
Universidad Politécnica de Madrid
Facultad de Informática

Master Thesis
MASTER IN ARTIFICIAL INTELLIGENCE RESEARCH

A SOFTWARE QUALITY
MODEL FOR THE EVALUATION
OF SEMANTIC TECHNOLOGIES

Author: Filip Radulović
Supervisor: Raúl Garćıa-Castro

Supervisor: Asunción Gómez-Pérez

June 2011

To my nephew Aleksa.

Acknowledgments

I would like to thank Raúl Garćıa-Castro for his valuable guidance and support
during my work. His experience and patience helped me to extend my knowledge
and further develop my research skills.

I am very grateful to Asunción Gómez-Pérez for giving me the opportunity to
realize this thesis within the Ontology Engineering Group.

Also, I want to thank Daniel Garijo, Idafen Santana Pérez, and José Mora for
helping me with the translation of some parts of the thesis into Spanish.

Last, but not least, I wish to thank my family for their everlasting support.

i

Abstract

In order to obtain high-quality software products, the specification and evaluation
of quality during the software development process is of crucial importance. One
important component in software evaluation is the software quality model, since it
provides the basis for software evaluation and gives a better insight of the software
characteristics that influence its quality. Furthermore, quality models also ensure
a consistent terminology for software product quality and provide guidance for its
measurement.

In recent years, semantic technologies have started to gain importance and, as the
field becomes more and more popular, the number of these technologies is increasing
exponentially. Just as with any other software product, the quality of semantic tech-
nologies is an important concern, and multiple evaluations of semantic technologies
have been performed. However, the problem is that there is no consistent terminol-
ogy for describing the quality of semantic technologies and it is difficult to compare
them because of differences in the meaning of the evaluation characteristics used.
Also, existing software quality models do not define those quality characteristics
that are specific to semantic technologies.

This thesis presents a quality model for semantic technologies which aims to
provide a common ground in the field of semantic technology evaluation. It also
presents a new method for extending software quality models, based on a bottom-
up approach, that is used to define the quality model for semantic technologies.
Finally, this thesis describes the use of the semantic technology quality model in a
web application that visualizes semantic technology evaluation results and provides
semantic technology recommendations.

iii

Resumen

Con el propósito de obtener productos software de alta calidad, es de capital impor-
tancia la especificación y evaluación de la calidad durante el proceso de desarrollo
de software. Un componente importante en la evaluación del software es el modelo
de calidad, puesto que provee los fundamentos para la evaluación del software y da
una mejor perspectiva de las caracteŕısticas del software que influyen en su calidad.
Además, los modelos de calidad también aseguran una terminoloǵıa sistemática para
la calidad de productos software y proporcionan gúıas para su medida.

En los últimos años las tecnoloǵıas semánticas han comenzado a ganar impor-
tancia y, a medida que su popularidad ha crecido más y más, el número de estas ha
crecido exponencialmente. Al igual que con otros productos software, la calidad de
estas tecnoloǵıas es una cuestión de gran importancia y múltiples evaluaciones sobre
ellas han sido llevadas a cabo. Sin embargo, el problema reside en que no existe
una terminoloǵıa consistente para describir la calidad de las tecnoloǵıas semánticas,
lo cual dificulta compararlas, debido a las diferencias en el significado de las car-
acteŕısticas usadas en la evaluación. Además, los modelos de calidad software no
definen aquellas caracteŕısticas que son propias de las tecnoloǵıas semánticas.

En esta tesis se presenta un modelo de calidad para tecnoloǵıas semánticas cuyo
objetivo es elaborar una especificación común para la evaluación de dichas tec-
noloǵıas. También se presenta un nuevo modelo para expandir modelos de calidad
de software basado en una propuesta ”bottom-up”, que es usado para definir un
modelo de calidad para teconoloǵıas semánticas. Finalmente se describe el uso del
modelo de calidad en una aplicación web que visualiza resultados de evaluación de
teconoloǵıas semánticas y aporta recomendaciones sobre las mismas.

v

Contents

Acknowledgments i

Abstract iii

Resumen v

1 Introduction 1
1.1 Motivation . 2
1.2 Structure of the Document . 3

2 State of the Art 5
2.1 Semantic Technology Evaluation . 5

2.1.1 The SEALS Project . 6
2.2 Software Quality Models . 7

2.2.1 McCall’s Model . 8
2.2.2 Boehm’s Model . 9
2.2.3 ISO 9126’s Model . 9
2.2.4 SQuaRE’s Model . 10

2.3 Approaches for Extending Software Quality Models 11
2.4 Conclusions . 12

3 Approach 15
3.1 Insufficiencies of the State of the Art 15
3.2 Goals . 15
3.3 Scope . 16
3.4 General Vision for Approaching the Solution 17

4 Quality Model for Semantic Technologies 19
4.1 A Bottom-Up Method for Extending a Software Quality Model 19
4.2 Defining A Quality Model For Semantic Technologies 21

4.2.1 Identifying Basic Measures . 21

vii

Contents viii

4.2.2 Identifying Derived Measures 22
4.2.3 Identifying Quality Measures 23
4.2.4 Specifying Relationships Between Measures 23
4.2.5 Defining Domain-Specific Quality Sub-characteristic 24
4.2.6 Aligning Quality Sub-characteristics to a Quality Model . . . 24

4.3 Complete Overview of the Quality Model 25

5 Detailed Description of the Quality Model 29
5.1 Ontology Engineering Tools . 29

5.1.1 Test Data . 31
5.1.2 Basic Measures . 31
5.1.3 Derived Measures . 32
5.1.4 Quality Measures . 34
5.1.5 ISO 9126 Quality Characteristics 36
5.1.6 Semantic Quality Characteristics 36

5.2 Reasoning Systems . 37
5.2.1 Test Data . 37
5.2.2 Basic Measures . 41
5.2.3 Quality Measures . 42
5.2.4 ISO 9126 Quality Characteristics 45
5.2.5 Semantic Quality Characteristics 45

5.3 Matching Tools . 46
5.3.1 Test Data . 46
5.3.2 Basic Measures . 48
5.3.3 Derived Measures . 48
5.3.4 Quality Measures . 48
5.3.5 ISO 9126 Quality Characteristics 49
5.3.6 Semantic Quality Characteristics 49

5.4 Semantic Search Tools . 50
5.4.1 Test Data . 50
5.4.2 Basic Measures . 53
5.4.3 Derived Measures . 53
5.4.4 Quality Measures . 55
5.4.5 ISO 9126 Quality Characteristics 58
5.4.6 Semantic Quality Characteristics 59

5.5 Semantic Web Service Tools . 60
5.5.1 Test Data . 60
5.5.2 Basic Measures . 61
5.5.3 Derived Measures . 61
5.5.4 Quality Measures . 63

Contents ix

5.5.5 ISO 9126 Quality Characteristics 64
5.5.6 Semantic Quality Characteristics 64

6 Application of the Semantic Technology Quality Model 67
6.1 Architecture . 67
6.2 Dependencies . 69
6.3 Instalation . 69
6.4 Evaluation Results Visualization . 70

6.4.1 Requirements . 70
6.4.2 Use . 70

6.5 Semantic Technology Recommendation 78
6.5.1 Requirements . 80
6.5.2 Use . 81

7 Conclusions and Future Work 85

Publications 87

Bibliography 89

A Quality Model Ontology 93

List of Figures

2.1 ISO 9126 internal and external quality characteristics and sub-characteristics. 9

3.1 A general vision for approaching the solution. 17

4.1 The method for extending software quality models based on the bottom-
up approach. 20

4.2 Steps of a conformance test execution. 22

4.3 Entities in the conformance scenario for ontology engineering tools. . 25

4.4 External and internal quality characteristics of semantic technologies. 27

5.1 Conformance scenario. 29

5.2 Interoperability scenario. 30

5.3 Scalability scenario. 30

5.4 Quality characteristics of ontology engineering tools. 38

5.5 Classification scenario. 38

5.6 Class satisfiability scenario. 39

5.7 Ontology satisfiability scenario. 39

5.8 Entailment scenario. 40

5.9 Non-entailment scenario. 40

5.10 Quality characteristics of reasoning systems. 47

5.11 Accuracy scenario. 47

5.12 Quality characteristics of ontology matching tools. 50

5.13 Automated scenario (I). 51

5.14 Automated scenario (II). 51

5.15 User-in-the-loop scenario (I). 52

5.16 User-in-the-loop scenario (II). 52

5.17 Internal and external quality characteristics of semantic search tools. 60

5.18 Quality in use of semantic search tools. 60

5.19 Semantic web service discovery scenario. 61

5.20 Quality characteristics of semantic web service tools. 65

xi

List of Figures xii

6.1 Application architecture. 68
6.2 Part of the table showing available conformance executions. 71
6.3 Part of the table showing the conformance results of a particular ex-

ecution. 72
6.4 Information added and lost in a test execution. 72
6.5 Test results according to ontology language features. 73
6.6 Results for tools according to OWL DL ontology language. 74
6.7 Ontologies used in one test execution. 74
6.8 Statistics for a particular tool according to a particular test suite. . . 74
6.9 Part of the table showing available interoperability results. 75
6.10 Part of the table showing interoperability results for two particular

tools according to a particular test suite. 76
6.11 Information added and lost in a test execution. 76
6.12 Test results according to ontology language features. 77
6.13 Results for tools according to the OWL DL test suite. 77
6.14 Ontologies used in one test execution. 77
6.15 Statistics for two particular tools according to a particular test suite. 78
6.16 Software selection process. 81
6.17 Homepage of the semantic technologies recommendation system. . . . 82
6.18 Requirements specification form. 82
6.19 Results for the recommendation. 83
6.20 Results for a particular tool. 83

A.1 Graphical representation of the QualityModel ontology. 93

List of Tables

2.1 Measures used in conference publications. 6
2.2 Measures used in SEALS evaluation campaign. 8
2.3 ISO 9126 internal and external measures for Accuracy and Fault tol-

erance. 10
2.4 Elements of the described quality models. 11

4.1 Total number of measures obtained for semantic technologies. 23

xiii

Chapter 1

Introduction

When the World Wide Web (WWW) was created, people browsing the Web were only
able to consume its content. Furthermore, the original Web was designed primarily
for humans. It is also called a Web of Documents because it mainly consists of a
huge number of documents in form of HTML pages. Every document carries some
data, but those data are not connected because all connections exist on a document
level only. The user that browses a web page knows if it is about food, musical
instruments or football, but computers are not able to process and understand web
page data and their meaning. But as the Web was evolving and there were more
and more data present, various problems arose, like information overload and the
fact that it was hard to find the right information. Furthermore, data was not easy
interoperable between various sources.

The Semantic Web [27] is a new generation of the Web that introduces the se-
mantics (meaning) of data and considers the Web to be a huge database. It is about
extending the web of documents to a web of data and puts a focus on triples instead
of pages, on RDF1 instead of HTML and, while the original Web was designed for
humans, the Semantic Web is designed for computer programs. Parts of the data
that are present in various documents carry some meaning that machines are able
to process and are linked with data from other documents.

Semantic technologies provide new ways to express in machine processable for-
mats knowledge and data that can be exploited by computer programs, and their
purpose is to enable the development of the Semantic Web. As the Semantic Web
field becomes more and more popular, the number of these technologies is increas-
ing exponentially. Different types of semantic technologies have been described in
the literature [14]: for data and metadata management, querying and reasoning,
ontology engineering, ontology customization, ontology evolution, ontology instance
generation, and semantic web services.

1http://www.w3.org/RDF/

1

Chapter 1. Introduction 2

1.1 Motivation

Software product quality has become an important concern in almost every domain
or technology, and the specification and evaluation of quality during the software
development process is of crucial importance for obtaining high quality software [3].

As it is the case with almost every software domain, the quality of semantic
technologies is also of high importance. However, various problems exist regarding
the evaluation of the quality of semantic technologies:

• There is no consistent terminology for specifying the quality of semantic tech-
nologies.

• Although there are plenty of existing evaluations, their nature varies signif-
icantly, from general evaluation frameworks [32] to tool-specific evaluations
[18, 26] and even characteristic-specific evaluations [13].

• Because of the differences in the evaluations performed, evaluation results are
very difficult or impossible to compare.

In the field of Software Engineering, these problems are solved by providing
common frameworks for the specification of software quality and the definition and
execution of software evaluations.

The main goal of this thesis is to provide a common ground for the evaluation
of semantic technologies, which will enable the specification of quality requirements
and the consequent comparison of evaluation results. To achieve this goal, we have
developed a quality model for semantic technologies. Quality models provide the
basis for software evaluation and give a better insight of the characteristics that
influence software quality by specifying a consistent terminology for software quality
and by providing guidance for its measurement.

This thesis also aims to provide an application that visualizes semantic technol-
ogy evaluation results. Such application can be of great help in the analysis and
comparison of evaluation results. Furthermore, this thesis also aims to provide an
application for semantic technology recommendation, which will help users who are
not very familiar with semantic technologies to select the ones that would best suite
their needs.

The work in this thesis has been performed in the scope of the SEALS Euro-
pean project2. The SEALS project is developing a platform which provides freely
available services for the evaluation of semantic technologies, together with public
evaluation campaigns which provide evaluation results. Evaluation campaigns cover
five different types of semantic technologies: ontology engineering, ontology reason-
ing, ontology matching, semantic search, and semantic web services. Each type of

2http://www.seals-project.eu

Chapter 1. Introduction 3

these technologies is evaluated through several different evaluation scenarios, and
against common test data.

In this thesis we have taken all the evaluation scenarios defined in the SEALS
project as an input for the definition of the quality model. Besides, the results
obtained in the first evaluation campaigns have been the ones used in the web ap-
plications.

1.2 Structure of the Document

This document is organized as follows:

• Chapter 2 analyses the state of the art in semantic technology evaluation and
software quality models. First, a review of semantic technology evaluation
efforts is presented and then some well-known software quality models are
described. Afterwards, existing approaches for extending quality models are
presented.

