
Towards a Quality Model for Semantic
Technologies

Filip Radulovic1, Raúl Garćıa-Castro2

Ontology Engineering Group,
1Departamento de Inteligencia Artificial

2Departamento de Lenguajes y Sistemas Informáticos e Ingenieŕıa Software
Facultad de Informática, Universidad Politécnica de Madrid, Spain

fradulovic@delicias.dia.fi.upm.es, rgarcia@fi.upm.es

Abstract. Semantic technologies have become widely adopted in the
last years. However, in order to correctly evaluate them we need to
ground evaluations in a common quality model. This paper presents some
first steps towards the definition of such quality model for semantic tech-
nologies. First, some well-known software quality models are described,
together with methods for extending them. Afterwards, a quality model
for semantic technologies is defined by extending the ISO 9126 quality
model.

1 Introduction

Software quality is acknowledged as a main need across domains (e.g., security,
health) and technologies (e.g., operating systems, databases) and, in order to
obtain high-quality software products, during the software development process
the specification and evaluation of quality is of crucial importance [?].

One important component in software evaluation are software quality models,
since they provide the basis for software evaluation and give a better insight
of the software characteristics that influence its quality. Furthermore, quality
models also ensure a consistent terminology for software product quality and
provide guidance for its measurement.

In recent years, semantic technologies have started to gain importance and,
as the field becomes more and more popular, the number of these technologies is
increasing exponentially. Just as with any other software product, the quality of
semantic technologies is an important concern. Multiple evaluations of seman-
tic technologies have been performed, from general evaluation frameworks [?]
to tool-specific evaluations [?,?] and even characteristic-specific evaluations [?].
However, the problem is that there is no consistent terminology for describing
the quality of semantic technologies and it is difficult to compare them because
of differences in the meaning of the evaluation characteristics used. Also, exist-
ing software quality models do not provide specification of quality characteristics
that are specific to semantic technologies.

This paper describes a first step to build a quality model for semantic tech-
nologies, to provide a consistent framework to support the evaluation of such

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148659554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

technologies, that extends the ISO 9126 quality model. To build this quality
model, we have used a bottom-up approach, starting from real semantic tech-
nology evaluations and extracting from them the elements of the model.

This paper is structured as follows. Section 2 gives an overview of existing
software quality models. Section 3 describes already defined methods for extend-
ing software quality models. Sections 4, 5 and 6 describe how we have defined
the quality model . Finally, Section 7 draws some conclusions and includes ideas
for future work.

2 Review of Software Quality Models

Quality in general is a complex and multifaceted concept that can be described
from different approaches depending on whether the focus is in the concept of
quality, the product, the user of the product, how the product was manufactured,
or the value the product provides [?].

The way we define software quality depends on the approach that we take [?];
software quality means different things to different people and therefore defining
and measuring quality will depend on the viewpoint. Similarly, choosing one
software quality model or another will also depend on the intended users and
uses of such model in concrete evaluations.

Next, this section describes some well-known software quality models and
identifies their elements.

2.1 McCall’s Model

McCall’s software quality model is represented as a hierarchy of factors, criteria
and metrics [?]. Factors are at the highest level in the hierarchy and represent
the characteristics of the software product. Criteria are the middle layer and are
considered to be the attributes of the factors, so that for every factor a set of
criteria is defined. At the bottom level, metrics provide measures for software
attributes.

McCall’s model predefines a set of eleven software quality factors that are
classified according to the product life cycle in three different groups:

– Product transition: portability, reusability, and interoperability

– Product revision: maintainability, flexibility, and testability

– Product operations: correctness, reliability, efficiency, integrity, and usability

McCall’s quality model also gives the relationships between quality factors
and metrics in the form of linear equations based on regression analyses. This is
considered one of the major contributions of this model; however, the omission
of the functionality aspect is regarded as the main lack [?].

2.2 Boehm’s Model

Like McCall’s model, Boehm’s one has a hierarchical structure. It consists of
twenty four quality characteristics divided into three levels [?]. It also gives a
set of metrics and, while McCall’s model is more related to the product view,
Boehm’s model includes users’ needs.

2.3 ISO 9126’s Model

The International Organization for Standardization (ISO) identified the need for
a unique and complete software quality standard and, therefore, produced the
ISO 9126 standard for software quality [?].

The ISO 9126 standard defines three types of quality: internal quality, exter-
nal quality, and quality in use.

Six main software quality characteristics for external and internal quality are
specified: Functionality, Reliability, Usability, Efficiency, Maintainability, and
Portability, which are further decomposed into sub-characteristics (see Fig.1)
that are manifested externally when the software is used, and are the result of
internal software attributes [?]. The standard also provides the internal and ex-
ternal measures for sub-characteristics (see Table 1 for an example for Accuracy
and Fault tolerance).

