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Chapter 1

Introduction

1.1 Motivation

Graphs are mathematical structures used to model pairwise relations between objects from a
certain collection, which are one of the prime objects of study in discrete mathematics. Many
problems of practical interest can be represented by graphs. Graph theory is the study of graphs
and it has several open problems. One of these problems is the subgraph isomorphism problem
from which one can extract a special case of it: the Graph Isomorphism problem (GI), which is
of both theoretical an practical interest. GI tests whether there is a one-to-one mapping between
the vertices of two graphs that preserves the arcs. This problem has applications in many fields,
like pattern recognition and computer vision [3], data mining [32], VLSI layout validation [1],
and chemistry [6, 30]. At the theoretical level, its main theoretical interest is that it is not
known whether GI is in P or whether it is NP-complete.

1.2 State of the Art

For the last three decades, nauty [17, 18] has been the most widely used tool for graph iso-
morphism testing and canonical labeling. However, Miyazaki proved [19] that nauty required
exponential time for a family of colored graphs. McKay noted also that nauty would also require
exponential time for unions of strongly regular graphs. All this has encouraged researchers to
develop new tools, to try to overcome this drawback. Some of them are based, like nauty, on
canonical labeling. Examples are bliss [10, 9], Traces [21], and nishe [29, 28]. Another tool,
named saucy [5, 11] solves a related problem: computing the automorphism group of a graph.
It is specially designed to efficiently process big sparse graphs.

A different way to tackle the GI problem was suggested in [15]. The tool developed in that work,
called conauto, does not generate a canonical labeling of the graphs being tested, but instead
looks for similar sequences of vertex partitions. To do so, it uses a limited search for automor-
phisms on the graphs. This algorithm has good performance in practice for different families of
graphs, like for example the graphs of Miyazaki. However, the inability of conauto to compute
the whole automorphism group restricts the benefit obtained from known automorphisms. That
reduced its performance with some families of graphs, like Latin square graphs or the point-line
graphs of Desarguesian projective planes. One major contribution of the followup work [22] was
a way to avoid backtracking when processing union graphs, which could be applied in a more
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general field. Some ways to improve algorithm conauto were also suggested as open problems;
in particular, computing the full automorphism group of the graphs, and recording and using
information on non-isomorphisms to prune the search space.

1.3 Objectives

The aim of this dissertation is to improve the conauto algorithm performing a complete auto-
morphism group computation, preserving its approach. The automorphism group computation
will consist in obtaining a set of generators, the size of the automorphism group itself, and the
orbit partition of the set of vertices. This task must be carried out during the search for auto-
morphisms, so that it does not affect the basic structure of the algorithm. In order to reduce
the time required for the automorphism group computation, techniques that reduce the search
space are needed. For example, the generation of the initial sequence of partitions will be revised
for changes, and the matching process will also be modified to make profit of the information
obtained during the search for automorphisms in both of the graphs being tested. A new pivot
cell selection algorithm is designed, which is quite time-consuming. However, it is worth, since
it will reduce the time needed for the search for automorphisms, which would be otherwise much
more time-consuming. With all this in mind, the resulting algorithm must be general purpose,
complete (always giving an answer, yes or no), and must preserve the advantages of the main
approaches (canonical labeling, and direct backtrack algorithms) avoiding their disadvantages,
such as conauto did.

To test our algorithm, and as an additional contribution, we will construct a benchmark for
testing GI practical algorithms. Thus, we will build a graph database with different families of
graphs which, we believe, are somewhat relevant for the tests. Some of them are graphs that
are handled easily by most graph isomorphism algorithms, like random graphs. Other families
are known to be especially hard for nauty, though they are conceptually simple. Finally, there
is a family of graphs (the point-line graphs of Desarguesian Projective Planes) for which the
pivot cell selection policy used is determinant on the performance of every GI algorithm we
know of. For some families, we will perform only positive tests, i.e., in which both graphs are
isomorphic (if negative tests do not apply or are not relevant). In our benchmark, both directed
and undirected graphs are included, since nauty suffers from a special difficulty to deal with
digraphs.

We will compare our algorithm with other algorithms by means of our benchmark. We include
graph charts to show the practical performance of our algorithm in comparison with the other
algorithms. For this purpose, we will use nauty, bliss, Traces, and saucy as algorithms of
reference. The choice of nauty is obvious, since it is the referent for practical graph isomorphism
algorithms. Bliss and Traces have shown to have a better performance than nauty for some
graph families. Finally, saucy is a tool specially tuned for big sparse graphs, but only computes
the automorphism group of a graph. Hence, it can not be used for canonical labeling, nor
isomorphism testing. However, it will be useful test our algorithm against saucy to evaluate the
performance of our complete search for automorphisms.

Our algorithm, although not designed for graphs with colored vertices or colored arcs, can be
extended in a naive way to handle them. Besides, it does not include sophisticated invariants
that could be added at the users choice (like nauty does), but again, it would not be difficult to
add that functionality.

2



1.4 Methodology

First of all, a detailed study of the Ph.D thesis [22], where conauto algorithm is described, was
carried out in order to understand and analyze the concepts and the theoretical background
used by the algorithm. This dissertation studies GI and some graph families along with their
complexity for GI. Once the problem is presented, the algorithm is explained for stages adding
functionalities. Moreover, practical examples are shown to help for the understanding of the
algorithm and its performance. Then, an study of the automorphism group of a graph, relying
on [12], was done, since the automorphism group computation of a graph is the aim of this
dissertation. Next, a review of the state of the art tools for GI was carried out in order to see
their main features, performance and contributions.

Finally, once the theoretical study was finished, a modular design of the algorithm source code
(the starting version was conauto-1.02) was done for having specific functional parts of code
divided. Then, the implementation phase began.

1.5 Structure

The rest of this dissertation is organized as follows. In the next chapter, all the theoretical
background is described, which will be used by the algorithm. Chapter 3 describes the algorithm
and its functionalities as well as the use of the theoretical background previously explained. We
also prove the correctness of the algorithm. In Chapter 4, we give a description of the families
of graphs chosen for the tests, and justify why we believe they are appropriate to evaluate GI
algorithms. Moreover, we show an example of automorphism group computation and graph
isomorphism testing, and perform some tests with different families of graphs, showing the
results obtained with the algorithm. Finally, in Chapter 5 we summarize the conclusions of the
work described here, and how this work might be extended in the future.
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Chapter 2

Theoretical Background

In this chapter, we introduce some notation and definitions that will be used throughout this
work. First we recall some basic concepts of graph theory, and redefine others in a way that
bests serves our purpose. Then, we introduce some specific definitions that are to be used in
the development of our algorithms.

2.1 Basic Definitions

A directed graph G = (V,R) consists of a finite non-empty set V of vertices and a binary relation
R, i.e. a subset R ⊆ V × V . The elements of R are called arcs. An arc (u, v) ∈ R is considered
to be oriented from u to v. An undirected graph is a graph whose arc set R is symmetrical, i.e.
(u, v) ∈ R iff (v, u) ∈ R. From now on, we will use the term graph to refer to a directed graph.
Undirected graphs are just a particular case of directed graphs.