• Chapter 3 enumerates the inadequacies of the state of the art, presents the
goals of this master thesis, defines the scope of the thesis, and describes the
approach followed to provide the solution.

• Chapter 4 presents a new method for extending software quality models that is
based on a bottom-up approach, and then describes in a concrete scenario how
the method has been applied in the field of semantic technologies. Afterwards,
a complete overview of the semantic technology quality model is presented.

• Chapter 5 presents the detailed description of the quality model for semantic
technologies obtained from all evaluation campaigns in the SEALS project. For
every type of semantic technology, details about the output of all the steps of
the method applied for obtaining the quality model are presented.

• Chapter 6 presents applications that are based on the quality model. It in-
cludes applications for semantic technologies evaluation result visualization
and semantic technology recommendation, and describes their architecture,
details of implementation, and provides guidance for their usage.

• Chapter 7 draws some conclusions and presents ideas for future work.

Chapter 2

State of the Art

This chapter presents the work that is related to this thesis, with the purpose of
providing an overview of the field that this thesis covers. Section 2.1 describes the
state of the art in semantic technology evaluation. Then, some well-known soft-
ware quality models are presented in Section 2.2., and Section 2.3 describes existing
methods for extending software quality models.

2.1 Semantic Technology Evaluation

As mentioned in the introduction, multiple evaluations of semantic technologies have
been performed. This section presents a literature review of semantic technology
evaluations that we have performed according to the procedure described in [20].
The procedure consists of following several steps:

• Background. The purpose of the research is to review previous evaluations of
semantic technologies, including the evaluation results and processes, in order
to obtain the overview of the current state in semantic technology evaluation.

• Research questions. We stated two research questions: Is there a specification
of the quality of semantic technologies? Which quality measures are used to
evaluate those characteristics?

• Strategy for searching previous studies. We analyzed the proceedings of the two
most relevant conferences in the semantic area: the International Semantic Web
Conference (nine editions) and the European Semantic Web Conference (seven
editions) to identify those publications that deal with semantic technology
evaluation.

• Study selection criteria and procedures. We focused on those publications that
describe evaluation methods or suggest measures for evaluation, as well as

5

Chapter 2. State of the Art 6

publications that suggest new algorithms (e.g., for reasoning or semantic web
service discovery) and that are also evaluated in the publication.

• Data extraction strategy. In the analysis of the existing evaluations, we ex-
tracted and classified the data according to the quality measures used.

• Synthesis of the extracted data. Gathered data was used to determine which
quality measures are mostly used in semantic technology evaluations.

In total, we have analyzed fifty seven publications. Table 2.1 shows an overview of
this analysis including, for each type of semantic technology, the evaluation measures
used.

Table 2.1: Measures used in conference publications.

Ontology engineering tools (2)
execution (1), execution time (1), information added/lost (1)
Ontology matching tools (21)
precision (19), recall (19), f-measure (13), measure at cut-off point (1)
Reasoning and storage systems (18)
classification time (5), execution time (5), reasoning time (5), entailment time (1),
labeling time (1), lattice operation time (1), justification time (1), loading time
(4), reasoner errors (1), correct results (7), wrong classifications (1), fitness value
(1)
Semantic search tools (5)
query execution time (2), speed (1), recall (4), precision (3), reciprocal rank (1),
f-measure (1), relevance (1), loading time (1), usability (2)
Semantic web service tools (11)
precision (12), recall (8), f-measure (1), returned sources (1), binary preference
(1), reciprocal rank (1)

2.1.1 The SEALS Project

The Semantic Evaluation At Large Scale (SEALS) project is an FP71 project which
aims to create the infrastructure for semantic technology evaluation, and to perform
evaluations of semantic technologies through public evaluation campaigns.

The first evaluation campaign of the SEALS project has produced evaluation
results for several types of semantic technologies. For each type of the semantic
technology, several tools were evaluated according to common test data in one or
several evaluation scenarios:

1http://cordis.europa.eu/fp7/home en.html

Chapter 2. State of the Art 7

• Three evaluation scenarios were defined for the ontology engineering tools:

– conformance scenario

– interoperability scenario

– scalability scenario

• Five evaluation scenarios were defined for the ontology reasoning systems:

– classification scenario

– class satisfiability scenario

– ontology satisfiability scenario

– entailment scenario

– non-entailment scenario

• One evaluation scenario was defined for the matching tools:

– accuracy scenario

• Two evaluation scenarios were defined for the semantic search tools:

– user-in-the-loop scenario (accuracy and performance)

– automatic scenario (accuracy, performance, usability)

• One evaluation scenario was defined for the semantic web service tools

– semantic web service discovery

Table 2.2 shows an overview of the measures used in the first SEALS evaluation
campaign.

2.2 Software Quality Models

Quality in general is a complex and multifaceted concept that can be described from
different approaches depending on whether the focus is in the concept of quality, the
product, the user of the product, how the product was manufactured, or the value
the product provides [17].

The way we define software quality depends on the approach that we take [24];
software quality means different things to different people and therefore defining and
measuring quality will depend on the viewpoint. Similarly, choosing one software
quality model or another will also depend on the intended users and uses of such
model in concrete evaluations.

Next, this section describes some well-known software quality models and iden-
tifies their elements.

Chapter 2. State of the Art 8

Table 2.2: Measures used in SEALS evaluation campaign.

Ontology engineering tools
execution errors, import/export duration, information added/lost
Ontology matching tools
precision, recall, f-measure, harmonic measure
Reasoning and storage systems
classification time, class satisfiability time, ontology satisfiability time, entailment
time, non-entailment time, loading time, classification correctness, class satisfia-
bility correctness, ontology satisfiability correctness, entailment correctness, non-
entailment correctness
Semantic search tools
execution time, input time, question time, precision, recall, f-measure, number of
results, load time, load successful, usability, number of attempts, answer found
rate, experiment time, satisfaction value
Semantic web service tools
precision, recall, f-measure, binary preference, reciprocal rank, number of retrieved
documents, normalized discounted cumulative gain

2.2.1 McCall’s Model

McCall’s software quality model is represented as a hierarchy of factors, criteria
and metrics [8]. Factors are at the highest level in the hierarchy and represent
the characteristics of the software product. Criteria are the middle layer and are
considered to be the attributes of the factors, so that for every factor a set of criteria
is defined. At the bottom level, metrics provide measures for software attributes.

McCall’s model predefines a set of eleven software quality factors that are classi-
fied according to the product life cycle in three different groups:

• Product transition: portability, reusability, and interoperability

• Product revision: maintainability, flexibility, and testability

• Product operations: correctness, reliability, efficiency, integrity, and usability

McCall’s quality model also gives the relationships between quality factors and
metrics in the form of linear equations based on regression analyses. This is con-
sidered one of the major contributions of this model; however, the omission of the
functionality aspect is regarded as the main lack [3].

Chapter 2. State of the Art 9

2.2.2 Boehm’s Model

Like McCall’s model, Boehm’s one has a hierarchical structure. It consists of twenty
four quality characteristics divided into three levels [4]. It also gives a set of metrics
and, while McCall’s model is more related to the product view, Boehm’s model
includes users’ needs.

2.2.3 ISO 9126’s Model

The International Organization for Standardization (ISO) identified the need for a
unique and complete software quality standard and, therefore, produced the ISO
9126 standard for software quality [21].

The ISO 9126 standard defines three types of quality: internal quality, external
quality, and quality in use.

Six main software quality characteristics for external and internal quality are
specified: Functionality, Reliability, Usability, Efficiency, Maintainability, and Porta-
bility, which are further decomposed into sub-characteristics (see Fig 2.1) that are
manifested externally when the software is used, and are the result of internal soft-
ware attributes [21]. The standard also provides the internal and external measures
for sub-characteristics (see Table 2.3 for an example for Accuracy and Fault toler-
ance).

Figure 2.1: ISO 9126 internal and external quality characteristics and sub-
characteristics.

Regarding quality in use, the model proposes four characteristics: Effectiveness,
Productivity, Safety, and Satisfaction.

Chapter 2. State of the Art 10

The ISO 9126 standard gives the complete view of software quality with evalu-
ation criteria and definitions for all quality characteristics and sub-characteristics.
Some authors also suggests that according to the nature of the product itself some
new sub-characteristics can be added, the definitions of existing ones can be changed,
or some sub-characteristics can be eliminated from the model [6].

However, as pointed out in [1], some practical problems with ISO 9126 arise,
namely, the ambiguity in metric definitions and usability interpretation. Further-
more, the authors argue that the number of attributes and measures are missing,
that some characteristics are too abstract, and that the standard itself is open to
interpretations, which, according to the authors, questions its purpose.

Table 2.3: ISO 9126 internal and external measures for Accuracy and Fault tolerance.

Quality Char-
acteristics

Quality Sub-
Characteristics

External Mea-
sures

Internal Mea-
sures

Functionality Accuracy
Computational
accuracy

Computational
accuracy

Precision Precision

Reliability Fault tolerance
Failure avoidance Failure avoidance
Incorrect operation
avoidance

Failure avoidance

Breakdown avoid-
ance

2.2.4 SQuaRE’s Model

Although the ISO 9126 standard has been accepted and used successfully, some
problems and issues for its further use and improvement have been identified. They
eventually arise mainly because of advances in technologies and changes of users
needs. As pointed out by Azuma [2], the main problems were due to issues on
metrics and lack of a quality requirement standard.

In order to address those issues, the existing standard is being redesigned and has
been named SQuaRE. By the time of writing this thesis, the parts of the SQuaRE
standard related to the quality model and evaluations are still under development
(ISO 25010, ISO 25040) and their final versions will be published in 2011.

As a summary of this section, Table 2.4 presents the elements of the described
quality models. In our work, we have decided to adopt terminology from ISO 9126
standard.

Chapter 2. State of the Art 11

Table 2.4: Elements of the described quality models.

Structure/Model McCall Boehm ISO 9126
First level Factor High level characteristic Characteristic
Second level Criteria Primitive characteristic Sub-characteristic
Third level Metrics Metrics Measures
Relationships
between enti-
ties

Factor-Metric / Measure-Measure

2.3 Approaches for Extending Software Quality

Models

Some authors have proposed software quality models for various types of applications:
B2B [3], mail servers [7], web-based applications [39], e-learning systems [33], and
ERP systems [6]. All those authors have used the ISO 9126 standard as the basis
software quality model, and have extended it to fit their particular domain.

Software quality model extensions can be performed following two main ap-
proaches [9]:

• A top-down approach that starts from the quality characteristics and contin-
ues towards the quality measures.

• A bottom-up approach that starts from the quality measures and defines the
quality sub-characteristics that are related to each specific measure.

In their work, Franch and Carvallo proposed a method based on a top-down ap-
proach for customizing the ISO 9126 quality model [11]. After defining and analyzing
the domain, the method proposes six steps:

1. Determining quality sub-characteristics. In the first step, according to the do-
main, some new quality sub-characteristics are added while others are excluded
or their definitions are changed.

2. Defining a hierarchy of sub-characteristics. If it is needed, sub-characteristics
are further decomposed according to some criteria.

3. Decomposing sub-characteristics into attributes. In this step abstract sub-
characteristics are decomposed into more concrete concepts which refer to some
particular software attribute (i.e., observable feature).

4. Decomposing derived attributes into basic ones. Attributes that are not directly
measurable are further decomposed into basic ones.

Chapter 2. State of the Art 12

5. Stating relationships between quality entities. Relationships between quality
entities are explicitly defined. Three possible types of relationships are identi-
fied:

• Collaboration. When increasing the value of one entity implies increasing
of the value of another entity.

• Damage. When increasing the value of one entity implies decreasing the
value of another entity.

• Dependency. When some values of one entity require that another entity
fulfills some conditions.

6. Determining metrics for attributes. To be able to compare and evaluate quality,
it is necessary to define metrics for all attributes in the model.

In building their quality model for B2B applications, Behkamal et al. proposed
a method to customize the ISO 9126 quality model in five steps [3]. The main
difference with the previous method is that in Behkamal’s approach the quality
characteristics are ranked by experts; the experts should provide weights for all
quality characteristics and sub-characteristics, and these weights are later used to
establish their importance. Besides, Behkamal’s approach does not contemplate
defining relationships between quality entities.

2.4 Conclusions

The analysis of the current state in semantic technology evaluation shows that dif-
ferent quality characteristics were evaluated in different evaluations. Also, in some
cases, different measures have been applied when evaluating the same characteristics;
therefore, merging different evaluation results and their analysis might lead to wrong
and misleading conclusions.

Without a common ground to put the evaluations of semantic technologies under,
it is very difficult to compare them and assess their quality. Furthermore, there is
no consistent terminology for describing their quality, and available software quality
models do not specify the quality characteristics specific to semantic technologies.
In that sense, evaluation results and their analyses can often be misleading.

Using a software quality model may provide a good common basis for evaluation,
since software quality models support the specification of quality and instructions
on how to measure it. Existing software quality models provide terminology and
description of characteristics that are general for almost every kind of software.
However, in order to use a quality model in a specific domain, it usually has to be
extended to include the particularities of such domain.

Chapter 2. State of the Art 13

Various methods for extending quality models have been proposed in the liter-
ature; they all follow a top-down approach, starting from general characteristics to
concrete measures. For some cases, however, a bottom-up approach would be more
effective as is the case of those which have many of evaluations to extract the qual-
ity model (as in the semantic technologies field). However, we have not found any
example of a bottom-up approach in the literature.

Chapter 3

Approach

This chapter presents the approach followed in the development of this thesis. First,
Section 3.1 lists the insufficiencies of the state of the art and, then, Section 3.2
presents the goals that we want to achieve to overcome these insufficiencies. The
scope of the work presented in this thesis is described in Section 3.3. Finally, Sec-
tion 3.4 outlines the general guidelines that we have followed in the development of
the work.

