Modified Nodal

Analysis (MNA) models [12, 27, 34, 42, 43]. See also [17, 18, 33, 36]; related results can be

found in [32, 41]. The discussion of the tractability index notion will be restricted to cases

with index not greater than two; this is due to the fact that the index of DAEs modeling a

very large class of electrical and electronic circuits does not exceed two [12, 33, 34, 42]. This

way we avoid certain difficulties exhibited in problems with arbitrary index.

Let us first remark that the kernel of A(x) in (2) is constant, provided that the capacitance

and inductance matrices C(vc), L(il) in (1) are non-singular. Letting B(x) stand for the

Jacobian matrix −f ′(x) (cf. (3)), and denoting by Q a constant projector onto kerA(x) (so

that Q2 = Q with imQ = kerA(x)), the DAE (2) has tractability index one if the matrix

A1(x) = A(x) + B(x)Q is non-singular. By contrast, consider a setting in which A1(x) is

rank-deficient everywhere, in a way such that there exists a continuous projector Q1(x) onto

kerA1(x) (forcing A1(x) to have constant rank). Let B1(x) stand for the product B(x)(I−Q).

Basing on the special form of the circuit equations (cf. [43, Remark A.18]), system (2) will

be said to have tractability index two if A2(x) = A1(x) + B1(x)Q1(x) is non-singular. This

definition of the index is simpler than the one for general nonlinear DAEs [25, 43].

In a linear time-invariant setting, the analysis of DAEs can be performed in terms of

the associated matrix pencil; cf. [14]. For time-varying and/or linearly implicit problems the

relation with matrix pencil theory is more involved [5, 31, 34]. In particular, the relation

between the tractability index of (2) and the Weierstrass-Kronecker index of the matrix

pencil {A(x∗), B(x∗)} arising from the linearized problem were thoroughly examined in

[15, 16, 24] (recent related results can be found in [25, 26]). In Section 4 we will make use of
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the fact that a matrix pencil {A, B} with singular A is regular with Weierstrass-Kronecker

index one if and only if the matrix A1 = A+BQ is non-singular, Q being any projector onto

kerA. Additionally, if A1 is singular, the pencil can be shown to be regular with Weierstrass-

Kronecker index two if and only if A2 = A1+B1Q1 is non-singular, where Q1 is any projector

onto kerA1 and B1 = B(I −Q). The index analysis of the circuit model (1) will be crucially

supported on these results.

4 The index of branch-oriented models of memristive circuits

The main result of this paper is the tractability index characterization of branch-oriented

circuit models stated in Theorem 1 below. From a mathematical point of view, the analysis

will be based on the results compiled in subsection 2.1 and Section 3.

4.1 Index analysis of the branch-oriented model

Theorem 1. Consider a well-posed circuit in which the capacitance and inductance matrices

C(vc), L(il) are non-singular, and the resistance and memristance matrices R(ir), M(qm)

are positive definite. The following assertions hold.

(i) The model (1) has tractability index one if and only if the circuit has neither VC-loops

nor IL-cutsets.

(ii) Suppose, additionally, that C(vc), L(il) are positive definite. In the presence of VC-

loops and/or IL-cutsets, system (1) has tractability index two.

Proof. The leading matrix A(x) has the structure block-diag(C(vc), L(il), Im, 0), whereas

B(x) can be written as

B(x) =























0 0 0 −Ic 0 0 0 0 0 0 0

0 0 0 0 −Il 0 0 0 0 0 0

0 0 0 0 0 −Im 0 0 0 0 0

0 0 ∂M(qm)im
∂qm

0 0 −M(qm) Im 0 0 0 0

0 0 0 0 0 0 0 −R(ir) Ir 0 0

Bc 0 0 0 Bl 0 Bm 0 Br 0 Bj

0 Dl 0 Dc 0 Dm 0 Dr 0 Du 0























. (4)

Note that we have changed the sign of (1d)-(1g) for notational simplicity. A projector Q

onto kerA(x) with the structure block-diag(0, I) confers A1(x) = A(x) +B(x)Q the form