Given a graph G = (V,R), R can be represented by an adjacency matrix Adj (G) = A with size
|V | × |V | in the following way:

Auv =


0 if (u, v) /∈ R ∧ (v, u) /∈ R
1 if (u, v) /∈ R ∧ (v, u) ∈ R
2 if (u, v) ∈ R ∧ (v, u) /∈ R
3 if (u, v) ∈ R ∧ (v, u) ∈ R

Note the difference with the traditional definition of the adjacency matrix where Auv = 1
if (u, v) ∈ R and Auv = 0 if (u, v) /∈ R. Our definition gives, in one matrix element Auv,
the information in two elements of the traditional adjacency matrix (elements Auv and Avu).
Furthermore, it can be easily generalized to colored arcs (each type or color of an arc may be
denoted by a different value in the adjacency matrix).

Definition 2.1 Given a graph G = (V,R) and its adjacency matrix Adj (G) = A. Let V1 ⊆ V ,
the available degree of v in V1 under G, denoted by ADeg(v, V1, G), is the 3-tuple (D3, D2, D1)
where Di = |{u ∈ V1 : Avu = i}| for i ∈ {1, 2, 3}.

Definition 2.2 Given a graph G = (V,R) and its adjacency matrix Adj (G) = A, the degree
of a vertex v ∈ V under graph G, denoted by Deg(v,G), is the 3-tuple (D3, D2, D1) where
Di = |{u ∈ V : Avu = i}|, for i ∈ {1, 2, 3}.
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Observe that Deg(v,G) = ADeg(v, V,G). Again, note the difference with the traditional defini-
tion of degree. Our degree is a combination of the in-degree, the out-degree, and the number of
neighbors of a vertex. (Observe also that if we colored the arcs with k colors, the degree would
be a k-tuple.)

Extending the notation, we use ADeg(V1, V2, G) = d for some V1, V2 ⊆ V to denote that ∀u, v ∈
V1,ADeg(u, V2, G) = ADeg(v, V2, G) = d. The same extension can be applied to the degree. Let
V1 ⊆ V such that ∀u, v ∈ V1,Deg(u,G) = Deg(v,G) = d. Then, we denote Deg(V1, G) = d.

Let G = (V,R) be a graph with Adj(G) = A, and V1, V2 ⊆ V . Let ADeg(V1, V2, G) =
(D3, D2, D1), then we define the function NumLinks(V1, V2, G) = D3 +D2 +D1 (i.e. the number
of neighbors each vertex of V1 has in V2 under graph G), and the predicate HasLinks(V1, V2, G) =
(NumLinks(V1, V2, G) > 0).

We will say a 3-tuple (D3, D2, D1) ≺ (E3, E2, E1) when the first one precedes the second one in
lexicographic order and (D3, D2, D1) � (E3, E2, E1) when the second one precedes the first one
in lexicographic order. This notation will be used to order the degrees and the available degrees
of both vertices and sets.

Definition 2.3 Let G = (V,R) be a graph. Let W ⊆ V . Then the subgraph induced by W on
G, denoted GW , is the graph H = (W,R′) such that R′ = {(u, v) : u, v ∈W ∧ (u, v) ∈ R}.

Definition 2.4 Let G = (V,R) be a graph. A permutation π : V −→ V acting on the finite set
V is a one-to-one mapping from V onto itself. The image of an element v ∈ V with respect to
the permutation π is denoted by vπ. A vertex v ∈ V is fixed by π if vπ = v and it is permuted
if it is not fixed by π. Gπ denotes the graph in which vertices xπ and yπ are adjacent if and only
if x and y are adjacent in G. Let W ⊆ V , then W π = {wπ : w ∈ W}. Let S = (S1, ..., Sr) be a
partition of V , then Sπ = (Sπ1 , ..., S

π
r ).

Definition 2.5 Let G = (V,RG) and H = (V,RH) be two graphs with the same vertex set. A
permutation π of V is called an isomorphism of G and H if ∀u, v ∈ V , we have that (v, u) ∈
RG ⇐⇒ (vπ, uπ) ∈ RH (i.e., the adjacency matrix is preserved).

G and H are called isomorphic, written G ' H, if there is at least one isomorphism π of them.
An automorphism of G is an isomorphism of G and itself, i.e., Gπ = G.

Definition 2.6 Let G = (V,R) be a graph. The automorphism group of G is Aut(G) = {π :
Gπ = G} (i.e., the set of all automorphisms of G). Let S = (S1, ..., Sr) be a partition of V .
Analogously, Aut(G,S) = {π : π ∈ Aut(G) and ∀i ∈ {1, ..., r}, ∀v ∈ Si, vπ ∈ Si}.

Observe that Aut(G,S) ⊆ Aut(G). When S = {V } (i.e., |S| = 1), Aut(G,S) = Aut(G).

Definition 2.7 Let G be a family of graphs. An invariant on G is a function Φ with domain G
such that: Φ(G1) = Φ(G2) if G1 is isomorphic to G2. A complete graph invariant is one such
that Φ(G1) = Φ(G2) if and only if G1 is isomorphic to G2.

The number of vertices, and the number of arcs are some examples of graph invariants which
are easy to compute. However, none of these graph invariants is a complete graph invariant,
and no known complete graph invariant is computable in polynomial time.

Definition 2.8 Let G be a family of graphs on vertex set V and S the set of partitions of V .
A vertex-invariant is a function Φ with domain G × S× V such that Φ(Gπ,Sπ, vπ) = Φ(G,S, v)
for every graph G ∈ G, partition S ∈ S, vertex v ∈ V and any permutation π of V .

6



Informally, previous definition says that the values of Φ are independent of the labeling of the
graph. Observe that G and Gπ are isomorphic graphs, and if G = Gπ then π ∈ Aut(G), i.e., π
is an automorphism of G.

Observation 2.1 Available degree and degree are vertex-invariants.

Proof: Let G = (V,R) be a graph, A = Adj (G) the adjacency matrix of G, π a permutation of
V , and W ⊆ V . From the definition of Gπ it is easy to see that Auv = Auπvπ for all u, v ∈ V .
Thus, we obtain that ADeg(v,W,G) = ADeg(vπ,W π, Gπ) and Deg(v,G) = Deg(vπ, Gπ) from
their respective definitions.

2.2 Sequences of Partitions

In this section we will define what a partition is, the procedures that will be used to refine
partitions, and the basic structures we use for isomorphism testing: the sequences of partitions.

Definition 2.9 A partition of a set V is a sequence S = (S1, ..., Sr) of disjoint nonempty subsets
of V such that V =

⋃r
i=1 Si. The sets Si are called the cells of S. The empty partition will be

denoted by ∅.