3.1 Insufficiencies of the State of the Art

The insufficiencies of the state of the art, based on the conclusions presented in
Section 2.4, are the following:

• Lack of a method based on a bottom-up approach for extending software quality
models.

• Lack of a consistent terminology for describing the quality of semantic tech-
nologies, as well as of a specification of quality characteristics for semantic
technologies and the quality measures needed for obtaining them.

• Lack of a motivating example that shows the need of the quality model for
semantic technologies

3.2 Goals

The objective of this master thesis is to define a semantic technology quality model,
which helps to put semantic technology evaluations under a common ground and to
describe quality characteristics, as well as the measures that influence them.

15

Chapter 3. Approach 16

This thesis provides solutions to the insufficiencies of the State of the Art men-
tioned in the previous section. In particular we provide:

1. A method for extending software quality models, based on a bottom-up ap-
proach.

2. A quality model for semantic technologies, which describes the quality charac-
teristics and measures that are relevant for semantic technologies, and provides
instructions on how to obtain them.

3. A web application for the visualization of semantic technology evaluation re-
sults and for the recommendation of semantic technologies according to users’
needs. This application uses the quality model proposed.

3.3 Scope

The scope of this Master thesis is the following:

1. With respect to the method applied for defining the quality model, we have
used the method based on the bottom-up approach that we propose in this
thesis.

2. With respect to evaluation results used in defining the quality model, we have
used the evaluation results provided in the first evaluation campaign of the
SEALS project, as well as the results obtained in the literature review.

3. With respect to the types of the semantic technologies, we have taken into
account technologies that are evaluated in the SEALS project: ontology engi-
neering tools, storage and reasoning systems, matching tools, semantic search
tools, and semantic web service tools.

4. With respect to the web application for result visualization, we provide the
possibility to visualize conformance and interoperability results of ontology
engineering tools. The visualization of the results obtained for other types of
semantic technologies is out of the scope of this thesis.

5. With respect to the web application for semantic technologies recommenda-
tion, the system only provides recommendations for ontology engineering tools,
based on the evaluation results obtained in the SEALS project. Recommen-
dations for other types of semantic technologies are out of the scope of this
thesis.

Chapter 3. Approach 17

3.4 General Vision for Approaching the Solution

In order to specify the quality characteristics for semantic technologies and the mea-
sures that influence them, we have developed a software quality model that extends
the ISO 9126 quality model. The software quality model consists of a detailed de-
scription of the different quality entities that affect semantic technology quality and
provides detailed specifications on how to measure them.

For developing the quality model, we have used existing evaluation results. There-
fore, in order to use them, we first developed a method for extending software quality
models that is based on a bottom-up approach.

At the end, we have used the quality model to develop a web application that
will provide visualizations of evaluation results and recommendations of semantic
technologies.

Figure 3.1 shows a general vision for approaching the solution.

Figure 3.1: A general vision for approaching the solution.

Chapter 4

Quality Model for Semantic
Technologies

This chapter presents a method for extending software quality models that is based on
a bottom-up approach, starting from existing evaluation results, instead of following
a top-down approach, as those presented in Section 2.3.

Afterwards, Section 4.2 describes how we have performed each step of the method
for defining the quality model. As an example, we describe one concrete scenario,
that of evaluating the conformance of ontology engineering tools. Finally, Section 4.3
presents the complete overview of the quality model for semantic technologies.

4.1 A Bottom-Up Method for Extending a Soft-

ware Quality Model

In some scenarios, it can be helpful to base in real practices the extension of the
quality model because of the existence of a significant body of software evaluations
and evaluation results. An example of this occurs in the semantic technology area.

In this method, evaluation results are used as the starting point from which the
quality measures, sub-characteristics and characteristics are specified.

The method for extending a software quality model consists in performing the
following six consecutive steps (Fig 4.1):

1. To identify basic measures. The output of evaluating a software product with
some input data (i.e., executing a test case) allows identifying the basic mea-
sures of a certain evaluation execution.

2. To identify derived measures. Basic measures can be combined to obtain de-
rived ones, which are also related to one particular evaluation execution (i.e.,

19

Chapter 4. Quality Model for Semantic Technologies 20

Figure 4.1: The method for extending software quality models based on the bottom-
up approach.

test case).

3. To identify quality measures. Quality measures are measures related to a whole
evaluation (i.e., multiple test cases using different input data) and are obtained
by the aggregation of basic and derived measures.

4. To specify relationships between measures. In this step, which can be performed
in parallel with the previous ones, relationships between measures are expressed
either in an informal way (e.g., the collaboration, damage and dependency
categories proposed in [11]) or more formally (e.g., with the formulas used for
obtaining the measures, as proposed in [5]). For any derived measure defined,
it is recommendable to specify the function (or set of functions) that allows
obtaining such derived measure from the basic ones. Similarly, for any quality
measure, it is also advisable to identify the function that defines it based in
other measures. Also, it is important to note that one quality measure can be
obtained using several different functions.

5. To define domain-specific quality sub-characteristics. Every software prod-
uct from a particular domain has some sub-characteristics that are different
from other software products and those sub-characteristics, together with more

Chapter 4. Quality Model for Semantic Technologies 21

generic ones, should be identified and precisely defined. Every quality measure
provides some information about one or several software sub-characteristics;
therefore, based on the software quality measures defined in the previous step,
software quality sub-characteristics are specified. Furthermore, it is not nec-
essary that every quality sub-characteristic has only one measure that deter-
mines it, but rather a set of measures. Finally, if needed, some quality sub-
characteristics can be combined into more general ones.

6. To align quality sub-characteristics to a quality model. In this step, the align-
ment with an existing quality model is established; i.e., the software quality
sub-characteristics that have been previously defined are related to others al-
ready specified in the existing model. Depending on the domain and nature
of the software product, some new quality characteristics can be specified, or
existing ones can be modified or excluded.

4.2 Defining A Quality Model For Semantic Tech-

nologies

This section describes in detail how we have applied the method in the example of
conformance scenario of ontology engineering tools.

4.2.1 Identifying Basic Measures

The starting point for defining software quality measures has been the set of eval-
uation results obtained in the SEALS project, which provides evaluation results for
different types of semantic technologies (ontology engineering tools [16], reasoning
systems [38], ontology matching tools [10], semantic search tools [37], and semantic
web service tools [36]).

For each type of technology, different evaluation scenarios were defined using
in each of them different test data as input. In this step we identified the basic
measures of each evaluation scenario (i.e., those outputs directly produced by the
software during the evaluation).

Different test suites are used for evaluating the conformance of ontology engi-
neering tools, which are composed of different test cases each containing:

• Origin ontology. The ontology to be used as input.

A test case execution consists of importing the file containing an origin ontology
(Oi) into the tool and then exporting the imported ontology to another ontology file
(OII

i), as shown in Fig 4.2.
The basic measures obtained after a test case execution are:

Chapter 4. Quality Model for Semantic Technologies 22

Figure 4.2: Steps of a conformance test execution.

• Final ontology. The ontology that is produced by the tool when importing and
exporting the origin ontology.

• Execution Problem. Whether there were any execution problems in the tool
when importing and exporting the origin ontology. Possible values are true,
and false.

4.2.2 Identifying Derived Measures

In this step, basic measures identified in the previous step were combined together
with the test data in order to obtain derived measures.

In the conformance scenario, based on the test data and the basic measures of
one test execution, the following derived measures were specified:

• Information added. The information added to the origin ontology after import-
ing and exporting it.

• Information lost. The information lost from the origin ontology after importing
and exporting it.

• Structurally equivalent. Whether the origin ontology and the final one are
structurally equivalent. Possible values are true, and false.

• Semantically equivalent. Whether the origin ontology and the final one are
semantically equivalent. Possible values are true, and false.

• Conformance. Whether the ontology has been imported and exported correctly
with no addition or loss of information. Possible values are true, and false.

Chapter 4. Quality Model for Semantic Technologies 23

4.2.3 Identifying Quality Measures

Quality measures are related to a set of test executions, and are obtained using basic
and derived measures. In some cases, however, quality measures can be specified
using only basic measures.

From the derived measures in the conformance scenario, the following quality
measures were obtained:

• Ontology language component support. Whether the tool fully supports an
ontology language component.

• Ontology language component coverage. The ratio of ontology components that
are shared by a tool internal model and an ontology language model.

• Ontology information change. The ratio of information additions or loss when
importing and exporting ontologies.

• Execution errors. The ratio of tool execution errors when importing and ex-
porting ontologies.

Similarly to the example of the conformance evaluation presented above, we have
defined measures for the other types of tools. Table 4.1 summarizes the obtained
results.

Table 4.1: Total number of measures obtained for semantic technologies.

Tool/Measures Basic Derived Quality Measures
Ontology engineering tools 7 20 8
Ontology matching tools 1 3 4
Reasoning systems 7 0 8
Semantic search tools 12 11 21
Semantic web service tools 5 10 11
Total 27 40 50

4.2.4 Specifying Relationships Between Measures

We have identified the relationships between measures in a formal way by defining
the formulas used for obtaining derived and quality measures.

For example, in the conformance scenario the formula for the Information added
derived measure calculates the structural difference between the origin and final
ontologies:

final ontology − origin ontology

Chapter 4. Quality Model for Semantic Technologies 24

Similarly, the formula for the Execution errors quality measure calculates the
percentage of tests with execution problems:

tests where execution problem = true

tests
× 100

4.2.5 Defining Domain-Specific Quality Sub-characteristic

In this step, from the quality measures previously identified, we defined the set
of quality sub-characteristics that are affected by those measures. In some cases we
were able to reuse existing quality sub-characteristics but, in others, we had to define
domain-specific ones.

In the conformance scenario, based on the measures and analysis presented above,
we have identified three quality sub-characteristics:

• Ontology language model conformance. The degree to which the knowledge
representation model of the software product adheres to the knowledge rep-
resentation model of an ontology language. It can be measured using two
different measures, which are obtained in the conformance evaluation:

– Ontology language component coverage

– Ontology language component support

• Ontology processing accuracy. The capability of the software product to provide
the right or agreed results or effects with the needed degree of precision when
processing ontologies. It can be measured using:

– Ontology information change

• Ontology Processing Robustness. The ability of the software product to process
ontologies correctly in the presence of invalid inputs or stressful environmental
conditions. It can be measured using:

– Execution errors

Fig. 4.3 presents the basic measures, derived measures, quality measures, and
quality characteristics of the conformance evaluation for ontology engineering tools.

4.2.6 Aligning Quality Sub-characteristics to a Quality Model

Since ISO 9126 is a widely adopted and used standard, we have also adopted it for
constructing the quality model for semantic technologies.

Chapter 4. Quality Model for Semantic Technologies 25

Figure 4.3: Entities in the conformance scenario for ontology engineering tools.

In the previous step we have identified the set of quality sub-characteristics
that are specific for semantic technologies. In this step, all the identified sub-
characteristics were properly assigned to ones that already exist in the ISO 9126
quality model.

In the case of the conformance scenario, identified quality sub-characteristics are
aligned as follows:

• Ontology language model conformance is defined as a sub-characteristic of
Functionality compliance (i.e., the capability of the software product to ad-
here to standards, conventions or regulations in laws and similar prescriptions
relating to functionality).

• Ontology processing accuracy is defined as a sub-characteristic of Accuracy (i.e.,
the capability of the software product to provide the right or agreed results or
effects with the needed degree of precision).

• Ontology processing robustness is defined as a sub-characteristic of Robustness
(i.e., the ability of the software product to function correctly in the presence
of invalid inputs or stressful environmental conditions).

4.3 Complete Overview of the Quality Model

Fig. 4.4 shows a complete overview of the quality model for semantic technologies
that was obtained after analyzing all the evaluation scenarios and results from the
SEALS evaluation campaigns.

In the final version of the model, we have also taken into account the analysis
presented in the state of the art (Section 2.1). Two characteristics that were not

Chapter 4. Quality Model for Semantic Technologies 26

obtained from the SEALS evaluation campaigns appear in the analysis, and were
also included in the model. Those are:

• Semantic web service time behaviour. The capability of the software product to
provide appropriate response and processing times when performing semantic
web service discovery tasks.

• Matching time behaviour. The capability of the software product to provide
appropriate response and processing times when performing matching tasks.

Chapter 4. Quality Model for Semantic Technologies 27

Figure 4.4: External and internal quality characteristics of semantic technologies.

Chapter 5

Detailed Description of the
Quality Model

This chapter presents in detail the quality model obtained for all the evaluation cam-
paigns performed in the SEALS project which covered: ontology engineering tools
(Section 5.1), reasoning systems (Section 5.2), ontology matching tools (Section 5.3),
semantic search tools (Section 5.4), and semantic web service tools (Section 5.5).

5.1 Ontology Engineering Tools

The evaluation campaign for ontology engineering tools contained three evaluation
scenarios to evaluate the conformance (Fig 5.1), interoperability (Fig 5.2), and scal-
ability (Fig 5.3) of these tools.

Figure 5.1: Conformance scenario.

29

Chapter 5. Detailed Description of the Quality Model 30

Figure 5.2: Interoperability scenario.

Figure 5.3: Scalability scenario.