A1(x) =























C(vc) 0 0 −Ic 0 0 0 0 0 0 0

0 L(il) 0 0 −Il 0 0 0 0 0 0

0 0 Im 0 0 −Im 0 0 0 0 0

0 0 0 0 0 −M(qm) Im 0 0 0 0

0 0 0 0 0 0 0 −R(ir) Ir 0 0

0 0 0 0 Bl 0 Bm 0 Br 0 Bj

0 0 0 Dc 0 Dm 0 Dr 0 Du 0























. (5)
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Proof of (i). System (1) is index one if and only if the matrix (5) is non-singular, a condition

which relies on the non-singularity of










0 0 −M(qm) Im 0 0 0 0

0 0 0 0 −R(ir) Ir 0 0

0 Bl 0 Bm 0 Br 0 Bj

Dc 0 Dm 0 Dr 0 Du 0











, (6)

and in turn this matrix is non-singular if and only if so it is
(

0 Bl BmM(qm) BrR(ir) 0 Bj

Dc 0 Dm Dr Du 0

)

. (7)

In order to prove the index one claim we then need to show that (7) is non-singular if and

only if the circuit has neither VC-loops nor IL-cutsets. Clearly this is a necessary condition,

since otherwise according to Lemma 1 (items (b) and (e)) either (Dc Du) or (Bl Bj) would

not have full column rank.

Conversely, assume that there are neither VC-loops nor IL-cutsets and suppose that a

vector (xT yT ) belongs to the left-kernel of (7), that is, suppose that

yTDc = 0 (8a)

xTBl = 0 (8b)

xTBmM(qm) + yTDm = 0 (8c)

xTBrR(ir) + yTDr = 0 (8d)

yTDu = 0 (8e)

xTBj = 0. (8f)

At this point we make use of the identity

BcD
T
c + BlD

T
l +BmD

T
m + BrD

T
r + BuD

T
u + BjD

T
j = 0, (9)

which follows from Lemma 2. Multiplying (9) from the left by xT and from the right by y,

and using (8a), (8b), (8e) and (8f), we get

xTBmD
T
my + xTBrD

T
r y = 0.

Additionally, using (8c) and (8d) this equation can be rewritten as

xTBmM(qm)
TBT

mx+ xTBrR(ir)
TBT

r x = 0. (10)

Using the fact that MT and RT are positive definite since so they are M and R, from (10)

we get

xTBm = 0 (11a)

xTBr = 0. (11b)
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The relations depicted in (8b), (8f), (11a) and (11b), together with the equivalence of items

(d) and (f) in Lemma 1 and the absence of VC-loops, imply that x = 0.

Similarly, the insertion of (11a) and (11b) into (8c) and (8d) leads to

yTDm = 0 (12a)

yTDr = 0 (12b)

which, together with (8a) and (8e), the equivalence of items (a) and (c) in Lemma 1, and the

absence of IL-cutsets, yield y = 0. This means that (7) is indeed non-singular and, hence,

that (1) is index one in the absence of VC-loops and IL-cutsets.

Proof of (ii). Assume now that the circuit displays VC-loops and/or IL-cutsets. Due to

items (b) and (e) of Lemma 1 this implies that (Dc Du) and/or (Bl Bj) do not have full

column rank, making (6) –and hence the A1 matrix in (5)– singular.

We denote by Q̂ a projector onto ker(Dc Du). Note that Q̂ = 0 in the absence of VC-

loops. Analogously, Q̃ will stand for a projector onto ker(Bl Bj), with Q̃ = 0 in problems

without IL-cutsets; keep in mind, though, that in the setting of item (ii) both projectors

cannot vanish simultaneously. Splitting Q̂ and Q̃ in the form

Q̂ =

(

Q̂11 Q̂12

Q̂21 Q̂22

)

, Q̃ =

(

Q̃11 Q̃12

Q̃21 Q̃22

)

, (13)

a projector onto A1(x) can be checked to be

Q1 =









































0 0 0 C−1Q̂11 0 0 0 0 0 C−1Q̂12 0

0 0 0 0 L−1Q̃11 0 0 0 0 0 L−1Q̃12

0 0 0 0 0 0 0 0 0 0 0

0 0 0 Q̂11 0 0 0 0 0 Q̂12 0

0 0 0 0 Q̃11 0 0 0 0 0 Q̃12

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 Q̂21 0 0 0 0 0 Q̂22 0

0 0 0 0 Q̃21 0 0 0 0 0 Q̃22









































. (14)