The unit partition is the partition with only one cell. The discrete partition is that in which
every cell is a singleton.

Definition 2.10 Let S = (S1, ..., Sr) and T = (T1, ..., Ts) be partitions of two disjoint sets S and
T , respectively. The concatenation of S and T , denoted S◦T , is the partition (S1, ..., Sr, T1, ..., Ts).
Clearly, ∅ ◦ S = S = S ◦ ∅.

Usually, the partition of the vertex set according to the degree of each vertex is used as the
starting point for vertex classification in graph isomorphism testing algorithms. It is easy to
see that it is necessary for two graphs to be isomorphic, that the number of vertices of each
degree is the same in both graphs (recall that the degree is a vertex-invariant of a graph). Let
us formally define the degree partition of a graph.

Definition 2.11 Let G = (V,R) be a graph. The degree partition of G, which will be denoted
as DegreePartition(G), is a partition S = (S1, ..., Sr) of V such that for all i, j ∈ {1, ..., r}, i < j
implies Deg(Vi, G) � Deg(Vj , G).

Partitions may be further refined by different invariants, but we only consider two applications
of the available degree invariant. The first one is to classify the vertices in the cells of a partition
considering the adjacency type they have with a certain pivot vertex in the graph considered.
This way, cells may be split into up to four distinct cells (or k if we use k-colored arcs). We call
this process a vertex refinement. The second refinement classifies the vertices in the cells using
their available degree in a given pivot set (cell). This leads to what we call a set refinement.
In fact, vertex refinement is a special case of set refinement, which occurs when the pivot set is
singleton. We distinguish them for implementation reasons.

Definition 2.12 Let G = (V,R) be a graph, v ∈ V , W ⊆ V \ {v}. The vertex partition of
W by v, denoted PartitionByVertex (W, v,G), is a partition (S1, ..., Sr) of W such that for all
i, j ∈ {1, ..., r}, i < j implies ADeg(Si, {v}, G) � ADeg(Sj , {v}, G).
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Definition 2.13 Let G = (V,R) be a graph, and S = (S1, ..., Sr) a partition of V . Let v ∈ Sx
for some x ∈ {1, ..., r}. The vertex refinement of S by v, denoted VertexRefinement(S, v,G)
is the partition T = T1 ◦ ... ◦ Tr such that for all i ∈ {1, ..., r}, Ti is the empty partition ∅ if
¬HasLinks(Si, V,G) and PartitionByVertex (Si \ {v}, v,G) otherwise. Sx is the pivot set and v
is the pivot vertex.

Definition 2.14 Let G = (V,R) be a graph, and V1, V2 ⊆ V . The set partition of V1 by V2,
denoted PartitionBySet(V1, V2, G), is a partition (S1, ..., Sr) of V1 such that for all i, j ∈ {1, ..., r},
i < j implies ADeg(Si, V2, G) � ADeg(Sj , V2, G).

Definition 2.15 Let G = (V,R) be a graph, and S = (S1, ..., Sr) a partition of V . Let
P = Sx for some x ∈ {1, ..., r} be a given pivot set. The set refinement of S by P , denoted
SetRefinement(S, P,G) is the partition T = T1 ◦ ... ◦ Tr such that for all i ∈ {1, ..., r}, Ti is the
empty partition ∅ if ¬HasLinks(Si, V,G) and PartitionBySet(Si, P,G) otherwise.

Once we have presented the possible partition refinements that may be applied to partitions,
we can build sequences of partitions, following the individualization-refinement technique, in
which an initial partition of a graph is taken (for example the degree partition) and subsequent
partitions are generated, each from its previous one, by applying one of the refinements defined
above. Vertex refinements are tagged as VERTEX (if the pivot set has only one vertex), SET
(if a set refinement is possible with some pivot set), or BACKTRACK otherwise (when a vertex
refinement is performed with a pivot set with more than one vertex), what is called a vertex
individualization.

Definition 2.16 Let G be a family of graphs on vertex set V and S the set of partitions of
V . A pivot cell selector is a function σ with domain G × S which returns a cell, such that
σ(G,S)π = σ(Gπ,Sπ) for every graph G ∈ G, partition S ∈ S, and any permutation π of V .

Definition 2.17 Let G = (V,R) be a graph. A sequence of partitions for graph G is a tuple
(S,R,P), where S = (S0, ...,St), are the partitions themselves, R = (R0, ..., Rt−1) indicate the
type of refinement applied at each step, and P = (P 0, ..., P t−1) is the pivot set used for each
refinement step, such that all the following holds. Let Si = (Si1, ..., S

i
ri), V

i =
⋃ri
j=1 S

i
j, for all

i ∈ {0, ..., t}. Then:

1. Ri ∈ {VERTEX, SET,BACKTRACK}, P i ∈ {1, ..., ri} and HasLinks(Si
P i
, V i, G).

2. Ri = SET implies that Si is not equitable and Si+1 = SetRefinement(Si, Si
P i
, G).

3. Ri = VERTEX implies that Si
P i

= {v} is a singleton and Si+1 = VertexRefinement(Si, v,G).

4. Ri = BACKTRACK implies that Si is equitable, Si
P i

is not a singleton, and, for some
v ∈ Si

P i
, Si+1 = VertexRefinement(Si, v,G).

If a sequence of partitions Q satisfies that, for all x ∈ {1, ..., rt}, either ¬HasLinks(Stx, V
t, G), or

Stx is a singleton, then we say that Q is a complete sequence of partitions.

For convenience, for all l ∈ {1, ..., t−1}, by level l we refer to the tuple (S l, Rl, P l) in a sequence
of partitions. Level t is identified by St, since Rt and P t are not defined.

Now we will show how to derive a permutation on the vertex set of a graph G, from a sequence
of partitions for that graph. To do so, we define the order induced by a sequence of partitions
on the vertices of a graph. Once we have such an order, it is easy to derive a permutation on
the vertex set of the graph (a relabeling of the vertex set).

Definition 2.18 Let Q = (S,R,P) be a sequence of partitions for graph G = (V,R) where
S = (S0, ...,St), R = (R0, ..., Rt−1), and P = (P 0, ..., P t−1). For all i ∈ {0, ..., t}, let Si =
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(Si1, ..., S
i
ri), and V i =

⋃ri
j=1 S

i
j. The order induced by Q on the vertex set (V \ V t) ∪ {v ∈ V t :

¬HasLinks(v, V t, G)}), denoted by <Q, is that which satisfies that:

1. For all i ∈ {0, ..., t− 1}:
(a) For all u ∈ V i \ V i+1, v ∈ V i+1, u <Q v.

(b) Si+1 = VertexRefinement(Si, u,G) implies that for all v ∈ V i \ V i+1, u <Q v.

2. For all i ∈ {0, ..., t}:
(a) For all x, y ∈ {1, ..., ri} such that ¬HasLinks(Six, V

i, G) and ¬HasLinks(Siy, V
i, G),

x < y implies that for all u ∈ Six, v ∈ Siy, u <Q v.