Chapter 5. Detailed Description of the Quality Model 31

5.1.1 Test Data

The test data used in the evaluation scenarios had the same structure. Different test
suites were used, each containing several tests with one origin ontology each.
Origin Ontology - The ontology to be used as input

5.1.2 Basic Measures

Conformance Scenario

Final Ontology - The ontology that is produced by the tool when importing and
exporting the origin ontology
Execution Problem - Whether there was any execution problem in the tool when
importing and exporting the origin ontology. Possible values are true, and false

Interoperability Scenario

Intermediate Ontology - The ontology that is produced by the origin tool when
importing and exporting the origin ontology
Final Ontology - The ontology that is produced by the tool when importing and
exporting the intermediate ontology
Execution Problem 1 - Whether there was any execution problem in the tool when
importing and exporting the origin ontology. Possible values are true, and false
Execution Problem 2 - Whether there was any execution problem in the tool
when importing and exporting the intermediate ontology. Possible values are true,
and false

Scalability Scenario

Execution Problem - Whether there was any execution problem in the tool when
importing and exporting the origin ontology. Possible values are true, and false
Start Time - The time when the operation of importing and exporting the origin
ontology starts
End Time - The time when the operation of importing and exporting the origin
ontology ends

Chapter 5. Detailed Description of the Quality Model 32

5.1.3 Derived Measures

Conformance Scenario

Information Added - The information added to the origin ontology (e.g., triples,
axioms) after importing and exporting it

final ontology− origin ontology

Information Lost - The information lost from the origin ontology (e.g., triples,
axioms) after importing and exporting it

origin ontology− final ontology

Structurally Equivalent - Whether the origin ontology and the final one are struc-
turally equivalent. Possible values are true, and false

(information added = null) ∧ (information lost = null)

Semantically Equivalent - Whether the origin ontology and the final one are
semantically equivalent. Possible values are true, and false

final ontology ≡ origin ontology

Conformance - Whether the origin ontology has been imported and exported cor-
rectly with no addition or loss of information. Possible values are true, and false

semantically equivalent ∧ ¬(execution problem)

Interoperability Scenario

Information Added 1 - The information added to the origin ontology after im-
porting and exporting it

intermediate ontology− origin ontology

Information Lost 1 - The information lost from the origin ontology after importing
and exporting it

origin ontology− intermediate ontology

Information Added 2 - The information added to the intermediate ontology after
importing and exporting it

final ontology− intermediate ontology

Chapter 5. Detailed Description of the Quality Model 33

Information Lost 2 - The information lost from the intermediate ontology after
importing and exporting it

intermediate ontology− final ontology

Semantically Equivalent 1 - Whether the origin ontology and the intermediate
one are semantically equivalent. Possible values are true, and false

intermediate ontology ≡ origin ontology

Semantically Equivalent 2 - Whether the intermediate ontology and the final one
are semantically equivalent. Possible values are true, and false

final ontology ≡ intermediate ontology

Structurally Equivalent 1 - Whether the origin ontology and the intermediate
one are structurally equivalent. Possible values are true, and false

(information added 1 = null) ∧ (information lost 1 = null)

Structurally Equivalent 2 - Whether the intermediate ontology and the final one
are structurally equivalent. Possible values are true, and false

(information added 2 = null) ∧ (information lost 2 = null)

Final Information Added - The information added to the origin ontology after
importing and exporting it by the first tool and then importing and exporting the
intermediate ontology by the second tool

final ontology− origin ontology

Final Information Lost - The information lost from the origin ontology after
importing and exporting it by the first tool and then importing and exporting the
intermediate ontology by the second tool

origin ontology− final ontology

Final Structurally Equivalent - Whether the origin ontology and the final one
are structurally equivalent. Possible values are true, and false

(final information added = null) ∧ (final information lost = null)

Chapter 5. Detailed Description of the Quality Model 34

Final Semantically Equivalent - Whether the origin ontology and the final one
are semantically equivalent. Possible values are true, and false

(semantically equivalent 1) ∧ (semantically equivalent 2)

Final Execution - Whether there was any execution problem in the tool when
importing and exporting the origin and intermediate ontology. Possible values are
true, and false

(execution problem 1) ∨ (execution problem 2)

Interoperability - Whether the origin ontology has been interchanged correctly
with no addition or loss of information. Possible values are true, and false

(final semantically equivalent) ∧ ¬(execution final)

Scalability Scenario

Duration - The amount of time needed for importing and exporting the origin
ontology

end time− start time

5.1.4 Quality Measures

Conformance Scenario

Ontology Language Component Support - Whether the tool fully supports an
ontology language component

tests that contain the component where conformance = true

tests that contain the component
= 1

Ontology Language Component Coverage - The ratio of ontology components
that are shared by a tool internal model and an ontology language model

components in the ontology language where component support = true

components in the ontology language
× 100

Ontology Information Change - The ratio of information additions or losses when
importing and exporting ontologies

tests where (information added 6= null or information lost 6= null)

tests
× 100

Chapter 5. Detailed Description of the Quality Model 35

Execution Errors - The ratio of tool execution errors when importing and exporting
ontologies

tests where execution problem = true

tests
× 100

Interoperability Scenario

Ontology Language Component Interoperability Support - Whether the tool
fully supports an ontology language component interchange

tests that contain the component where interoperability = true

tests that contain the component
= 1

Ontology Language Component Interoperability Coverage - The ratio of
ontology components that can be interchanged with other tools

components in the ontology language where component interoperability support = true

components in the ontology language
×100

Interchange Information Change - The ratio of information additions or losses
when interchanging ontologies

tests where (final information added 6= null or final information lost 6= null)

tests
×100

Execution Errors - The ratio of tool execution errors when interchanging ontologies

tests where final executions = true

tests
× 100

Scalability Scenario

Ontology Processing Time - The average amount of time needed for importing
and exporting ontologies ∑

n duration in the nth test

tests

Execution Errors - The ratio of tool execution errors when importing and exporting
ontologies

tests where execution problem = true

tests
× 100

Chapter 5. Detailed Description of the Quality Model 36

5.1.5 ISO 9126 Quality Characteristics

Functionality - The capability of the software product to provide functions which
meet stated and implied needs when the software is used under specified conditions
Functionality Compliance - The capability of the software product to adhere to
standards, conventions or regulations in laws and similar prescriptions relating to
functionality. Functionality Compliance is a sub-characteristic of Functionality
Interoperability - The capability of the software product to interact with one or
more specified systems. Interoperability is a sub-characteristic of Functionality
Accuracy - The capability of the software product to provide the right or agreed
results or effects with the needed degree of precision. Accuracy is a sub-characteristic
of Functionality
Efficiency - The capability of the software product to provide appropriate perfor-
mance, relative to the amount of resources used, under stated conditions
Time Behaviour - The capability of the software product to provide appropriate
response and processing times and throughput rates when performing its function,
under stated conditions. Time behaviour is a sub-characteristic of Efficiency
Reliability - The capability of the software product to maintain a specified level of
performance when used under specified conditions
Robustness - The ability of the software product to function correctly in the pres-
ence of invalid inputs or stressful environmental conditions. Robustness is a sub-
characteristic of Reliability

5.1.6 Semantic Quality Characteristics

Ontology Language Model Conformance - The degree to which the knowledge
representation model of the software product adheres to the knowledge representation
model of an ontology language. Ontology language model conformance is a sub-
characteristic of Functionality Compliance and can be measured using:

• Ontology Language Component Coverage

• Ontology Language Component Support

Ontology Processing Accuracy - The capability of the software product to pro-
vide the right or agreed results or effects with the needed degree of precision when
processing ontologies. Ontology Processing Accuracy is a sub-characteristic of Accu-
racy and can be measured using:

• Ontology Information Change

Ontology Language Interoperability - The degree to which the software prod-
uct can interchange ontologies and use the ontologies that have been interchanged.

Chapter 5. Detailed Description of the Quality Model 37

Ontology language interoperability is a sub-characteristic of Interoperability and can
be measured using:

• Ontology Language Component Interoperability Coverage

• Ontology Language Component Interoperability Support

Ontology Interchange Accuracy - The capability of the software product to
provide the right or agreed results or effects with the needed degree of precision when
interchanging the ontologies. Ontology Interchange Accuracy is the sub-characteristic
of Ontology Processing Accuracy and can be measured using:

• Interchange Information Change

Ontology Processing Time Behaviour - The capability of the software product
to provide appropriate response and processing times when working with ontologies.
Ontology Processing Time Behaviour is a sub-characteristic of Time Behaviour and
can be measured using:

• Ontology Processing Time

Ontology Processing Robustness - The ability of the software product to process
ontologies correctly in the presence of invalid inputs or stressful environmental con-
ditions. Ontology Processing Robustness is a sub-characteristic of Robustness and it
can be measured using:

• Execution Errors

Figure 5.4 shows the part of the quality model obtained from the evaluation
campaign for ontology engineering tools.

5.2 Reasoning Systems

The evaluation campaign for reasoning systems contained evaluation scenarios to
evaluate the accuracy, scalability, and robustness of these tools. Those scenarios in-
clude: classification scenario (Fig 5.5), class satisfiability scenario(Fig 5.6), ontology
satisfiability scenario (Fig 5.7), entailment scenario (Fig 5.8), and non-entailment
scenario (Fig 5.9).

5.2.1 Test Data

Classification Scenario

Ontology - The ontology to be classified

Chapter 5. Detailed Description of the Quality Model 38

Figure 5.4: Quality characteristics of ontology engineering tools.

Figure 5.5: Classification scenario.

Chapter 5. Detailed Description of the Quality Model 39

Figure 5.6: Class satisfiability scenario.

Figure 5.7: Ontology satisfiability scenario.

Chapter 5. Detailed Description of the Quality Model 40

Figure 5.8: Entailment scenario.

Figure 5.9: Non-entailment scenario.

Chapter 5. Detailed Description of the Quality Model 41

Class Satisfiability Scenario

Ontology - The ontology to be used in the class satisfiability task
Class URIs - URIs of the classes to be checked for satisfiability

Ontology Satisfiability Scenario

Ontology - The ontology to be checked for satisfiability

Entailment Scenario

Premise Ontology - The ontology to be used in the entailment scenario
Conclusion Ontology - The ontology to be checked for being logically entailed by
the premise ontology

Non-Entailment Scenario

Premise Ontology - The ontology to be used in the non-entailment scenario
Conclusion Ontology - The ontology to be checked for not being logically entailed
by the premise ontology

5.2.2 Basic Measures

Classification Scenario

Loading time - The amount of time needed to load the ontology
Reasoning Time - The amount of time needed to perform a classification operation
Classification - Whether the classification of the ontology is performed correctly.
Possible values are true, false, unknown, and error

Class Satisfiability Scenario

Loading time - The amount of time needed to load the ontology
Reasoning Time - The amount of time needed to perform a class satisfiability
operation
Class Satisfiability - Whether a specific class from the ontology is satisfiable.
Possible values are true, false, unknown, and error

Ontology Satisfiability Scenario

Loading time - The amount of time needed to load the ontology
Reasoning Time - The amount of time needed to perform an ontology satisfiability
operation

Chapter 5. Detailed Description of the Quality Model 42

Ontology Satisfiability - Whether the origin ontology is satisfiable. Possible values
are true, false, unknown, and error

Entailment Scenario

Loading time - The amount of time needed to load the ontology
Reasoning Time - The amount of time needed to perform entailment operation
Entailment - Whether the conclusion ontology is being logically entailed by the
premise ontology. Possible values are true, false, unknown, and error

Non-Entailment Scenario

Loading time - The amount of time needed to load the ontology
Reasoning Time - The amount of time needed to perform non-entailment operation
Non-Entailment - Whether the conclusion ontology is not being logically entailed
by the premise ontology. Possible values are true, false, unknown, and error

5.2.3 Quality Measures

Classification Scenario

Average Loading Time - The average time needed for the tool to load an ontology∑
n loading time for the nth test

tests

Average Reasoning Time - The average time needed for the tool to perform a
classification task ∑

n reasoning time for the nth test

tests

Execution Errors - The ratio of tool execution errors when performing a classifi-
cation task

tests where classification = error

tests
× 100

Classification Correctness The ratio of correctly performed classification tasks

tests where classification = true

tests
× 100

Chapter 5. Detailed Description of the Quality Model 43

Class Satisfiability Scenario

Average Loading Time - The average time needed for the tool to load an ontology∑
n loading time for the nth test

tests

Average Reasoning Time - The average time needed for the tool to perform a
class satisfiability task ∑

n reasoning time for the nth test

tests

Execution Errors - The ratio of tool execution errors when performing class satis-
fiability tasks

tests where class satisfiability = error

tests
× 100

Class Satisfiability Correctness The ratio of correctly performed class satisfia-
bility tasks

tests where class satisfiability = true

tests
× 100

Ontology Satisfiability Scenario

Average Loading Time - The average time needed for the tool to load an ontology∑
n loading time for the nth test

tests

Average Reasoning Time - The average time needed for the tool to perform an
ontology satisfiability task∑

n reasoning time for the nth test

tests

Execution Errors - The ratio of tool execution errors when performing an ontology
satisfiability task

tests where ontology satisfiability = error

tests
× 100

Chapter 5. Detailed Description of the Quality Model 44

Ontology Satisfiability Correctness The ratio of correctly performed ontology
satisfiability tasks

tests where ontology satisfiability = true

tests
× 100

Entailment Scenario

Average Loading Time - The average time needed for the tool to load an ontology∑
n loading time for the nth test

tests

Average Reasoning Time - The average time needed for the tool to perform an
entailment task ∑

n reasoning time for the nth test

tests

Execution Errors - The ratio of tool execution errors when performing an entail-
ment task

tests where entailment = error

tests
× 100

Entailment Correctness The ratio of correctly performed entailment tasks

tests where entailment = true

tests
× 100

Non-Entailment Scenario

Average Loading Time - The average time needed for the tool to load an ontology∑
n loading time for the nth test

tests

Average Reasoning Time - The average time needed for the tool to perform a
non-entailment task ∑

n reasoning time for the nth test

tests

Chapter 5. Detailed Description of the Quality Model 45

Execution Errors - The ratio of tool execution errors when performing a non-
entailment task

tests where non-entailment = error

tests
× 100

Non-Entailment Correctness The ratio of correctly performed non-entailment
tasks

tests where non-entailment = true

tests
× 100

5.2.4 ISO 9126 Quality Characteristics

Functionality - The capability of the software product to provide functions which
meet stated and implied needs when the software is used under specified conditions
Accuracy - The capability of the software product to provide the right or agreed
results or effects with the needed degree of precision. Accuracy is a sub-characteristic
of Functionality
Efficiency - The capability of the software product to provide appropriate perfor-
mance, relative to the amount of resources used, under stated conditions
Time Behaviour - The capability of the software product to provide appropriate
response and processing times and throughput rates when performing its function,
under stated conditions. Time behaviour is a sub-characteristic of Efficiency
Reliability - The capability of the software product to maintain a specified level of
performance when used under specified conditions
Robustness - The ability of the software product to function correctly in the pres-
ence of invalid inputs or stressful environmental conditions. Robustness is a sub-
characteristic of Reliability

5.2.5 Semantic Quality Characteristics

Ontology Processing Accuracy - The capability of the software product to pro-
vide the right or agreed results or effects with the needed degree of precision when
processing ontologies. Ontology Processing Accuracy is a sub-characteristic of Accu-
racy
Reasoning Accuracy - The capability of the software product to provide the right
or agreed results or effects with the needed degree of precision when performing the
reasoning task. Reasoning Accuracy is a sub-characteristic of Ontology Processing
Accuracy and can be measured using:

• Class Satisfiability Correctness

Chapter 5. Detailed Description of the Quality Model 46

• Ontology Satisfiability Correctness

• Classification Correctness

• Entailment Correctness

• Non-Entailment Correctness

Ontology Processing Time Behaviour - The capability of the software product
to provide appropriate response and processing times when working with ontologies.
Ontology Processing Time Behaviour is a sub-characteristic of Time Behaviour and
can be measured using:

• Average Loading time

Reasoning Time Behaviour - The capability of the software product to provide
appropriate response and processing times when performing reasoning tasks. Reason-
ing Time Behaviour is a sub-characteristic of Ontology Processing Time Behaviour
and can be measured using:

• Average Reasoning Time

Ontology Processing Robustness - The ability of the software product to process
ontologies correctly in the presence of invalid inputs or stressful environmental con-
ditions. Ontology Processing Robustness is a sub-characteristic of Robustness and it
can be measured using:

• Execution Errors

Figure 5.10 shows the part of the quality model obtained from the evaluation
campaign for reasoning tools.