Some easy computations show that the matrix A2(x) has the expression






















C(vc) 0 0 −Ic 0 0 0 0 0 0 0

0 L(il) 0 0 −Il 0 0 0 0 0 0

0 0 Im 0 0 −Im 0 0 0 0 0

0 0 0 0 0 −M(qm) Im 0 0 0 0

0 0 0 0 0 0 0 −R(ir) Ir 0 0

0 0 0 BcC
−1Q̂11 Bl 0 Bm 0 Br BcC

−1Q̂12 Bj

0 0 0 Dc DlL
−1Q̃11 Dm 0 Dr 0 Du DlL

−1Q̃12






















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and its non-singularity relies on that of










0 0 −M(qm) Im 0 0 0 0

0 0 0 0 −R(ir) Ir 0 0

BcC
−1Q̂11 Bl 0 Bm 0 Br BcC

−1Q̂12 Bj

Dc DlL
−1Q̃11 Dm 0 Dr 0 Du DlL

−1Q̃12











.

In turn, this matrix is non-singular if and only if so it is

(

BcC
−1Q̂11 Bl BmM(qm) BrR(ir) BcC

−1Q̂12 Bj

Dc DlL
−1Q̃11 Dm Dr Du DlL

−1Q̃12

)

. (15)

Premultiplying (15) by (xT yT ) we get the identities

xTBcC
−1Q̂11 + yTDc = 0 (16a)

xTBl + yTDlL
−1Q̃11 = 0 (16b)

xTBmM(qm) + yTDm = 0 (16c)

xTBrR(ir) + yTDr = 0 (16d)

xTBcC
−1Q̂12 + yTDu = 0 (16e)

xTBj + yTDlL
−1Q̃12 = 0, (16f)

and we need to show that the unique solution to this system is x = 0, y = 0.

Multiply (16a) by Q̂11 and (16e) by Q̂21; adding up the resulting relations we get

xTBcC
−1Q̂11 = 0 (17)

where we have used the identities Q̂11Q̂11 + Q̂12Q̂21 = Q̂11 and DcQ̂11 + DuQ̂21 = 0 which

result from the definition of Q̂ as a projector onto ker(Dc Du). From (16a) and (17) it

follows that

yTDc = 0. (18)

Proceeding in exactly the same manner with the projectors Q̂12 and Q̂22 instead of Q̂11 and

Q̂21 we derive

xTBcC
−1Q̂12 = 0 (19)

and then

yTDu = 0. (20)

Analogously, working with the projector Q̃ onto ker(Bl Bj), from (16b) and (16f) we get

xTBl = 0 (21)

xTBj = 0. (22)
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Be aware of the fact that the identity (9) is still valid in this setting. Multiplying (9)

from the left by xT and from the right by y, and using (16c), (16d), (18), (20), (21) and (22)

we now derive

xTBmM(qm)
TBT

mx+ xTBrR(ir)
TBT

r x = 0. (23)

Due to the positive definite nature of M and R, this implies

xTBm = 0 (24)

xTBr = 0 (25)

and, in the light of (16c) and (16d),

yTDm = 0 (26)

yTDr = 0. (27)

It still remains to show that the identities xTBc = 0 and yTDl = 0 hold true. Premulti-

plying (9) by xT and using the relations (21), (22), (24) and (25) it follows that

xTBcD
T
c + xTBuD

T
u = 0.

This means that
(

BT
c

BT
u

)

x ∈ ker(Dc Du)

and, since Q̂ is a projector onto ker(Dc Du) and vectors on im Q̂ remain invariant, this yields

Q̂

(

BT
c

BT
u

)

x =

(

BT
c

BT
u

)

x,

in particular

Q̂11B
T
c x+ Q̂12B

T
u x = BT

c x. (28)

Now, multiplying (17) and (19) by BT
c x and BT

u x, respectively, and summing up the result,

we get in the light of (28)

xTBcC
−1BT

c x = 0

which implies

xTBc = 0, (29)

because of the positive definiteness assumption on C, which makes C−1 positive definite as

well.

In exactly the same manner we may show that the identity

yTDl = 0 (30)
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holds, because of the positive definite nature of the inductance matrix L.