(b) For all x ∈ {1, ..., ri} such that ¬HasLinks(Six, V
i, G) and |Six| > 1, for all u, v ∈ Six,

u <Q v if and only if u precedes v in lexicographic order.

If a sequence of partitions is complete, then it induces a complete order on the vertices of the
whole vertex set V , adding the following statement:

3. For all u, v ∈ V t such that HasLinks(u, V t, G) and HasLinks(v, V t, G), there are x, y ∈
{1, ..., rt} so that {u} = Stx and {v} = Sty. Then, x < y implies that u <Q v.

The labeling induced by a complete sequence of partitions Q is a mapping λ : {1, ..., |V |} −→ V
such that, for all i ∈ {1, ..., |V |} and for all v ∈ V , λ(i) = v if and only if v is the ith vertex
w.r.t. the total order <Q defined. If the sequence of partitions is not complete, then the
labeling applies to the vertices in (V \ V t) ∪ {v ∈ V t : ¬HasLinks(v, V t, G)}. The inverse
mapping λ−1 : V −→ {1, ..., |V |} is such that λ−1(v) = i if and only if λ(i) = v. The function
InducedOrder(Q) returns the labeling induced by Q.

Now, we will introduce the concept of compatibility between two sequences of partitions.

Definition 2.19 Let G = (VG, RG) and H = (VH , RH) be two graphs. Let QG = (SG,RG,PG),
and QH = (SH ,RH ,PH) be two sequences of partitions for graphs G and H respectively. QG and
QH are said to be compatible sequences of partitions if they satisfy all the following:

1. |SG| = |SH | = t, |RG| = |RH | = t− 1, |PG| = |PH | = t− 1.

2. Let RG = (R0
G, ..., R

t−1
G ), and RH = (R0

H , ..., R
t−1
H ), then for all i ∈ {0, ..., t−1}, RiG = RiH .

3. Let PG = (P 0
G, ..., P

t−1
G ), and PH = (P 0

H , ..., P
t−1
H ), then for all i ∈ {0, ..., t− 1}, P iG = P iH .

4. Let SG = (S0, ...,St), SH = (T 0, ..., T t), then for all i ∈ {0, ..., t}, |Si| = |T i|.
5. For all i ∈ {0, ..., t}, let Si = (Si1, ..., S

i
ri), T

i = (T i1, ..., T
i
ri). Then, if Si is equitable, for

all x, y ∈ {1, ..., ri}, ADeg(Six, S
i
y, G) = ADeg(T ix, T

i
y, H). Otherwise, let V i =

⋃ri
j=1 S

i
j,

W i =
⋃ri
j=1 T

i
j , then for all x ∈ {1, ..., ri}, ADeg(Six, V

i
y , G) = ADeg(T ix,W

i, H).

Once we have defined the compatibility between sequences of partitions, we can state the rela-
tionship between compatibility of sequences of partitions and graph isomorphism in the following
theorem, whose proof follows from the compatibility of sequences of partitions.

Theorem 2.1 Let G = (VG, RG) and H = (VH , RH) be two graphs. Let QG and QH be two
sequences of partitions, for graphs G and H respectively, which are compatible. Let WG = (VG \
V t
G) ∪ {v ∈ V t

G : ¬HasLinks(v, V t
G, G)} and WH = (VH \ V t

H) ∪ {v ∈ V t
H : ¬HasLinks(v, V t

H , H)}.
Let λ and λ′ be the labelings induced by QG and QH on the set of vertices WG and WH respec-
tively. Then, the mapping m : WG −→ WH such that m(λ(i)) = λ′(i), i ∈ {1, . . . , |WG|}, is an
isomorphism of GWG

and HWH
. If the sequences of partitions QG and QH are complete, the

mappging m is the isomorphism of G and H induced by the sequences of partitions QG and QH .

Corollary 2.1 Two graphs G and H are isomorphic if and only if there are two complete
sequences of partitions QG and QH , for graphs G and H respectively, which are compatible.
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Corollary 2.2 Let QG = (S,R,P) and QH = (T,R,P) two compatible sequences of partitions.
Let S = (S0, ...,St) and T = (T 0, ..., T t). Let Si = {Si1, ..., Siri} and T i = {T i1, ..., T iri} for all

i ∈ {0, ..., t}. Then, for each x ∈ {1, . . . , |V |}, λ(x) ∈ Sjk for some j ∈ {0, ..., t} and some

k ∈ {1, ..., rj} if and only if λ′(x) ∈ T jk .

One parameter of a sequence of partitions that will be used by our algorithms to choose the target
partition to be reproduced (as it will be shown in next section), is the number of refinement
steps where backtracking will be needed.

Definition 2.20 Let Q = (S,R,P) be a sequence of partitions, and let R = (R0, ..., Rt−1). The
amount of backtracking induced by Q is BacktrackAmount(Q) = |{i : i ∈ {1, ..., t − 1} ∧ Ri =
BACKTRACK}|.

In a sequence of partitions, a backtrack level arises when a partition does not have singleton
cells (suitable for a vertex refinement) and it is not possible to refine such partition by means of
a set refinement. Let us introduce now the concept of equitable partition, which will be useful
in the following discussion.

Definition 2.21 Let G = (V,R) be a graph, and let S = (S1, ..., Sr) be a partition of V . S
is said to be equitable (with respect to G) if for all i ∈ {1, ..., r}, for all u, v ∈ Si, for all
j ∈ {1, ..., r}, ADeg(u, Sj , G) = ADeg(v, Sj , G).

Observation 2.2 The partition at a backtrack level is equitable.

Proof: Assume otherwise. Then, there exists some Sj such that there are two vertices u, v in
some Si, such that ADeg(u, Sj , G) 6= ADeg(v, Sj , G). Therefore, it would be possible to perform
a set refinement on the partition, using Sj as the pivot cell, and vertices u and v would be
distinguished by this refinement, and cell Si would be split. This is not possible since, at a
backtrack level, no set refinement has succeeded.

Observation 2.3 Let l be a backtracking level. Let S l = (Sl1, ..., S
l
r) be the partition at that

level. Then, for all i ∈ {1, ..., r}, GSli is regular.

Proof: From Observation 2.2, S l is equitable. Fix i ∈ {1, ..., r}, then, from Definition 2.21, for
all u, v ∈ Sli, ADeg(u, Sli, G) = ADeg(v, Sli, G). Therefore, GSli

is regular, for all i ∈ {1, ..., r}.