5.3 Matching Tools

The evaluation campaign for matching tools contained one evaluation scenario to
evaluate accuracy (Fig 5.11).

5.3.1 Test Data

Ontology 1 - One ontology to be used as input for an alignment task
Ontology 2 - Another ontology to be used as input for an alignment task
Expected Alignment - The expected alignment to be obtained when aligning the
two input ontologies

Chapter 5. Detailed Description of the Quality Model 47

Figure 5.10: Quality characteristics of reasoning systems.

Figure 5.11: Accuracy scenario.

Chapter 5. Detailed Description of the Quality Model 48

5.3.2 Basic Measures

Output Alignment - The alignment that is produced by the tool when aligning
ontology 1 and ontology 2

5.3.3 Derived Measures

Precision - The precision of the alignment task

output alignments that match expected alignments

output alignments

Recall - The recall of the alignment task

output alignments that match expected alignments

expected alignments

F-Measure - The aggregation measure of precision and recall

precision × recall

(1-α) × precision + α × recall
, α = [0..1]

Harmonic Measure - The aggregation measure of precision and recall (value of
F-Measure when α = 0.5)

precision × recall

precision + recall
× 2

5.3.4 Quality Measures

Average Precision - The average precision of the ontology matching tool∑
n precision of the nth test

tests

Average Recall - The average recall of the ontology matching tool∑
n recall of the nth test

tests

Chapter 5. Detailed Description of the Quality Model 49

Average F-Measure - The average F-Measure of the ontology matching tool∑
n F-Measure of the nth test

tests

Average Harmonic Measure - The average harmonic measure of the ontology
matching tool ∑

n harmonic measure of the nth test

tests

5.3.5 ISO 9126 Quality Characteristics

Functionality - The capability of the software product to provide functions which
meet stated and implied needs when the software is used under specified conditions
Accuracy - The capability of the software product to provide the right or agreed
results or effects with the needed degree of precision. Accuracy is a sub-characteristic
of Functionality

5.3.6 Semantic Quality Characteristics

Ontology Processing Accuracy - The capability of the software product to pro-
vide the right or agreed results or effects with the needed degree of precision when
processing ontologies. Ontology Processing Accuracy is a sub-characteristic of Accu-
racy
Ontology Alignment Accuracy - The capability of the software product to pro-
vide the right or agreed results or effects with the needed degree of precision when
performing the alignment task. Ontology alignment accuracy is a sub-characteristic
of Ontology Processing Accuracy and can be measured using:

• Average Precision

• Average Recall

• Average F-measure

• Harmonic Mean

Figure 5.12 shows the part of the quality model obtained from the evaluation
campaign for matching tools.

Chapter 5. Detailed Description of the Quality Model 50

Figure 5.12: Quality characteristics of ontology matching tools.

5.4 Semantic Search Tools

The evaluation campaign for semantic search tools contained evaluation scenarios to
evaluate accuracy, performance and usability. The evaluation was divided into two
separate phases, an automated phase (Fig 5.13 and Fig 5.14) and a user-in-the-loop
phase (Fig 5.15 and Fig 5.16).

5.4.1 Test Data

Automated Scenario

Origin Ontology - The ontology to be used as input for the search task
Input Question - The question to be used as input for the search task
Expected Answer - The expected answer to be obtained from the origin ontology
for the input question

User-In-The-Loop Scenario

Origin Ontology - The ontology to be used as input for the search task
Input Question - The question to be used as input for the search task
Expected Answer - The expected answer to be obtained from the origin ontology
for the input question

Chapter 5. Detailed Description of the Quality Model 51

Figure 5.13: Automated scenario (I).

Figure 5.14: Automated scenario (II).

Chapter 5. Detailed Description of the Quality Model 52

Figure 5.15: User-in-the-loop scenario (I).

Figure 5.16: User-in-the-loop scenario (II).

Chapter 5. Detailed Description of the Quality Model 53

Usability Questionnaire - Standardized Usability Test by Brooke [4] containing
ten standardized questions to be given to the users
Satisfaction Questionnaire - User satisfaction questionnaire to be given to the
users
Demographics Questionnaire - Questionnaire about the characteristics of a pop-
ulation to be given to the users

5.4.2 Basic Measures

Automated Scenario

Query Result - The results returned by the tool when executing the query
Load Successful - Whether the ontology has been successfully loaded. Possible
values are true or false
Load Time - The amount of time needed to load the ontology
Query Time - The amount of time it takes for the query to execute

User-In-The-Loop Scenario

Usability Result - The results of the usability questionnaire filled by the user
Satisfaction Result - The results of the satisfaction questionnaire filled by the user
Number of Attempts - The number of times the user had to reformulate the query
using the tool interface in order to obtain satisfactory answers
Query Result - The result of the executed query
Experiment Time - The amount of time needed for one user to complete the whole
experiment
Input Time - The amount of time the user spends for formulating a query using
the tool’s interface
Execution time - The amount of time needed to execute the query
Overall Question Time - The amount of time needed for answering one question

5.4.3 Derived Measures

Automated Scenario

Number of Results - The number of results obtained for the query

query result

Chapter 5. Detailed Description of the Quality Model 54

Time Per Result - The amount of time needed to obtain one result

query time

results

Precision - The ratio between the relevant answers and all answers returned by the
tool

relevant answers returned by the tool

answers returned by the tool

Recall - The ration between the relevant answers returned by the tool and answers
in groundtruth

relevant answers returned by the tool

answers in groundtruth

F-Measure - The aggregation measure of precision and recall

precision × recall

precision + recall
× 2

User-In-The-Loop Scenario

Usability Value - The value obtained from the usability questionnaire
Satisfaction Value - The value obtained from satisfaction questionnaire
Answer Found Rate - The ratio of finding the appropriate answer after a number
of attempts and the user giving up after a number of attempts

number of attempts

of attempts before giving up

Precision - The ratio between the relevant answers and all answers returned by the
tool

relevant answers returned by the tool

answers returned by the tool

Recall - The ration between the relevant answers returned by the tool and answers
in groundtruth

relevant answers returned by the tool

answers in groundtruth

Chapter 5. Detailed Description of the Quality Model 55

F-Measure - The aggregation measure of precision and recall

precision × recall

precision + recall
× 2

5.4.4 Quality Measures

Automated Scenario

Average Successful Loads - The ratio of successful ontology loads

tests where load successful = true

tests
× 100

Average Load Time - The average amount of time it takes for the ontology to
load ∑

n load time of the nth test

tests

Average Query Time - The average amount of time it takes for a query to execute∑
n query time of the nth test

tests

Average Number of Results - The average number of results obtained for the
query ∑

n number of results of the nth test

tests

Number of Completed Queries - The number of queries that produced expected
answer

tests where expected answer = query result

Average Time Per Result - The average amount of time needed to obtain one
result ∑

n time per result of the nth test

tests

Chapter 5. Detailed Description of the Quality Model 56

Average Precision - The average precision∑
n precision of the nth test

tests

Average Recall - The average recall∑
n recall of the nth test

tests

Average F-Measure - The average F-Measure∑
n F-Measure of the nth test

tests

User-In-The-Loop Scenario

Average Experiment Time - The average time needed for the experiment to
complete ∑

n experiment time of the nth test

tests

Average Usability Value - The average value of results obtained from usability
questionnaire ∑

n usability value of the nth test

tests

Average Satisfaction Value - The average value obtained from satisfaction ques-
tionnaire ∑

n satisfaction value of the nth test

tests

Average Number of Attempts - The average number of attempts before the user
is happy with the results∑

n number of attempts of the nth test

tests

Chapter 5. Detailed Description of the Quality Model 57

Average Answer Found Rate - The ratio of finding the appropriate answer after
a number of attempts and the user giving up after a number of attempts∑

n answer found rate of the nth test

tests

Average Execution Time - The average time needed to execute the question∑
n execution time of the nth test

tests

Average Input Time - The average time needed for the query to be formulated∑
n input time of the nth test

tests

Max Input Time - The maximum time needed for the query to be inputted

max(input time of the nth test)

Average Overall Question Time - The average amount of time needed for an-
swering one question ∑

n overall question time of the nth test

tests

Average Precision - The average precision of the search tool∑
n precision of the nth test

tests

Average Recall - The average recall of the search tool∑
n recall of the nth test

tests

Chapter 5. Detailed Description of the Quality Model 58

Average F-Measure - The average F-Measure of the search tool∑
n F-Measure of the nth test

tests

5.4.5 ISO 9126 Quality Characteristics

Functionality - The capability of the software product to provide functions which
meet stated and implied needs when the software is used under specified conditions
Accuracy - The capability of the software product to provide the right or agreed
results or effects with the needed degree of precision. Accuracy is a sub-characteristic
of Functionality
Efficiency - The capability of the software product to provide appropriate perfor-
mance, relative to the amount of resources used, under stated conditions
Time Behaviour - The capability of the software product to provide appropriate
response and processing times and throughput rates when performing its function,
under stated conditions. Time behaviour is a sub-characteristic of Efficiency
Reliability - The capability of the software product to maintain a specified level of
performance when used under specified conditions
Robustness - The ability of the software product to function correctly in the pres-
ence of invalid inputs or stressful environmental conditions. Robustness is a sub-
characteristic of Reliability
Usability - The capability of the software product to be understood, learned, used
and attractive to the user, when used under specified conditions
Operability - The capability of the software product to enable the user to operate
and control it. Operability is a sub-characteristic of Usability, and can be measured
using:

• Average Usability Value

Productivity - The capability of the software product to enable users to expend
appropriate amounts of resources in relation to the effectiveness achieved in a spec-
ified context of use. Productivity is a characteristic of quality in use, and can be
measured using

• Average Number of Attempts

• Average Answer Found Rate

• Average Experiment Time

Satisfaction - The degree to which users are satisfied in a specified context of use.
Satisfaction is a characteristic of quality in use, and can be measured using:

Chapter 5. Detailed Description of the Quality Model 59

• Average Satisfaction Value

5.4.6 Semantic Quality Characteristics

Semantic Search Accuracy - The capability of the software product to provide
the right or agreed results with the needed degree of precision when performing the
search task. Semantic search accuracy is a sub-characteristic of Accuracy and can
be measured using

• Average Precision

• Average Recall

• Average F-measure

• Number of Completed Queries

• Average Number of Results

Ontology Processing Time Behaviour - The capability of the software product
to provide appropriate response and processing times when working with ontologies.
Ontology Processing Time Behaviour is a sub-characteristic of Time Behaviour and
can be measured using:

• Average Load Time

Ontology Processing Robustness - The ability of the software product to process
ontologies correctly in the presence of invalid inputs or stressful environmental con-
ditions. Ontology Processing Robustness is a sub-characteristic of Robustness and it
can be measured using:

• Average Successful Loads

Semantic Search Time Behaviour - The capability of the software product to
provide appropriate response and processing times when performing search tasks.
Semantic Search Time Behaviour is a sub-characteristic of Time Behaviour and can
be measured using:

• Average Query Time

• Average Time Per Result

• Average Execution Time

• Average Input Time

Chapter 5. Detailed Description of the Quality Model 60

• Max Input Time

• Average Overall Question Time

Figure 5.17 shows the part of the quality model internal and external charac-
teristics obtained from the evaluation campaign for semantic search tools. Fig 5.18
shows the quality in use.

Figure 5.17: Internal and external quality characteristics of semantic search tools.

Figure 5.18: Quality in use of semantic search tools.

5.5 Semantic Web Service Tools

The evaluation campaign for semantic web services contained one evaluation scenario
to evaluate discovery (Fig 5.19).

5.5.1 Test Data

Goal Document - The semantic web service document containing users’ request
description to be used in discovery test
Service Document - The semantic web service document containing service offer
to be used in discovery test
Queries - The query to be used in discovery test

Chapter 5. Detailed Description of the Quality Model 61

Figure 5.19: Semantic web service discovery scenario.