Fig. 1: ISO 9126 internal and external quality characteristics and sub-
characteristics.

Regarding quality in use, the model proposes four characteristics: Effective-
ness, Productivity, Safety, and Satisfaction.

The ISO 9126 standard gives the complete view of software quality with
evaluation criteria and precise definitions for all software characteristics and
sub-characteristics. Some authors also suggests that according to the nature of
the product itself some new sub-characteristics can be added, the definitions of

existing ones can be changed, or some sub-characteristics can be eliminated from
the model [?].

Table 1: ISO 9126 internal and external measures for Accuracy and Fault toler-
ance.

Quality Char-
acteristics

Quality Sub-
Characteristics

External Measures Internal Measures

Functionality Accuracy
Computational accu-
racy

Computational accu-
racy

Precision Precision

Reliability Fault tolerance
Failure avoidance Failure avoidance
Incorrect operation
avoidance

Failure avoidance

Breakdown avoidance

2.4 SQuaRE’s Model

Although the ISO 9126 standard has been accepted and used successfully, some
problems and issues for its further use and improvement have been identified.
They eventually arise mainly because of advances in technologies and changes of
users needs. As pointed out by Azuma [?], the main problems were due to issues
on metrics and lack of a quality requirement standard.

In order to address those issues, the existing standard is being redesigned and
has been named SQuaRE. By the time of writing this paper, the parts of the
SQuaRE standard related to the quality model and evaluations are still under
development (ISO 25010, ISO 25040) and their final versions will be published
in 2011.

As a summary of this section, Table 2 presents the elements of the described
quality models. In our work, we have decided to adopt terminology from ISO
9126 standard.

Table 2: Elements of the described quality models.
Structure/Model McCall Boehm ISO 9126

First level Factor High level characteristic Characteristic

Second level Criteria Primitive characteristic Sub-characteristic

Third level Metrics Metrics Measures

Relationships be-
tween entities

Factor-Metric / Measure-Measure

3 Approaches for Extending Software Quality Models

One existing software quality model (such as the ISO 9126) can be a good
starting point for building a suitable quality model for a specific software product
or domain. Its already defined characteristics and sub-characteristics should be
considered, and some of them could be excluded or defined in a different manner,
according to the nature of the domain. Also, the model can be extended by
introducing new sub-characteristics if needed.

Software quality model extensions can be performed following two main ap-
proaches [?]:

– A top-down approach that starts from the quality characteristics and con-
tinues towards the quality measures.

– A bottom-up approach that starts from the quality measures and defines
the quality sub-characteristics that are related to each specific measure.

In their work, Franch and Carvallo proposed a method based on a top-down
approach for customizing the ISO 9126 quality model [?]. After defining and
analyzing the domain, the method proposes six steps:

1. Determining quality sub-characteristics. In the first step, according to the
domain, some new quality sub-characteristics are added while other are ex-
cluded or their definitions are changed.

2. Defining a hierarchy of sub-characteristics. If it is needed, sub-characteristics
are further decomposed according to some criteria.

3. Decomposing sub-characteristics into attributes. In this step abstract sub-
characteristics are decomposed into more concrete concepts which refer to
some particular software attribute (i.e., observable feature).

4. Decomposing derived attributes into basic ones. Attributes that are not di-
rectly measurable are further decomposed into basic ones.

5. Stating relationships between quality entities. Relationships between qual-
ity entities are explicitly defined. Three possible types of relationships are
identified:
– Collaboration. When increasing the value of one entity implies increasing

of the value of another entity.
– Damage. When increasing the value of one entity implies decreasing the

value of another entity.
– Dependency. When some values of one entity require that another entity

fulfills some conditions.
6. Determining metrics for attributes. To be able to compare and evaluate qual-

ity, it is necessary to define metrics for all attributes in the model.

In building their quality model for B2B applications, Behkamal et al. pro-
posed a method to customize the ISO 9126 quality model in five steps [?]. The
main difference with the previous method is that in Behkamal’s approach the
quality characteristics are ranked by experts; the experts should provide weights
for all quality characteristics and sub-characteristics, and these weights are later

used to establish their importance. Besides, Behkamal’s approach does not con-
template defining relationships between quality entities.

These previous approaches follow the top-down approach, and we have not
found any example of a bottom-up approach in the literature. Because of this,
and because of the existence of plenty of evaluations in our domain (i.e., semantic
technologies), we have decided to follow a bottom-up approach for extending the
ISO 9126 quality model to cover semantic technologies. Evaluation results are
used as the starting point, from which the quality measures, sub-characteristics
and characteristics are specified.