2.3 Automorphism Group

When we look for automorphisms of a graph, we actually find equivalences among vertices. The
notion of equivalence among vertices in a graph is essential for automorphism group management.
Instead of using the Schreier-Sims representation of the automorphism group [25], only a set
of (at most n − 1) generators is stored (for a graph on n vertices). The equivalence between
vertices will be used to eliminate backtrack levels (if all the vertices of the pivot cell at some
level are found to be equivalent, then the backtrack point is removed) , to prune the search
for automorphisms, and to prune the search for a sequence of partitions compatible with the
target. When two vertices are equivalent, they are said to belong to the same orbit. The set of
all its orbits defines a partition of the vertices of a graph. When the whole automorphism group
of a graph has been computed (the set of generators in our case), all the vertices are correctly
classified into their respective orbits, and the resulting partition is called the orbit partition. If
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a graph is vertex transitive, then all its vertices belong to the same orbit, so the orbit partition
has only one orbit. The orbit partition of a graph G could be obtained from its automorphism
group Aut(G), when the automorphism group acts on the set of vertices V .

Definition 2.22 Let G = (V,R) be a graph, and let u, v ∈ V . Vertices u and v are equivalent
if there is an automorphism π of G that permutes u and v, i.e. uπ = v.

Definition 2.23 Let G = (V,R) be a graph. The generating set of the automorphism group
Aut(G) of G is a set of generators Γ = {γ1, ..., γg}, such that Γ ⊆ Aut(G) and Aut(G) = <Γ>
(i.e., Γ generates Aut(G)).

Observation 2.4 Let π1, π2 ∈ Aut(G) be two permutations of V . Then, Gπ1 = Gπ2 (i.e., both
graphs are automorphic), and the autmorphism itself is the mapping m(vπ1) = vπ2.

Definition 2.24 Let G = (V,R) be a graph, Aut(G) the automorphism group of the graph G.
The orbit of a vertex v ∈ V is defined as the set of all images vAut(G) = {vπ : π ∈ Aut(G)}.

Let Γ = {γ1, ..., γg} a generating set, such that <Γ> = Aut(G). Thus, we define the function
OrbitOf (v,Γ) = {vπ : π ∈ <Γ>}, for any v ∈ V .

Definition 2.25 Let G = (V,R) be a graph. The orbit partition of G is a partition O =
{O1, ..., On} of V , such that for all i ∈ {1, ..., n}, v, u ∈ Oi implies that v and u are equivalent.

Observation 2.5 Observe that, when have not the whole generating set yet, <Γ> ⊂ Aut(G),
the function OrbitOf (v,Γ) returns the orbit of vertex v under graph GW , where W ⊆ V is
the set of those vertices that are not fixed in any permutation γ ∈ Γ; the rest of vertices will
be in a singleton orbit. Both cases, the function Orbits(Γ) returns the orbit partition, as the
concatenation of each different orbit of any vertex v ∈ V .

Now, we will show some ways to infer vertex equivalence during the generation of a sequence of
partitions for a graph, and how the compatibility of sequences of partitions implies equivalence
of vertices.

Lemma 2.1 Let QG = (S,R,P) be a sequence of partitions for graph G, such that S = (S0, ...,St),
R = (R0, ..., Rt−1), and P = (P 0, ..., P t−1). Let l ∈ {1, ..., t}, S l = (Sl1, ..., S

l
rl

), and V l =
⋃rl
i=1 S

l
i,

such that there is some k ∈ {1, ..., rl} with NumLinks(Slk, V
l, G) = 0 and |Slk| > 1. Then, for all

u, v ∈ Slk, u and v are equivalent.

Proof: If u and v belong to the same cell Slk, none of the vertices previously discarded in the
sequence of partitions has been able to distinguish them. Hence, their adjacencies are the same
with all the previously discarded vertices. Besides, since they have no remaining links, they
are not adjacent to any vertex in V l, and they are discarded at this stage in the refinement
process. Therefore, permuting u and v and fixing all the other vertices of graph G, we obtain
an automorphism of G. Hence, u and v are equivalent.

This way, some equivalences may be detected using only one sequence of partitions. However,
most equivalences are detected using two sequences of partitions. From Corollary 2.1 and the
definition of automorphism, it follows that two compatible sequences of partitions for a graph
G define an automorphism of G.

During the generation of a sequence of partitions for a graph G, backtracking points may
arise. Let QG = (S,R,P) be a sequence of partitions for graph G. Let S = (S0, ...,St),
R = (R0, ..., Rt−1), P = (P 0, ..., P t−1). Let us assume that Rl = BACKTRACK for some
l ∈ {0, ..., t − 1}. Then, let S l = (Sl1, ..., S

l
rl

) and let u ∈ Sl
P l

be the pivot vertex used for the
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vertex refinement at stage l. Let v ∈ Sl
P l
, u 6= v, be another vertex in the pivot set. Let Q′G

be a sequence of partitions compatible with QG, generated using vertex v instead of vertex u,
at stage l. Note that QG and Q′G are equal up to level l. Let ≤QG be the order induced by QG
on the vertices of V , and let ≤Q′G

be the order induced by Q′G on the same set of vertices V .

Let ωQG(i) denote the ith vertex with respect to ≤QG , and ωQ′G
(i) denote the ith vertex with

respect to ≤Q′G
. Then, mapping m, defined as m(ωQG(i)) = ωQ′G

(i) for all i ∈ {1, ..., |V |}, is an
automorphism of G. Mapping m satisfies that u = ωQG(k), v = ωQ′G

(k), for some k ∈ {1, ..., |V |}.
Then:

Lemma 2.2 For all j ∈ {k, ..., |V |}, ωQG(j) and ωQ′G
(j) are equivalent, and m fixes vertices

ωQG(1), ..., ωQG(k − 1), i.e. they are pairwise equal to ωQ′G
(1), ..., ωQ′G

(k − 1).

While the equivalence stated in Lemma 2.1 is somewhat universal, i.e., the automorphism dis-
covered fixes the rest of the vertices in the graph, the equivalences stated in Lemma 2.2 rely on
the fact that only the vertices previously discarded are fixed by the automorphism discovered,
and it is not known if fixing other vertices the equivalence still holds. Nevertheless, already found
vertex equivalences may be used to prune future searches provided that backtracking points are
explored in a certain order.

Lemma 2.3 If two vertices u and v are equivalent at level l, then they are equivalent at any
level i ∈ {0, ..., l − 1}.

Proof: Let u and v be two vertices that are equivalent at level l. This means that the two
compatible sequences of partitions that determined their equivalence share the first l levels.
Therefore, from Lemma 2.2, the vertices in V \ V l are fixed by the automorphism induced
by these sequences of partitions. Let us call this automorphism m. Since V l ⊆ V i for all
i ∈ {0, ..., l− 1}, (V \ V i) ⊆ (V \ V l). Hence, there is an automorphism that maps u and v, and
fixes the vertices in V \ V i, e.g. m.

Remark 2.1 Let u and v be two vertices that are equivalent at level l. If u is equivalent to p at
level l, then v and p are also equivalent at level l, and if u is not equivalent to p at level l, then
v and p are not equivalent at level l.