5.5.2 Basic Measures

Match Degree - Information about the match degree. Possible values are Non,
Plugin, Match, Exact, Subsumption
Confidence - The confidence value of the produced match
Match Results - The results that are produced by the tool in the process of dis-
covery
Load Time - The amount of time needed to load the query
Execution Problem in Tool - Whether there were any execution problems in the
tool while performing the discovery process. Possible values are true, and false

5.5.3 Derived Measures

Number of Retrieved Documents - The number of retrieved documents

retrieved documents

Number of Retrieved Relevant Documents - Number of retrieved documents
that were judged relevant

Chapter 5. Detailed Description of the Quality Model 62

retrieved documents where (match degree = match ∨ exact)

Precision - Precision of the semantic web service discovery

relevant documents retrieved

retrieved documents

Normalized Discounted Cumulative Gain (NDCG) - A normalized measure
of the effectiveness of the search algorithm according to the relevance of a search
result

rel1 +
∑
i=2

reli
log2 i

Normalized Discounted Cumulative Gain @N - Normalized discounted cumu-
lative gain at a given number of documents retrieved

N

∑
i(2

r(i) − 1)

log(1 + i)

Binary Preference - Measures the relevant documents retrieved when dealing with
incomplete information

1

R

∑
r

1− |nrankedgreaterthanr|
R

Reciprocal Rank - Returns the reciprocal of the rank of the first relevant document
retrieved, or zero if no relevant documents were retrieved

1

rank of the first relevant document retrieved

Precision@N - The precision of the retrieval at a given number of documents re-
trieved

relevant documents retrieved

retrieved documents

Recall@N - The recall of the retrieval at a given number of documents retrieved

relevant documents retrieved

relevant documents in groundtruth

Chapter 5. Detailed Description of the Quality Model 63

5.5.4 Quality Measures

Average Number Retrieved Documents - The average number of retrieved doc-
uments for all tests∑

n average number of retrieved documents of the nth test

tests

Average Relevant Documents Retrieved - The average number of retrieved
documents that were judged relevant∑

n number of retrieved relevant documents of the nth test

tests

Average Precision - The average precision of semantic web service discovery∑
n precision of the nth test

tests

Average NDCG@N - The average NDCG@N for all tests∑
n NDCG@N of the nth test

tests

Average NDCG - The average NDCG for all tests∑
n NDCG of the nth test

tests

Average Binary Preference - The average binary preference for all tests∑
n binary preference of the nth test

tests

Average Reciprocal Rank - The average reciprocal rank for all tests∑
n reciprocal rank of the nth test

tests

Chapter 5. Detailed Description of the Quality Model 64

Average Precision@N - The average Precision@N for all tests∑
n precision@N of the nth test

tests

Average Recall@N - The average Recall@N for all tests∑
n recall@N of the nth test

tests

Average Load Time - The average amount of time needed to load the service∑
n load time of the nth test

tests

5.5.5 ISO 9126 Quality Characteristics

Functionality - The capability of the software product to provide functions which
meet stated and implied needs when the software is used under specified conditions
Accuracy - The capability of the software product to provide the right or agreed
results or effects with the needed degree of precision. Accuracy is a sub-characteristic
of Functionality
Efficiency - The capability of the software product to provide appropriate perfor-
mance, relative to the amount of resources used, under stated conditions
Time Behaviour - The capability of the software product to provide appropriate
response and processing times and throughput rates when performing its function,
under stated conditions. Time behaviour is a sub-characteristic of Efficiency

5.5.6 Semantic Quality Characteristics

Ontology Processing Time Behaviour - The capability of the software product
to provide appropriate response and processing times when working with ontologies.
Ontology Processing Time Behaviour is a sub-characteristic of Time Behaviour and
can be measured using:

• Average Load time

Semantic Web Service Discovery Accuracy - The accuracy of the process of
finding services that can be used to fulfil a given requirement from the service re-

Chapter 5. Detailed Description of the Quality Model 65

quester. Semantic web service discovery accuracy is a sub-characteristic of Accuracy
and can be measured using:

• Average Number Retrieved Documents

• Average Relevant Documents Retrieved

• Average Precision

• Average NDCG@N

• Average NDCG

• Average Binary Preference

• Average Reciprocal Rank

• Average Precision@N

• Average Recall@N

• Average Load Time

Figure 5.20 shows the part of the quality model obtained from the evaluation
campaign for semantic web services.

Figure 5.20: Quality characteristics of semantic web service tools.

Chapter 6

Application of the Semantic
Technology Quality Model

In this chapter, we present two web applications that are based on the quality model
described in Chapter 5: for visualization of evaluation results, and for the recom-
mendation of semantic technologies. These two applications use the results that
are produced in the conformance and interoperability evaluation scenarios for the
ontology engineering tools defined in the SEALS project.

Section 6.1 describes the architecture, which is common for both applications and
Section 6.2 describes the open-source libraries that were used in their implementa-
tion, while Section 6.3 gives instruction for the installation. Section 6.4 presents
the application for the visualization of the evaluation results. Finally, Section 6.5
presents the application for semantic technology recommendation according to users’
needs.

6.1 Architecture

The architecture of the two applications describes five separate components (Fig. 6.1):

1. Quality model - quality model for semantic technologies that helps us to put
evaluations of semantic technologies under a common ground and to identify
all the elements in the evaluation results on which the two applications are
based.

2. User Interface - the user interface is the bridge between the user and the ap-
plication; the user interacts with the application through the user interface.

3. Application logic - the application logic is the key part of the system and is in
charge of processing user’ requests and present the results to them.

67

Chapter 6. Application of the Semantic Technology Quality Model 68

4. Ontologies - These include the SEALS ontologies, which are used to describe
evaluation results; those ontologies used to represent basic and derived mea-
sures, described in [15]; and a QualityModel ontology, which extends the SEALS
ontologies and is described in Appendix A.

5. Data storage - a set of data that includes test data used in the process of
evaluation, the results of the evaluation, and quality measures results obtained
for the available tools. Those data are stored in the RDF form and used by
the applications.

Figure 6.1: Application architecture.

Chapter 6. Application of the Semantic Technology Quality Model 69

6.2 Dependencies

In the implementation of the visualization and recommendation applications, Maven1

is used for project and dependency management. It has become practically a stan-
dard in the software development process and provides easy maintenance and reusabil-
ity.

Tapestry2 is an open-source framework for building dynamic and robust web
applications in Java. It complements and builds upon the standard Java Servlet
API, and so it works in any servlet container or application server. Developing
Tapestry applications involves creating HTML templates using plain HTML and
combining the templates with small amounts of Java code. In Tapestry, applications
are created in terms of objects and the methods and properties of those objects –
and specifically not in terms of URLs and query parameters.

Spring3 is an open-source application framework for the Java platform, and it is
used as Inversion of Control container. The container is responsible for managing
object lifecycles. Objects are obtained by means of Dependency Injection where
container provides objects by name and which allows for high flexibility in the im-
plementation.

JenaBean4 is an annotation-based framework built on top of the Jena5 RD-
F/OWL API. Using JenaBean, the object-oriented Java model that is in the core of
both applications is bound to the ontologies that are used for representing evaluation
results. That way, RDF data can be easily managed using objects in Java.

6.3 Instalation

Maven provides an easy way for collecting all dependencies, classes and resources of
the web application and packaging them into a web application archive. Using the
console, once in the root folder of the application, the command

mvn package

will create a WAR file in the target folder of the project. The created WAR file can
be used in any web container (e.g., Tomcat or Jetty).

Evaluation results that are used are stored in the RDF files inside the WAR file,
under WEB-INF/classes/results/ location.

1http://maven.apache.org/
2http://tapestry.apache.org/
3http://www.springsource.org/
4http://code.google.com/p/jenabean/
5http://jena.sourceforge.net/

Chapter 6. Application of the Semantic Technology Quality Model 70

In order to update the results or insert additional data, it is necessary just to put
new RDF files in the appropriate folder (or to replace existing ones), and restart the
application on the server.

The source code for the applications can be found at https://svn.seals-project.eu/seals-
dev/oet/seals-visualization/trunk, and at https://svn.seals-project.eu/seals-dev/oet/seals-
recommendation/trunk, for the visualization and recommendation applications, re-
spectively.

6.4 Evaluation Results Visualization

In this section, we present the web application for the dynamic visualization of
evaluation results that allows to browse the results of the different tools and compare
them. It is based on the semantic technologies quality model, in a way that it
visualizes any evaluation results that are obtained following the quality model and
described according to the provided ontologies.

6.4.1 Requirements

In order to develop, implement, and use the visualization application, the following
requirements are needed:

• Req01. The semantic technology quality model which will serve as a basis to
identify entities in the results to be visualized.

• Req02. Evaluation results, which have to be obtained and interpreted with
respect to the quality model.

• Req03. For describing and storing the evaluation results, ontologies are needed,
which provide properties and classes for describing evaluation results. Such
ontologies are already developed in the SEALS project [15].

6.4.2 Use

This section describes the usage of the visualization application, from the user per-
spective, for the conformance and interoperability scenarios for ontology engineering
tools.

Conformance Results Visualization

In particular, the application contains the following functionalities for the confor-
mance scenario to browse for:

Chapter 6. Application of the Semantic Technology Quality Model 71

• Results of a tool according to a certain ontology language (test suite execution).

• Results of a tool according to ontology language features.

• Results of several tools according to a certain ontology language.

• Statistics of results for a particular tool according to a certain ontology lan-
guage.

• Details of the results of a test execution.

Next, we present an overview of the current version of this web application.
The homepage of the application shows an option for a user to choose which

results to browse (i.e., conformance or interoperability results). After selecting the
desired scenario, the page listing the executions of all the tools with all the test
suites, sorted by tool, will appear (figure 6.2).

Figure 6.2: Part of the table showing available conformance executions.

By clicking on a certain execution (which are distinguished by the execution
date), all the results for a particular tool according to a certain test suite are shown.
For each test, results include the name of the ontology file that is used as input in
the conformance test, conformance and execution status, structural and semantical
equivalence, as well as information that has been added or lost during the test
execution. Figure 6.3 shows an example of conformance results. Furthermore, results
can be filtered according to specific criteria (e.g., if a user wants to see only test
executions where there is no addition of information, or where imported and exported
ontologies are not semantically equivalent).

In order to have better visibility and due to a space reasons on web pages, all
additions and losses of information are initially hidden. Therefore, a user can click on

Chapter 6. Application of the Semantic Technology Quality Model 72

Figure 6.3: Part of the table showing the conformance results of a particular execu-
tion.

Figure 6.4: Information added and lost in a test execution.

Chapter 6. Application of the Semantic Technology Quality Model 73

a small button that shows information added or information lost, if such information
exist (figure 6.4).

Through the execution field in the shown results, a user can get an insight into
the robustness of a tool. If there were no problems in a test execution, the field shows
the OK value. Otherwise, the FAIL value indicates that there were some execution
problems, and it is then shown in red colour.

Results for a particular tool according to a particular test suite can be also
browsed regarding the ontology language features. In that scenario, test execution
results are classified according to each ontology language feature that is covered in
a test (figure 6.5).

Figure 6.5: Test results according to ontology language features.

Furthermore, a user can observe the results according to a certain ontology lan-
guage, that are obtained for several tools (figure 6.6).

Additionally, following the link of the ontology file name that is used in a test
execution, it is possible to get an insight into the ontology files that have been used
(imported and exported ontologies), as shown in figure 6.7. This page also separately
shows information added and information lost, so that it is easier for users to observe
it.

At the end, the statistic analysis is available for a particular tool, and according
to a particular test suite. It shows sums and percentages for all the results in a single
test execution (e.g., percentage of tests where there is addition of information, or
where there was a problem during test execution). Also, the page shows statistics for

Chapter 6. Application of the Semantic Technology Quality Model 74

Figure 6.6: Results for tools according to OWL DL ontology language.

Figure 6.7: Ontologies used in one test execution.

every ontology language feature, i.e., the number of tests where a feature is included,
as well as the number of tests that include a feature and in which the conformance
is SAME. Figure 6.8 shows an example of these statistic and a part of the statistics
for ontology language features.

Figure 6.8: Statistics for a particular tool according to a particular test suite.

Interoperability Results Visualization

In particular, the application contains the following functionalities for the interoper-
ability scenario to browse for:

Chapter 6. Application of the Semantic Technology Quality Model 75

• Results of two tools according to a certain ontology language (test suite exe-
cution).

• Results of two tools according to ontology language features.

• Results of several tools according to a certain ontology language.

• Statistics of results for two particular tools according to a certain ontology
language.

• Details of the results of a test execution.

Next, we present an overview of the current version of this web application.
The homepage of the application shows an option for a user to choose which

results to browse (i.e., conformance or interoperability results). After selecting the
desired scenario, the page listing all the executions of every tool with every test suite,
ordered by tool, will appear (figure 6.9).

Figure 6.9: Part of the table showing available interoperability results.

By clicking on a certain execution (which are distinguished by the execution date),
all the results for a particular pair of tools according to a certain test suite are shown.
Each test result includes the name of the ontology file that is used as the input in the
interoperability test, interoperability and execution status, structural and semantical
equivalence for both steps, as well as information that has been added or lost during
the test execution. Figure 6.10 shows an example of the interoperability results.
Furthermore, results can be filtered according to specific criteria (e.g., if a user
wants to see only test executions where there is no addition of information in either
of the steps, or where the imported and exported ontologies are not semantically
equivalent).

In order to accomplish better visibility and due to space reasons on web pages,
all the additions and losses of information are initially hidden. Therefore, a user can

Chapter 6. Application of the Semantic Technology Quality Model 76

Figure 6.10: Part of the table showing interoperability results for two particular tools
according to a particular test suite.

click on a small button that shows the information added or the information lost, if
such information exist (figure 6.11).

Figure 6.11: Information added and lost in a test execution.

Through the execution field in the final results column, a user can get an insight
into the robustness of a tool. If there were no problems in a test execution, the
field takes the OK value. Otherwise, the FAIL value indicates that there were some
execution problems, and it is then shown in red colour. Also, execution results for
both steps in the interoperability test are shown.