Some authors have proposed software quality models for various types of
applications: B2B [?], mail servers [?], web-based applications [?], e-learning
systems [?], model-driven web engineering methodologies [?], and ERP systems
[?]. All those authors have used the ISO 9126 standard as the basis software
quality model, and have extended it to fit their particular domain.

Furthermore, some authors proposed introducing quality models for various
steps of the product development, like in the case of web engineering [?]. The
authors analyze the influence of every step in web engineering process on a final
product, and suggest that evaluation process should be performed after each
step, with respect to quality models defined for each of them.

Since ISO 9126 is a widely adopted and used standard, we have also adopted
it for constructing the quality model for semantic technologies. For building such
quality model, we have used a bottom-up approach.

The following sections describe in detail how we have extracted the quality
model for semantic technologies from existing evaluations.

4 Defining Quality Measures

The starting point for defining software quality measures has been the set of
evaluation results obtained in the SEALS European project1 , which provides
evaluation results for different types of semantic technologies (ontology engineer-
ing tools [?], reasoning systems [?], ontology matching tools [?], semantic search
tools [?], and semantic web service tools [?]).

Based on the evaluation results for a particular software product and the
analysis of these results, a set of quality measures was defined. Then, some
primitive measures were combined to obtain derived ones. For any derived qual-
ity measure defined,we specified the function (or set of functions) that allows
obtaining such derived measure from the primitive ones.

Different evaluation scenarios were defined for each type of technology and
in each of them different types of test data were used as input. Evaluation raw
results represent the data obtained as the output of the evaluation when using
some test data, and they are considered to be primitive measures. These test data
and raw results provide us with enough information for defining the hierarchy
of software quality measures.

1 http://www.seals-project.eu

For instance, for evaluating the conformance of ontology engineering tools,
the experiment consisted in importing the file containing an ontology (Oi) into
the tool and then exporting the imported ontology to another file (OII

i) (Fig. 2
shows the steps of the conformance evaluation).

Fig. 2: Steps of a conformance test execution.

In this evaluation test suites with ontologies modeled in different ontology
languages were used. Each test in a test suite contains:

– Origin ontology. The ontology to be used as input.

The raw results of one test execution are:

– Final ontology. The ontology that is produced by the tool when importing
and exporting the origin ontology.

– Execution Problem. Whether there were any execution problems in the tool
when importing and exporting the origin ontology. Possible values are true,
and false.

Based on the test data and the raw results of one test execution, the following
interpretations and their functions were made:

– Information added. The information added to the origin ontology after im-
porting and exporting it.

final ontology − origin ontology

– Information lost. The information lost from the origin ontology after import-
ing and exporting it.

origin ontology − final ontology

– Structurally equivalent. Whether the origin ontology and the final one are
structurally equivalent. Possible values are true, and false.

(information added = null) ∧ (information lost = null)

– Semantically equivalent. Whether the origin ontology and the final one are
semantically equivalent. Possible values are true, and false.

final ontology ≡ origin ontology

– Conformance. Whether the ontology has been imported and exported cor-
rectly with no addition or loss of information. Possible values are true, and
false.

semantically equivalent ∧ ¬(execution problem)

Those interpretations are actually derived measures obtained from one par-
ticular test, and are further combined in order to obtain measures for the whole
test suite. From the derived measures in the conformance scenario, the following
test suite measures were obtained:

– Ontology language component support. Whether the tool fully supports an
ontology language component.

tests that contain the component where conformance = true

tests that contain the component
= 1

– Ontology language component coverage. The ratio of ontology components
that are shared by a tool internal model and an ontology language model.

components in the ontology language where component support = true

components in the ontology language
× 100

– Ontology information persistence. The ratio of information additions or loss
when importing and exporting ontologies.

tests where information added 6= null or information lost 6= null

tests
× 100

– Execution errors. The ratio of tool execution errors when importing and
exporting ontologies.

tests where execution problem = true

tests
× 100

Similarly to the example of the conformance evaluation for ontology engi-
neering tools presented above, we have defined measures for the other types of
tools. Table 3 summarizes the obtained results.

Table 3: Total number of measures obtained for semantic technologies.
Tool/Measures Raw results Interpretations Measures

Ontology engineering tools 7 20 8

Ontology matching tools 1 3 4

Reasoning systems 7 0 7

Semantic search tools 13 16 18

Semantic web service tools 2 3 3

5 Defining Software Quality Sub-characteristics

Every software product from a particular domain has some sub-characteristics
that are different from other software systems and those sub-characteristics,
together with more generic ones, should be identified and precisely defined. Every
quality measure provides some information about one or several software sub-
characteristics; therefore, based on the software quality measures that we defined,
we specified a set of software quality sub-characteristics. In some cases, a quality
sub-characteristic does not have only one measure that determines it, but a set
of measures. Finally, some quality sub-characteristics were combined into more
general ones.