Proof: If u and v are equivalent at level l, that is because there is an automorphism m that
permutes u and v, and fixes all the vertices in V \ V l. If u and p are equivalent at level l, then
there is an automorphism m′ that permutes u and p, and fixes all the vertices in V \ V l. Since
m′(u) = p, m′(m(v)) = p. Hence, the composition of m and m′ yields an automorphism of v
and p that fixes all the vertices in V \ V l, since both automorphisms fixed them.

By the reverse argument, if there is no automorphism that fixes the vertices in V \ V l and
permutes u and p, then one can conclude that there is no automorphism that fixes the ver-
tices in V \ V l and permutes v and p. Otherwise, if there were such an automorphism m′

such that m′(p) = v, then we could apply automorphism m, to get that m(m′(p)) = m(v), i.e.
m(m′(p)) = u, and all the vertices in V \ V l would be fixed, since they were fixed by both
automorphisms. Thus we reach a contradiction.

Similarly, if at some level, v and u are equivalent and so are w and x, then, if v and w are
equivalent at this same level, then u and x are also equivalent at this level. It is easy to see
that a simple composition of automorphisms, as in the previous cases, yields this result. Thus,
during the computation of semiorbit partitions, the basic operation performed on the semiorbit
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partitions is the merging of semiorbits. When two vertices u and v are found equivalent, their
semiorbits are merged.

Definition 2.26 Let G = (V,R) be a graph, an let O = {O1, ..., On} be a partition of V . Then,
merge(O, Oi, Oj) = (O \ {Oi, Oj}) ∪ {Oi ∪Oj}.

Lemma 2.4 If the vertices of a pivot set in a sequence of partitions QG for graph G are equiva-
lent, then in a compatible sequence of partitions QH for graph H, the vertices in the corresponding
pivot set must also be equivalent.

Making use of this lemma in our algorithm, probably not all the backtracking points will be
eliminated, but a significant improvement may be achieved for graphs with a symmetric struc-
ture. This search for equivalence among the vertices in the pivot cells will be performed just
after the generation of the sequences of partitions, and before the search for the compatible
sequence of partitions.

Equivalence among vertices in a graph may be used during the search for the compatible sequence
of partitions for the graph, thus reducing the number of vertices to try at a backtracking point,
what will also help pruning the search space. However, note that the only information we
consider about automorphisms is our semiorbit partition. Hence, with an extended sequence of
partitions, we know that two vertices are equivalent, but we do not know which vertices are fixed
by an automorphism that permutes them. Nevertheless, we can state the following observation:

Observation 2.6 For each two vertices u and v that belong to the same semiorbit in a semiorbit
partition, there is at least one automorphism that fixes all the vertices that belong to singleton
semiorbits and permutes u and v.

Proof: In fact, if there are vertices in singleton semiorbits, that is because all known automor-
phisms fix them.

Storing the full automorphism group of a graph, or at least all the automorphisms discovered,
would be much more powerful. Some ways to represent an automorphism group feasible for
our purpose are exposed in [12, Chapter 6]. However, more space or more computing would be
needed than in the proposed algorithm. Hence, we have chosen to manage vertex equivalence
the easy way. A future improvement to our algorithm might be to add a more powerful way to
manage automorphisms. If our algorithm is modified to compute the automorphism group of a
graph, this would be a compulsory feature.

2.4 Subpartitions Theorems

In this section we will define the concept of subpartition in a sequence of partitions. Then,
we will state two theorems that can be used to significantly improve the performance of any
algorithm based on the individulization-refinement process that computes the automorphism
group of a graph. These results are specially powerful when dealing with graphs built from
regularly connected (uniformly joined) components, but are not restricted to this case, since
they are not based on the recognition of components.

Definition 2.27 Let G = (VG, RG) be a graph. Let S = (S1, ..., Sr) be an equitable partition of
a set V ⊆ VG, and T = (T1, ..., Ts) be an equitable partition of W ⊆ V . T is a subpartition
of S if and only if for all i ∈ {1, ..., r}, there are no j, k ∈ {1, ..., s}, j 6= k such that Tj ⊆ Si,
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Tk ⊆ Si, HasLinks(Tj ,W,G) and HasLinks(Tk,W,G). (I.e., each cell with links of T is included
in a different cell of S.)

Let Q = (S,R,P) be a sequence of partitions for graph G = (V,R) where S = (S0, ...,St),
R = (R0, ..., Rt−1), and P = (P 0, ..., P t−1). Let us consider the case in which there are
two partitions Sk and S l such that both are equitable, 0 ≤ k < l ≤ t, S l is a subparti-
tion of Sk, and there is no k < i < l such that Si is a subpartition of Sk. Let p ∈ Sk

Pk

be the pivot vertex used for the vertex refinement at level k. Assume that taking a vertex
q ∈ Sk

Pk
, q 6= p at level k as the pivot vertex, an alternative sequence of partitions Q′ =

((S0, ...,Sk, T k+1, ..., T l), (R0, ..., Rl−1), (P 0, ..., P l−1)) is generated, which is compatible with
the original subsequence ((S0, ...,S l), (R0, ..., Rl−1), (P 0, ..., P l−1)).

Let V k =
⋃rk
j=1 S

k
j . From partition Sk, we derive a new partition Ŝk which contains the cells

Ski ∈ Sk, such that HasLinks(Ski , V
k, G), in the same order. Analogously, we derive partitions

Ŝ l and T̂ l, from S l and T l respectively. Note that |Ŝ l| = |T̂ l| and |Ŝ l| ≤ |Ŝk|. To simplify the
notation, let us assume, in the following, that |Ŝk| = |Ŝ l| = |T̂ l| = r, in which case some cells of
Ŝ l and T̂ l might be empty.

Let V̂ k =
⋃r
j=1 Ŝ

k
j , V̂ l =

⋃r
j=1 Ŝ

l
j , and Ŵ l =

⋃r
j=1 T̂

l
j . For each i ∈ {1, ..., r}, let Ei = Ŝki \ V̂ l,

E′i = Ŝki \ Ŵ l, Ai = Ei ∩ E′i, Bi = Ei \ Ai, Ci = E′i \ Ai, and Di = Ŝki ∩ V̂ l ∩ Ŵ l. Observe that
|Ei| = |E′i|, and hence |Bi| = |Ci|. Let E = V̂ k \ V̂ l, E′ = V̂ k \ Ŵ l, A = E ∩ E′, B = E \ A,
C = E′ \A, and D = V̂ l ∩ Ŵ l. Observe that E = A ∪B, E′ = A ∪C, and X =

⋃r
i=1Xi, for all

X ∈ {E,E′, A,B,C,D}. Now we analyze the adjacencies among the vertices of these sets.

Lemma 2.5 Let α be the labeling induced by Q, and β the labeling induced by Q′. For each
u ∈ V \ V̂ l, let u = α(i) and u′ = β(i). Then, for each j ∈ {1, ..., r}, there is some δ ∈ {0, 1, 2, 3}
such that, for all v, w ∈ Ŝlj, v′, w′ ∈ T̂ lj , Muv = Muw = Mu′v′ = Mu′w′ = δ.