Results for a particular tool according to a particular test suite can be also
browsed regarding the ontology language features. In that scenario, test execution
results are classified according to each ontology language feature that is covered in
a test (figure 6.12).

Furthermore, a user can observe the results according to a certain test suite,
which are obtained for several tools (figure 6.13).

Additionally, following the link of the ontology file name that is used in a test
execution, it is possible to get an insight into the ontology files that have been used
(imported, intermediate, and final ontologies), as shown in figure 6.14. This page
also separately shows information added and information lost, so that it is easier for
users to observe it.

At the end, a statistic analysis is available for the two tools in the interoperability
execution, and according to a particular test suite. It shows sums and percentages

Chapter 6. Application of the Semantic Technology Quality Model 77

Figure 6.12: Test results according to ontology language features.

Figure 6.13: Results for tools according to the OWL DL test suite.

Figure 6.14: Ontologies used in one test execution.

Chapter 6. Application of the Semantic Technology Quality Model 78

for all the results in a single test execution (e.g., the percentage of tests where there
is addition of information, or where there was a problem during test execution).
Also, the page shows statistics for every ontology language feature, i.e., the number
of tests where a feature is included, as well as the number of tests that include a
feature and in which the conformance is SAME. Figure 6.15 shows an example of
the statistics and a part of the statistics for ontology language features.

Figure 6.15: Statistics for two particular tools according to a particular test suite.

6.5 Semantic Technology Recommendation

As the software started to become an important part for business in many compa-
nies, and as the number of available software solutions started to grow, the problem
of selecting the appropriate software system emerged. The process of software se-
lection has become a very complex task due to the availability of large number of
software products, but also because of the improvements in information technology
and incompatibilities between hardware and software systems [29].

In the informatics era, the success of business depends on the availability of
appropriate software systems [31] and the selection of an inappropriate system can
lead to a significant financial loss and disruption of the project [19]. Therefore,
when dealing with the number of available software solutions, the selection of the
appropriate software system is of crucial importance for the user.

This is also the case when it comes to semantic technologies. A number of tools
exist, but on the other hand it is very difficult for users to find the tool that best
suites their needs.

Various authors have proposed selection systems for different types of software
that rely on different approaches, such as selection of software components [30, 31]
(Atana, AHP) or software packages selection [22] (HKBS); and there are some exam-
ples of systems that rely on less known and used methods developed by the authors of
those systems, such as in COTS selection [25], open source software [28], simulation
software [19] and discrete event simulation software [35].

Chapter 6. Application of the Semantic Technology Quality Model 79

Weighting Scoring Method The idea of the Weighted Scoring Method (WSM)
is to aggregate the values of all the characteristics to a single value by using weights
for every characteristic. In order to achieve this, all values for characteristics have
to be in a common scope and therefore all values are normalized to the scale ranging
from 0 to 10 [31]. After this step, the aggregation is performed by multiplying each
characteristic value with the characteristic’s weight, and summing the results for
every characteristic of the candidate product.

Some authors discuss the weaknesses of the mentioned approach [22, 25]. For
example, it is pointed out that it can be very difficult to assign the weights if the
number of characteristics is high, and that also it is difficult to apply the method
for Multiple Criteria Decision Making (MCDM) problem. Furthermore, in the case
when some characteristics are estimated using an ordinal scale, the final values for
each candidate product will represent only the relative value and the differences
between candidates will not be represented objectively.

The Analytic Hierarchy Process The Analytic Hierarchy Process (AHP) is a
flexible approach for decision making in complex multicriteria problems [30], in which
the selection criteria (characteristics of a software product) and possible candidates
are represented in a hierarchical way.

The method first requires the comparison of all criteria that are on a same hier-
archy level. In order to obtain weights, criteria are compared to each other by pair
wise comparisons using a scale from 1 to 9 [31]. It is important just to note that two
compared criteria have reciprocal values, which means that if criterion A has value
x, criterion B will have value 1/x.

After the comparison matrix has been calculated, the value of each criterion is
multiplied with the appropriate comparison weight and those results then ascend up
the tree to calculate the final value for every alternative [30].

The AHP helps the decision making problem to be more simplified and is a good
approach for handling both qualitative and quantitative multicriteria problems [22].
On the other hand, AHP is time consuming, and in the case when a new criterion is
introduced or an existing one is deleted, the re-estimation of all candidates is needed.

Hybrid Knowledge Based System Hybrid knowledge based system (HKBS) is
an approach that is applied in software selection process and that employs rule based
reasoning and case based reasoning [22].

A rule based reasoning component stores information about evaluation criteria
and evaluation results. It is used to guide users to specify his requirements that he
wants to consider in software selection process. User requirements are collected in
the form of feature and feature value [22] and are later submitted to the case based
reasoning part of the system.

Chapter 6. Application of the Semantic Technology Quality Model 80

A case based reasoning component is used in order to compare user requirements
with the available candidates and determine how well each candidate software prod-
uct matches user needs. Furthermore, it is possible to calculate the similarity level
of each candidate in order to rank all candidates that satisfy user needs.

In their comparative study of WSM, AHP, and HKBS [23], Jadhav and Sonar
showed that HKBS approach is better regarding the computational efficiency, knowl-
edge reuse, consistency of the results, and flexibility in specifying user requirements.
This means that e.g., if the number of candidate software of evaluation criteria
changes, unlike with AHP, the HKBS approach does not require any additional ef-
forts or calculations in order to adapt to changes.

The Atana Approach Atana [31] is an approach that starts with a user entering
his required criteria and desired limitations. Based on that information, in the
calculation phase the set of solutions is found that satisfies all given constraints.

The Atana Approach, unlike AHP and WSM, does not aggregate multiple criteria
values into a single one, but rather leaves all values separated. Furthermore, the
authors argue that WSM and AHP will produce just one solution as a result, which
forces the user to accept it, and point out the fact that providing a priori information
in WSM or AHP, i.e., weights for criteria, presents a drawback and a problem for
end users.

In the implementation of the semantic technologies recommendation application
we have decided to use HKBS approach. It gives to users the possibility for specifying
the importance for each requirement, and on the other hand it is flexible and easily
extensible.

6.5.1 Requirements

When selecting a software product, user needs and product characteristics are the
most important concerns. Based upon product characteristics, available candidates
are evaluated in an evaluation process, and the results of the evaluation are used as
inputs to the selection process [20]. It is necessary that all the candidates are evalu-
ated under a common framework, and therefore a proper software quality model can
significantly reduce the amount of time and effort needed for the selection process.
Fig 6.16 depicts the software selection process.

In order to develop, implement, and use the recommendation system for semantic
technologies, the following requirements are needed:

• Req01. The semantic technology quality model will serve as a basis for speci-
fying user criteria, providing the set of already defined quality measures.

Chapter 6. Application of the Semantic Technology Quality Model 81

Figure 6.16: Software selection process.

• Req02. Each candidate tool in the recommendation process has to be evaluated
with respect to the quality model, providing evaluation results.

• Req03. For describing and storing the quality measures, an ontology is needed,
which provides properties and classes for describing the quality measures and
results obtained in the evaluation process.

• Req04. With respect to a set of predefined characteristics of semantic technolo-
gies to be recommended, the user has to provide to the system input quality
requirements upon which the recommendation algorithm is run. Those require-
ments should be gathered using a user interface.

• Req05. A recommendation algorithm that takes user quality requirements and
evaluation results as inputs has to be implemented.

6.5.2 Use

The first version of the semantic technology recommendation system works only for
each type of the tool separately. Therefore, since there are different types of tools
with different purposes and characteristics, the homepage of the system shows the
menu for selecting the type of tool that the user wants to use (Figure 6.17).

After selecting a tool type, a page for specifying quality requirements will ap-
pear. Requirements are consistent with the quality measures described in the quality
model. The user can choose which ones he wants to take into account and for every

Chapter 6. Application of the Semantic Technology Quality Model 82

Figure 6.17: Homepage of the semantic technologies recommendation system.

desired quality measure it is possible to specify its importance in form of a weight,
and a desired level (threshold) (Figure 6.18). Also, by pointing the mouse on an
info icon, additional information about the requirement is shown.

Figure 6.18: Requirements specification form.

Once the requirements are filled and the form is submitted, the recommendation
results will be shown, ordered by how well each tool meets user requirements (Fig-
ure 6.19). For each tool, overall similarity with specified requirements is shown, as
well as similarities according to each requirement separately. Also, a separate table
shows values for every quality measure that was considered in the recommendation
process, according to each tool. Measures that do not satisfy given requirements are
shown in red color.

Furthermore, by clicking on a particular tool, a page with the tool description
appears, listing all the quality measures and values obtained (Figure 6.20).

Chapter 6. Application of the Semantic Technology Quality Model 83

Figure 6.19: Results for the recommendation.

Figure 6.20: Results for a particular tool.

Chapter 7

Conclusions and Future Work

This thesis aims to provide basis for an evaluation framework for semantic technolo-
gies. In summary, the contributions of this thesis are the following:

1. A new method for extending software quality models based on a bottom-up
approach, which can be useful in cases where there are already plenty of existing
evaluations.

2. A quality model for semantic technologies, which extends the ISO 9126 software
quality model, and can be used for the evaluation and comparison of semantic
technologies.

3. Two web applications that allow the visualization of evaluation results and
provide semantic technology recommendations. Both applications are highly
flexible and can be used with any evaluation results that are based on the
presented quality model.

The bottom-up method for extending software quality models that is presented
in this thesis can be very useful in the cases when there are plenty of evaluations to
extract the quality model. Furthermore, the method can be applied together with
some other top-down based methods in order to get a more complete quality model.

The quality model for semantic technologies presented in this thesis is very flexible
and new elements can be easily introduced and classified. Also, the quality model
is complete regarding the current state in the semantic technology evaluation, as
presented in Section 2.1.

The benefits of such quality model are broad. By referring to it, all evaluations
can be put under a common ground thus enabling the comparison of their results.
Besides, it gives a detailed specification and terminology of semantic technology
quality, and provides precise guidance for its measurement.

85

Chapter 7. Conclusions and Future Work 86

This quality model covers five types of semantic tools, and in analyzed confer-
ences most of the papers also cover the same tool types. Other types of tools (e.g.,
annotation tools) are not currently covered, which will be addressed in future work.

Future work will also consist in the validation of the quality model, in which we
plan to extend our analysis to other conferences, as well as to relevant journals. We
plan to apply one of the methods based on the top-down approach in order to extend
our quality model.

The semantic technology recommendation system currently provides recommen-
dations only for ontology engineering tools. In the future, when all the evaluation
results become available, we plan to extend the application and cover all the types
of tools that are being evaluated in SEALS project. One benefit of this system is
that all evaluation results that are based on our quality model can be used for the
recommendation application without any modifications.

Furthermore, when starting a selection process, it is required to specifically choose
the type of tools to be recommended, which will be changed in the next version,
allowing users to directly proceed to the requirements specification.

The current versions of the two web applications do not use results from the
SEALS repositories. Instead, evaluation results are incorporated into the data stor-
age system of these applications. In the next version, we will enable the direct use of
the SEALS repository. Also, the user interface will be incorporated into the SEALS
portal.

Finally, some more advanced scenarios in the recommendation system are planned
for the future work. For example, one scenario could provide feedback in the process
of requirements specification, such that if a user chooses a requirement according
to which all the tools are highly similar, a suggestion for omitting such requirement
from the recommendation process can be given.

The QualityModel ontology developed in this work is the first version of the
ontology. It is based on the quality model for semantic technologies and linked with
the SEALS ontologies. In the future, this ontology will be further developed, with the
accent on reusing existing vocabularies (e.g., the ontology for software measurement
[12]) and on compliance to standards for software quality and measurements.

Publications

Part of the work presented in this Master thesis was published in the following
scientific publications belonging to conference ranked as CORE B1, and a workshop
within a CORE C conference:

1. F. Radulovic and R. Garćıa-Castro. Extending Software Quality Models - A
Sample In The Domain of Semantic Technologies. In Proceedings of the 23rd

International Conference on Software Engineering and Knowledge Engineering
(SEKE2011). Miami, USA. July, 2011

2. F. Radulovic and R. Garćıa-Castro. Towards A Quality Model For Semantic
Technologies. Software Quality Workshop 2011, within the International Con-
ference on Computational Sciences and Its Applications (ICCSA2011). San-
tander, Spain. June, 2011

1http://core.edu.au/index.php/categories/conference 20rankings/1

87

Bibliography

[1] H. Al-Kilidar, K. Cox, and B. Kitchenham. The use and usefulness of the
ISO/IEC 9126 quality standard. In 2005 International Symposium on Empirical
Software Engineering, 2005, page 7. IEEE, 2005.

[2] M. Azuma. SQuaRE: the next generation of the ISO/IEC 9126 and 14598
international standards series on software product quality. In European Software
Control and Metrics Conference (ESCOM), London, UK, pages 337–346, 2001.

[3] B. Behkamal, M. Kahani, and M.K. Akbari. Customizing ISO 9126 quality
model for evaluation of B2B applications. Information and software technology,
51(3):599–609, 2009. ISSN 0950-5849.

[4] B.W. Boehm, J.R. Brown, and M. Lipow. Quantitative evaluation of software
quality. In Proceedings of the 2nd International Conference on Software Engi-
neering, pages 592–605. IEEE Computer Society Press, 1976.

[5] M. Bombardieri and F.A. Fontana. A specialisation of the SQuaRE quality
model for the evaluation of the software evolution and maintenance activity.
In Automated Software Engineering-Workshops, 2008. (ASE Workshops 2008).
23rd IEEE/ACM International Conference, pages 110–113. IEEE.

[6] P. Botella, X. Burgués, J. Carvallo, X. Franch, J. Pastor, and C. Quer. Towards
a quality model for the selection of ERP systems. Component-Based Software
Quality, pages 225–245, 2003. ISSN 0302-9743.