Finally, the relations (21), (22), (24), (25) and (29), together with the absence of V-

loops in well-posed circuits yield, using items (d) and (f) of Lemma 1, the identity x = 0.

The relation y = 0 follows analogously from (18), (20), (26), (27) and (30), the absence of

I-cutsets and items (a) and (c) of Lemma 1. This completes the proof. 2

Theorem 1 extends to the context of memristive circuits the index characterization of

nodal models of classical circuits discussed in [12, 42]. Note however that the use of a branch-

oriented approach, which avoids the introduction of node potentials in the model, requires

the use of different graph-theoretic techniques. The present characterization is shown below

to hold even without a restriction on the controlling variables for resistors and memristors;

in subsection 4.3 it will be also shown to apply, in particular, to tree-based models.

4.2 Voltage-controlled resistors and flux-controlled memristors

The assumption that resistors are current-controlled and memristors are charge-controlled

is not unduly restrictive, as shown in Corollary 1 below.

Corollary 1. The index characterization stated in Theorem 1 applies to circuits with both

current- and voltage-controlled resistors, as well as charge- and flux-controlled memristors,

provided that all of them are strictly passive.

Indeed, assume that the set of resistors includes both current-controlled and voltage-

controlled ones. Use the subscripts 1 and 2 to distinguish both. Current-controlled resistors

are governed by

vr1 = ρ(ir1)

and the incremental resistance matrix is R1(ir1) = ρ′(ir1). Analogously, voltage-controlled

resistors are governed by

ir2 = γ(vr2)

and the incremental conductance matrix is G2(vr2) = γ′(vr2). The only change in the proof

of Theorem 1 involves the block (−R(ir) Ir) in the B(x) matrix (4), which must be split

and rewritten in the form
(

−R1 0 Ir1 0

0 Ig2 0 −G2

)

.

However, denoting R2 = G−1
2 and premultiplying this block by the non-singular matrix

(

Ir1 0

0 −R2

)

,

an operation which does not affect the index, we confer the block the form (−R I), and the

proof of Theorem 1 is valid since R is positive definite provided that so they are R1 and G2.

The same reasoning applies in the presence of flux-controlled memristors.

12



4.3 Tree-based models

Theorem 1 provides, in particular, a characterization of the tractability index of tree-based

circuit models. The choice of a tree gives the circuit equations the form

C(vc)v
′
c = ic (31a)

L(il)i
′
l = vl (31b)

q′m = im (31c)

0 = vm −M(qm)im (31d)

0 = vr − ρ(ir) (31e)

0 = v
co
+ Fv

tr
(31f)

0 = i
tr
− F T i

co
, (31g)

where v
co
and v

tr
(resp. i

co
and i

tr
) stand for the link and twig voltages (resp. currents).

In practice, different settings lead to the choice of special trees; in the absence of VC-loops

and IL-cutsets, the tree is usually a proper one, including all voltage sources and capacitors

and neither current sources nor inductors. When VC-loops and/or IL-cutsets are present, it

is common to work with a normal tree instead, that is, a tree including all voltage sources,

the maximum possible number of capacitors, the minimum possible number of inductors and

no current source. This stems from the work of Bashkow and Bryant [2, 6, 7] and allows

for an explicit characterization of the order of complexity (namely, the state dimension or

dynamical degree of freedom) of the circuit.

Corollary 2. The index characterization in Theorem 1 also applies to the tree-based model

(31), regardless of the actual choice of the tree.

This is a straightforward consequence of the fact that (31) is a particular instance of (1)

with B = (F I
co
), D = (I

tr
−F T ). Note, incidentally, that the assumptions allowing for the

choice of a proper tree correspond to those in the index one case considered in item (i) of

Theorem 1, whereas the normal tree framework is accommodated in the index two context

of item (ii).

5 Concluding remarks

In this paper we have characterized the tractability index of so-called branch-oriented models

of electrical and electronic circuits including memristors. Our approach is based on the

use of certain graph-theoretic properties, and also on several results coming from projector

theory, matrix analysis and matrix pencil theory. The present framework applies under

strict passivity assumptions, and accommodates in particular circuit models arising from the

choice of a spanning tree. The results should be helpful in future analyses of the dynamics

of memristive circuits, including qualitative and numerical aspects.
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