Proof: If for some u ∈ V \ V̂ l, Muv 6= Muw for u,w ∈ Ŝlj , that cell would have been split at some

refinement up to level l. The same argument applies to the vertices u′ ∈ E′ and v′, w′ ∈ T̂ lj .
Besides, from the compatibility of Q and Q′, Muv = Muw = Mu′v′ = Mu′w′ = δ, for each
j ∈ {1, ..., r}.

Observe that, from Lemma 2.5, Mab = Mad for all b ∈ Bj and d ∈ Dj . Also from Lemma 2.5,
Mac = Mad for all c ∈ Cj and d ∈ Dj . Hence,

Corollary 2.3 Let a ∈ A, for each j ∈ {1, ..., r}, for all b ∈ Bj, c ∈ Cj, Mab = Mac.

Lemma 2.6 For each i, j ∈ {1, ..., r}, there is some δ ∈ {0, 1, 2, 3} such that for all u ∈ Bi, v ∈
Ci, w ∈ Di, u

′ ∈ Bj, v′ ∈ Cj, and w′ ∈ Dj, Muv′ = Muw′ = Mvu′ = Mvw′ = Mwu′ = Mwv′ = δ.

Definition 2.28 Let α be the labeling induced by Q. Let β be the labeling induced by Q′ on the
vertices of V \ V̂ l. Then, the labeling γ : {1, ..., |V |} −→ V is defined as follows:

γ(i) =

{
β(i) ∀i, 1 ≤ i ≤ (|V | − |V̂ l|)
f(i) ∀i, (|V | − |V̂ l|) < i ≤ |V |

where f(i) =

{
α(i) if α(i) 6∈ E′
f(β−1(α(i))) if α(i) ∈ E′.

From Corollary 2.2, it follows that α(i) and γ(i) are in the same cell of Sk for (|V | − |V̂ k|) <
i ≤ |V |.

Lemma 2.7 Let α and γ be as defined in Definition 2.28. Then, the mapping m : V −→ V
defined as m(α(i)) = γ(i) is an automorphism of GC and GB.
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Proof: If for all b = α(i) ∈ B, γ(i) ∈ C, then the inverse mapping defined for the ver-
tices in C is an isomorphism of GC and GB. Consider now the case in which there is some
b = α(i) ∈ B such that a1 = γ(i) ∈ A. Let {a1, ..., an} such that ax ∈ A and ax = m(a(x−1))
for all x ∈ {2, ..., n}, and m(an) = c ∈ C. Then, from Lemma 2.5, for each j ∈ {1, ..., r}, for
all u ∈ Bj , v ∈ Cj , Mbu = Ma1v. Besides, from Corollary 2.3, Ma1u = Ma1v. Assume that
for all x ∈ {1, ..., n − 1}, for each j ∈ {1, ..., r}, for all u ∈ Bj , v ∈ Cj , Mbu = Maxu = Maxv.
Then, since m(a(n−1)) = an, from Lemma 2.5, Manv = Man−1u for all u ∈ Bj , v ∈ Cj . Hence,
from Corollary 2.3, Manv = Man−1u = Mbu. Finally, since m(an) = c, using the same argument,
Mcv = Manu = Mbu, for all u ∈ Bj , v ∈ Cj . Since this argument applies to every vertex of B,
we can conclude that m defines an isomorphism of GC and GB.

The following theorem allows to detect automorphisms without having to generate a complete
sequence of partitions.

Theorem 2.2 (Early Automorphism Detection) Let α and γ be as defined in Definition 2.28.
Then, the mapping m : V −→ V defined as m(α(i)) = γ(i) is an automorphism of G.

Proof: Let M = Adj(G). To prove that mapping m is an automorphism of G, it is enough to
prove the following properties, since they include all the cases.

1. m defines an isomorphism of G(V \V̂ l) and G(V \Ŵ l). This property follows directly from

Theorem 2.1 and the fact that, for all i ∈ {1, ..., |(V \ V̂ l)|}, γ(i) = β(i).

2. m defines an automorphism of GD: the trivial automorphism. It holds because, for all
α(i) ∈ D, m maps it to γ(i) = α(i), since D ∩ E′ = ∅.

3. m defines an isomorphism of GC and GB. Proven as Lemma 2.7.

4. For all α(i) ∈ (V \ V̂ l), α(j) ∈ V̂ l, Mα(i)α(j) = Mγ(i)γ(j) and Mα(j)α(i) = Mγ(j)γ(i). This
follows from Lemma 2.5, since α(j) and γ(j) are in the same cell at level k.

5. For all α(i) ∈ D,α(j) ∈ C, Mα(i)α(j) = Mγ(i)γ(j) and Mα(j)α(i) = Mγ(j)γ(i). This follows
from Lemma 2.6, since γ(j) ∈ B, and α(j) and γ(j) are in the same cell at level k.

The following theorem shows how to prune the search for compatible sequences of partitions.

Theorem 2.3 (Backjumping) Let G = (VG, RG) be a graph, and Q = (S,R,P) be a complete
sequence of partitions for graph G, where S = (S0, ...,St), R = (R0, ..., Rt−1), P = (P 0, ..., P t−1).
Let H = (VH , RH) be a graph, and ((T 0, ..., T l), (R0, ..., Rl−1), (P 0, ..., P l−1)) a sequence of par-
titions for graph H, such that l ≤ t and T l is equitable, which is compatible with the subse-
quence of partitions ((S0, ...,S l), (R0, ..., Rl−1), (P 0, ..., P l−1)) for graph G. Assume that there
is no complete sequence of partitions, for graph H, that starts with ((T 0, ..., T l), (R0, ..., Rl−1),
(P 0, ..., P l−1)) and is compatible with Q. Let 0 ≤ k < l such that T l is a subpartition of
T k. Then, no complete sequence of partitions, for graph H, that starts with ((T 0, ..., T k),
(R0, ..., Rk−1), (P 0, ..., P k−1)) can be compatible with Q.

Proof: From the previous theorem, any complete sequence of partitions for H that starts with
(T 0, ..., T k) and is compatible with Q up to level l, is equivalent to some complete sequence that
starts with (T 0, ..., T l). Since, as assumed, no complete sequence of partitions compatible with
Q that starts with (T 0, ..., T l) could be found, the claim follows.
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2.5 Failure Recording

This techinque is based on the vertex invariant of the non-automorphic paths of the automor-
phism search tree. That means that within an automorphic path of the search tree, from a
backtrack level, the non-automorphic paths are the same for every automorphism of a graph.
So that, if we record this non-automorphic paths of the search tree, we prune the search space
if appears a non-automorphic path that would not be exist during the automorphisms search.