[7] J.P. Carvallo, X. Franch, and C. Quer. Defining a quality model for mail servers.
In Second International Conference on COTS-based Software Systems, (IC-
CBSS 2003), Ottawa, page 51. Springer-Verlag New York Inc, February 2003.

[8] J.P. Cavano and J.A. McCall. A framework for the measurement of software
quality. ACM SIGMETRICS Performance Evaluation Review, 7(3-4):133–139,
1978. ISSN 0163-5999.

89

Bibliography 90

[9] R.G. Dromey. Software product quality: theory, model, and practice. Software
Quality Institute, Brisbane, Australia, 1998.

[10] J. Euzenat, C. Meilicke, C. Trojahn, and O. Šváb Zamazal. D12.3 Results of
the first evaluation of matching tools. Technical report, SEALS Consortium,
November 2010.

[11] X. Franch and J.P. Carvallo. Using quality models in software package selection.
Software, IEEE, 20(1):34–41, 2003. ISSN 0740-7459.

[12] Félix Garćıa, Francisco Ruiz, Coral Calero, Manuel f. Bertoa, Antonio Valle-
cillo, Beatriz Mora, and Mario Piattini. Effective use of ontologies in software
measurement. Knowledge Engineering Review, 24:23–40, December 2009. ISSN
0269-8889.

[13] Raúl Garćıa-Castro and Asunción Gómez-Pérez. Interoperability results for
Semantic Web technologies using OWL as the interchange language. Web Se-
mantics: Science, Services and Agents on the World Wide Web, 8:278–291,
November 2010. ISSN 1570-8268.

[14] Raúl Garćıa-Castro, Asunción Gómez-Pérez, Óscar. Muñoz-Garćıa, and
L. Nixon. Towards a component-based framework for developing semantic web
applications. The Semantic Web, pages 197–211, 2008.

[15] Raúl Garćıa-Castro, Stephan Grimm, Michael Schneider, Mick Kerrigan, and
Giorgos Stoilos. D10.1 Evaluation Design and Collection of Test Data for Evalu-
ating Ontology Engineering Tools v1. Technical report, SEALS Project, Febru-
ary 2009.

[16] Raúl Garćıa-Castro, S. Grimm, I. Toma, M. Schneider, A. Marte, and S. Ty-
maniuk. D10.3 Results of the first evaluation of ontology engineering tools.
Technical report, SEALS Consortium, November 2010.

[17] D.A. Garvin. What does product quality really mean? Sloan management
review, 26(1):25–43, 1984. ISSN 0019-848X.

[18] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base
systems. Web Semantics: Science, Services and Agents on the World Wide
Web, 3(2-3):158–182, 2005. ISSN 1570-8268.

[19] V. Hlupic and A.S. Mann. SimSelect: a system for simulation software selection.
In Proceedings of the 27 th Conference on Winter Simulation, pages 720–727.
IEEE, 1995.

Bibliography 91

[20] IEEE. IEEE std 1209-1992. IEEE recommended practice for the evaluation and
selection of CASE tools. 1993.

[21] ISO. ISO/IEC 9126-1:2001, Software engineering – Product quality – Part 1:
Quality model. Technical report, International Organization for Standardiza-
tion, 2001.

[22] A. Jadhav and R. Sonar. A hybrid system for selection of the software pack-
ages. In First International Conference on Emerging Trends in Engineering and
Technology, pages 337–342. IEEE, 2008.

[23] A. Jadhav and R. Sonar. Analytic Hierarchy Process (AHP), Weighted Scoring
Method (WSM), and Hybrid Knowledge Based System (HKBS) for Software Se-
lection: A Comparative Study. In Proceedings of the 2009 Second International
Conference on Emerging Trends in Engineering & Technology, pages 991–997.
IEEE Computer Society, 2009.

[24] B. Kitchenham and S.L. Pfleeger. Software quality: the elusive target. Software,
IEEE, 13(1):12–21, 1996. ISSN 0740-7459.

[25] J. Kontio. A case study in applying a systematic method for COTS selection.
In Proceedings of the 18th International Conference on Software Engineering,
1996., pages 201–209, 1996.

[26] P. Lambrix, M. Habbouche, and M. Perez. Evaluation of ontology development
tools for bioinformatics. Bioinformatics, 19(12):1564, 2003. ISSN 1367-4803.

[27] T.B. Lee, J. Hendler, O. Lassila, et al. The Semantic Web. Scientific American,
284(5):34–43, 2001.

[28] Y.M. Lee, J.B. Kim, I.W. Choi, and S.Y. Rhew. A Study on Selection Process of
Open Source Software. In Sixth International Conference on Advanced Language
Processing and Web Information Technology, 2007. (ALPIT 2007), pages 568–
571. IEEE.

[29] H.Y. Lin, P.Y. Hsu, and G.J. Sheen. A fuzzy-based decision-making procedure
for data warehouse system selection. Expert systems with applications, 32(3):
939–953, 2007. ISSN 0957-4174.

[30] A. Lozano-Tello and A. Gómez-Pérez. BAREMO: how to choose the appropri-
ate software component using the Analytic Hierarchy Process. In Proceedings
of the 14th international conference on software engineering and knowledge en-
gineering (SEKE2002), page 788. ACM, 2002.

Bibliography 92

[31] T. Neubauer, J. Pichler, and C. Stummer. A Case Study on the Multicriteria
Selection of Software Components. In 2008 IEEE Asia-Pacific Services Com-
puting Conference, pages 1005–1012. IEEE, 2008.

[32] OntoWeb. OntoWeb Deliverable 1.3: A survey on ontology tools. Technical
report, IST OntoWeb Thematic Network, May 2002.

[33] I. Padayachee, P. Kotze, and A. van Der Merwe. ISO 9126 external systems qual-
ity characteristics, sub-characteristics and domain specific criteria for evaluating
e-Learning systems. In The Southern African Computer Lecturers’ Association,
University of Pretoria, South Africa, 2010.

[34] S.S. Stevens. On the theory of scales of measurement. Science, 103(2684):
677–680, 1946.

[35] T.W. Tewoldeberhan, A. Verbraeck, E. Valentin, and G. Bardonnet. Software
evaluation and selection: an evaluation and selection methodology for discrete-
event simulation software. In Proceedings of the 34th conference on Winter
simulation: exploring new frontiers. ACM, New York, USA, 2002.

[36] S. Tymaniuk, L. Cabral, D. Winkler, and I. Toma. D14.3 Results of the first
evaluation of Semantic Web Service tools. Technical report, SEALS Consortium,
November 2010.

[37] S. N. Wrigley, K. Elbedweihy, D. Reinhard, A. Bernstein, and F. Ciravegna.
D13.3 Results of the first evaluation of semantic search tools. Technical report,
SEALS Consortium, November 2010.

[38] M. Yatskevich and A. Marte. D11.3 Results of the first evaluation of advanced
reasoning systems. Technical report, SEALS Consortium, November 2010.

[39] H. Zulzalil, A.A.A. Ghani, M.H. Selamat, and R. Mahmod. A Case Study to
identify quality attributes relationships for Web-based applications. IJCSNS, 8
(11):215, 2008. ISSN 1738-7906.

Appendix A

Quality Model Ontology

The QualityModel ontology is used to represent quality characteristic and results for
quality measures, and defines the vocabulary for their representation. Fig A.1 shows
the graphical representation of the ontology.

Figure A.1: Graphical representation of the QualityModel ontology.

The QualityMeasure class represents the quality measure, which is related to a
quality characteristic as the range of the property measuredBy. A quality measure
can be described by properties that have QualityMeasure as domain. Such proper-

93

Appendix A. Quality Model Ontology 94

ties are: hasName (the quality measure name), hasMeasurementUnit (the unit of
measure), and hasScale (the scale of quality measure).

There are several possible types of scales, each represented by a class in the
ontology: ratio scale, interval scale, nominal scale, and ordinal scale [34].

In the evaluation process, values for quality measures are captured and rep-
resented by the QualityValue class, which is further described by two properties:
forMeasure (denotes the quality measure that this value relates to), and obtained-
From (evaluation request from which the value is obtained, which further provides
information about the tool that has been evaluated in this request).

The RDF/XML code is shown below.

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY QualityModel

"http://www.seals-project.eu/ontologies/QualityModel.owl#">

]>

<rdf:RDF xmlns="http://www.seals-project.eu/ontologies/QualityModel.owl#"

xml:base="http://www.seals-project.eu/ontologies/QualityModel.owl"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:QualityModel=

"http://www.seals-project.eu/ontologies/QualityModel.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<owl:Ontology rdf:about=""/>

<!--

///

//

// Object Properties

//

///

-->

Appendix A. Quality Model Ontology 95

<owl:ObjectProperty rdf:about="#hasOrdinalScaleItem">

<rdfs:domain rdf:resource="#OrdinalScale"/>

<rdfs:range rdf:resource="#OrdinalScaleItem"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasRankingFunction">

<rdfs:domain rdf:resource="#IntervalScale"/>

<rdfs:range rdf:resource="#RankingFunction"/>

<rdfs:domain rdf:resource="#RatioScale"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasScale">

<rdfs:domain rdf:resource="#QualityMeasure"/>

<rdfs:range rdf:resource="#Scale"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#obtainedFrom">

<rdfs:domain rdf:resource="#QualityMeasure"/>

<rdfs:range rdf:resource=

"http://www.seals-project.eu/ontologies/SEALSMetadata.owl

#EvaluationRequest"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#measuredBy">

<rdfs:domain rdf:resource="#QualityCharacteristic"/>

<rdfs:range rdf:resource="#QualityMeasure"/>

</owl:ObjectProperty>

<!--

///

//

// Data properties

//

//

-->

Appendix A. Quality Model Ontology 96

<owl:DatatypeProperty rdf:about="#hasLabel">

<rdfs:domain rdf:resource="#NominalScale"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasMeasurmentUnit">

<rdfs:domain rdf:resource="#QualityMeasure"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasName">

<rdfs:domain rdf:resource="#OrdinalScaleItem"/>

<rdfs:domain rdf:resource="#QualityMeasure"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasRanking">

<rdfs:domain rdf:resource="#OrdinalScaleItem"/>

<rdfs:range rdf:resource="&xsd;int"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasValue">

<rdfs:domain rdf:resource="#QualityMeasure"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#lowerBoundary">

<rdfs:domain rdf:resource="#IntervalScale"/>

<rdfs:range rdf:resource="&xsd;int"/>

</owl:DatatypeProperty>

Appendix A. Quality Model Ontology 97

<owl:DatatypeProperty rdf:about="#upperBoundary">

<rdfs:domain rdf:resource="#IntervalScale"/>

<rdfs:range rdf:resource="&xsd;int"/>

</owl:DatatypeProperty>

<!--

//

//

// Classes

//

//

-->

<owl:Class rdf:about="#IntervalScale">

<rdfs:subClassOf rdf:resource="#Scale"/>

</owl:Class>

<owl:Class rdf:about="#NominalScale">

<rdfs:subClassOf rdf:resource="#Scale"/>

</owl:Class>

<owl:Class rdf:about="#OrdinalScale">

<rdfs:subClassOf rdf:resource="#Scale"/>

</owl:Class>

<owl:Class rdf:about="#OrdinalScaleItem"/>

<owl:Class rdf:about="#QualityCharacteristic"/>

<owl:Class rdf:about="#QualityMeasure"/>

<owl:Class rdf:about="#RankingFunction"/>

Appendix A. Quality Model Ontology 98

<owl:Class rdf:about="#RatioScale">

<rdfs:subClassOf rdf:resource="#Scale"/>

</owl:Class>

<owl:Class rdf:about="#Scale"/>

<!--

///

//

// Individuals

//

///

-->

<RankingFunction rdf:about="#HigherBest"/>

<RankingFunction rdf:about="#LowerBest"/>

</rdf:RDF>

	Acknowledgments
	Abstract
	Resumen
	Introduction
	Motivation
	Structure of the Document

	State of the Art
	Semantic Technology Evaluation
	The SEALS Project

	Software Quality Models
	McCall's Model
	Boehm's Model
	ISO 9126's Model
	SQuaRE's Model

	Approaches for Extending Software Quality Models
	Conclusions

	Approach
	Insufficiencies of the State of the Art
	Goals
	Scope
	General Vision for Approaching the Solution

	Quality Model for Semantic Technologies
	A Bottom-Up Method for Extending a Software Quality Model
	Defining A Quality Model For Semantic Technologies
	Identifying Basic Measures
	Identifying Derived Measures
	Identifying Quality Measures
	Specifying Relationships Between Measures
	Defining Domain-Specific Quality Sub-characteristic
	Aligning Quality Sub-characteristics to a Quality Model

	Complete Overview of the Quality Model

	Detailed Description of the Quality Model
	Ontology Engineering Tools
	Test Data
	Basic Measures
	Derived Measures
	Quality Measures
	ISO 9126 Quality Characteristics
	Semantic Quality Characteristics

	Reasoning Systems
	Test Data
	Basic Measures
	Quality Measures
	ISO 9126 Quality Characteristics
	Semantic Quality Characteristics

	Matching Tools
	Test Data
	Basic Measures
	Derived Measures
	Quality Measures
	ISO 9126 Quality Characteristics
	Semantic Quality Characteristics

	Semantic Search Tools
	Test Data
	Basic Measures
	Derived Measures
	Quality Measures
	ISO 9126 Quality Characteristics
	Semantic Quality Characteristics

	Semantic Web Service Tools
	Test Data
	Basic Measures
	Derived Measures
	Quality Measures
	ISO 9126 Quality Characteristics
	Semantic Quality Characteristics

	Application of the Semantic Technology Quality Model
	Architecture
	Dependencies
	Instalation
	Evaluation Results Visualization
	Requirements
	Use

	Semantic Technology Recommendation
	Requirements
	Use

	Conclusions and Future Work
	Publications
	Bibliography
	Quality Model Ontology