In the example of the conformance scenario for ontology engineering tools,
based on the measures and analysis presented in previous section, we have iden-
tified two quality sub-characteristics that are specific to this type of software,
which are the following:

– Ontology language model conformance. The degree to which the knowledge
representation model of the software product adheres to the knowledge rep-
resentation model of an ontology language. It can be measured using two
different measures, which are obtained in the conformance evaluation:
• Ontology language component coverage
• Ontology language component support

– Ontology I/E accuracy. The accuracy of the process of importing and ex-
porting ontologies. It can be measured using:
• Ontology information persistence

Furthermore, we have identified one quality sub-characteristic which is gen-
eral and can be used for different kinds of software:

– Robustness. The ability of the software product to function correctly in the
presence of invalid inputs or stressful environmental conditions. It can be
measured using:
• Execution errors

Figure 3 presents the raw results, interpretations, quality measures and qual-
ity characteristics of the conformance evaluation for ontology engineering tools.

In total, we have identified twelve semantic quality sub-characteristics:

– Ontology Language Model Conformance. The degree to which the knowl-
edge representation model of the software product adheres to the knowledge
representation model of an ontology language.

– Ontology Language Interoperability. The degree to which the software prod-
uct can interchange ontologies and use the ontologies that have been inter-
changed.

– Reasoning Accuracy. The accuracy of the reasoning process.
– Ontology Alignment Accuracy. The accuracy of the matching process.
– Semantic Search Accuracy. The accuracy of the semantic search process.

Fig. 3: Entities in the conformance scenario for ontology engineering tools.

– Semantic Web Service Discovery Accuracy. The accuracy of the process of
finding services that can be used to fulfil a given requirement from the service
requester.

– Ontology I/E Accuracy. The accuracy of the process of importing and ex-
porting ontologies by the tool.

– Ontology Interchange Accuracy. The accuracy of the interchange of ontolo-
gies between tools.

– Query Language Suitability. The ability of the tool to provide appropriate
queries for a given questions.

– Ontology Processing Time Behaviour. The capability of the software product
to provide appropriate response and processing times when working with
ontologies.

– Reasoning Time Behaviour. The capability of the software product to pro-
vide appropriate response and processing times when performing reasoning
tasks.

– Semantic Search Time Behaviour. The capability of the software product
to provide appropriate response and processing times when performing the
search task.

6 Aligning Quality Sub-characteristics to a Quality
Model

In the previous step we have identified a set of quality sub-characteristics that
are specific for semantic technologies. After that, the alignment with the ISO
9126 quality model was established; i.e., all the identified sub-characteristics
were properly assigned to those already specified in the ISO 9126 quality model.

For instance, Ontology language model conformance is defined as a sub-
characteristic of Functionality compliance (the capability of the software product
to adhere to standards, conventions or regulations in laws and similar prescrip-
tions relating to functionality).

Fig. 4 shows the proposed quality model for semantic technologies, while Fig.
5 shows quality in use.

Fig. 4: External and internal quality characteristics for semantic technologies.

Fig. 5: Quality in use quality characteristics for semantic technologies.

7 Conclusions and future work

This paper presents a first step towards a quality model for semantic technolo-
gies, which extends the ISO 9126 software quality model. Such quality model can
provide a framework for the evaluation and comparison of semantic technologies.

For building the quality model, we have used a bottom-up approach. It starts
from the evaluations that have already been performed and continues towards

defining quality measures. When a set of quality measures is defined, quality
sub-characteristics are specified together with their hierarchy. At the end, sub-
characteristics are aligned to an existing quality model.

The model presented in this paper is not complete. It only includes quality
entities that are based on some existing evaluations. In the future, the model
will be completed either by extending the evaluations, or by applying a top-down
approach and specifying additional quality entities that are currently not defined
in the model.

Some authors include in their software quality models relationships between
quality entities [?,?]. The inclusion of these entities into our model will be ad-
dressed in a future iteration.

Furthermore, the ISO 9126 standard is to be replaced by the SQuaRE one,
and when the SQuaRE software quality model becomes available, the proposed
quality model for semantic technologies should be adapted to it.

One future use of the quality model presented in this paper, based on the
evaluation results that are being obtained in the SEALS project, is to build
a recommendation system for semantic technologies that will allow extracting
semantic technology roadmaps. This will provide users with guidance and rec-
ommendation of the semantic technologies that better suite their needs.

Acknowledgments

This work is supported by the SEALS European project (FP7-238975) and
by the EspOnt project (CCG10-UPM/TIC-5794) co-funded by the Universidad
Politécnica de Madrid and the Comunidad de Madrid.