Definition 2.29 Let G be a family of graphs on vertex set V and S the set of partitions of
V . Let G = (V,R) be a graph and Q = (S,R,P) a sequence of partitions for graph G, where
S = (S0, ...,St), R = (R0, ..., Rt−1), and P = (P 0, ..., P t−1). Then, a fail of a sequence of
partitions Q on level l ∈ {0, ..., t − 1}, such that Rl = BACKTRACK, is given by the (vertex
invariant) function Φ : G × S× V −→ N.

Observation 2.7 Let Q′ = (T,R,P) be a complete sequence of partitions compatible with Q =
(S,R,P), where T = (T 0, ..., T t). Then, Φ(G,S l, v) = Φ(Gπ, T l, vπ) if and only if π = InducedOrder
(Q′).

The return value of the function Φ, from Definition 2.29, is an integer value, because at the
implementation, the fail is given by a hash value (integer), as a result of apply a hash function
to some information of the further non-automorphic path in the search tree (the partition of the
last generated level in this path).

Note from Observation 2.7 that two sequences of partitions incompatible between them will have
a different set of failures, although these sets have not be disjoint necessarily. Thus, the function
Φ is injective, but not necessary bijective.

2.6 Extending Sequences of Partitions

Once we have presented the theorems, lemmas, and invariants that will use for our algorithm,
we obtain extra information about the sequence of partitions. This information has to be added
to the sequence of partitions as complementary. So that, we have to define what an extended
sequence of partitions is.

Definition 2.30 Let G = (V,R) be a graph. An extended sequence of partitions E for a
graph G is a tuple (Q,B, L,F,Γ), where Q is a sequence of partitions, denoted SeqPart(E),
B = (B0, ..., Bt−1) indicate the backtrack level for each level, L = (L0, ..., Lt− 1) indicate the
automorphism search tree limit level for each level, F = (F0, ...,F t−1) are the multisets of the
automorphism search tree failures for each level, and Γ is the generating set of Aut(G).

We can obtain the orbit partition of a graph G from the extended sequence of partitions of
G, because the automorphism group Aut(G) of G is derived from the generating set Γ (Defini-
tion 2.23), and it is used for compute each orbit (Definition 2.24). Then, the function Orbits(E)
return this orbit partition from an extended sequence of partitions of a graph G.

16



Chapter 3

Algorithms

In this chapter we will present the main algorithm of Conauto-2.0, that is called AreIsomorphic.
This is a graph isomorphism testing algorithm, which is complete, i.e., given two graphs, it
always returns an answer (positive or negative).

3.1 Main Algorithm of Conauto-2.0

Conauto-2.0 preserves the basic approach of its predecessor conauto [22, 15], but adds some new
functionalities which will be explained in the following sections. It receives two graphs G and
H as parameters and returns TRUE if both graphs are isomorphic, and FALSE if they are not.

First of all, this algorithm tests if both graphs have the same number of vertices and arcs which
are both (non complete) graph invariants (see Definition 2.7). That is easy to test, and it is a
necessary condition for isomorphism. Then, it generates initial partitions of the vertices of both
graphs based on their degrees; DG is the degree partition of G, and DH the degree partition of
H. If these partitions are not compatible (G and H differ in the number of vertices of some
degree), the graphs cannot be isomorphic. Generating the degree partitions and checking for
their compatibility is fast and can simplify the search for an isomorphism between G and H,
since vertices in one cell of DG can only be mapped to vertices in the corresponding cell of DH
(they can only be mapped to vertices with their same degree). Unfortunately, for regular graphs,
this degree partition has only one cell, what means that each vertex in one partition (or graph)
can be mapped to any one in the other partition (or graph).

If the degree partitions DG and DH are compatible, Algorithm 2, GenerateSequenceOfPartitions,
is used to generate the sequence of partitions QG for graph G. After that, Algorithm 7,
FindAutomorphisms, performs a complete search for automorphisms, while computing the au-
tomorphism group of the graph (a set of generators), and obtains the corresponding extended
sequence of partitions EG for graph G. If the sequence of partitions SeqPart(EG) has no back-
track levels, Algorithm 15, Match, will attempt to find a sequence of partitions for graph H
which is compatible with SeqPart(EG). That is because Algorithm 15, Match, will not use
backtracking and will be polynomial time (it is explained later, in Section 3.4). Otherwise, if
the sequence of partitions SeqPart(EG) has backtrack levels, the algorithm proceeds to compute
graph H, in the same way it did for graph G. The sequence of partitions QH is generated, and
then an extended sequence of partitions EH is obtained while looking for automorphisms by
means of Algorithm 7.
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Algorithm 1 Test whether G and H are isomorphic (conauto-2.0).

AreIsomorphic(G,H) : boolean
1 - - let G = (VG, RG) and H = (VH , RH)
2 if (|VG| 6= |VH |) ∨ (|RG| 6= |RH |) then
3 return FALSE
4 else
5 DG ← DegreePartition(G)
6 DH ← DegreePartition(H)
7 if DG and DH are not compatible under G and H respectively then
8 return FALSE
9 else

10 QG ← GenerateSequenceOfPartitions(G,DG)
11 EG ← FindAutomorphisms(G,QG)
12 if BacktrackAmount(SeqPart(EG)) = 0 then
13 return (0 ≤ Match(0, G,H,EG,DH , {ΓH})
14 end if
15 QH ← GenerateSequenceOfPartitions(H,DH)
16 EH ← FindAutomorphisms(H,QH)
17 - - let Aut(G) = <ΓG>, from EG

18 - - let Aut(H) = <ΓH>, from EH

19 if |Aut(G)| 6= |Aut(H)| ∨ |Orbits(EG)| 6= |Orbits(EH)| then
20 return FALSE
21 end if
22 if BacktrackAmount(SeqPart(EG)) ≤ BacktrackAmount(SeqPart(EH)) then
23 return (0 ≤ Match(0, G,H,EG,DH , {ΓH}))
24 else
25 return (0 ≤ Match(0, H,G,EH ,DG, {ΓG}))
26 end if
27 end if
28 end if

Once both extended sequence of partitions, EG and EH , are complete we can obtain the auto-
morphism group (from Definition 2.23) for graphs G and H. Then, automorphism group sizes of
graphs G and H are compared to be equal, and in the same way, their number of orbits. These
are necessary conditions for isomorphism (non complete graph invariants).

Now, the sequence of partitions with less backtrack levels is chosen as the target sequence and
a new sequence of partitions for the other graph, compatible with the target, is searched for by
Algorithm 15. If graphs G and H are isomorphic, it will return a positive value (the level in
which the compatibility between partitions was found), otherwise it returns a negative value.
Note that the partition with larger number of backtrack levels (either QG or QH) is dropped
after being generated. However, generating a sequence of partitions takes (only) polynomial
time, (and it is not guaranteed to be optimal in the number of backtrack levels). Besides, the
sequences of partitions may be very different. Therefore, in practical it is worth generating
a sequence of partitions for each graph, and then choosing the one which will generate less
backtrack levels during the search process.
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Algorithm 2 Generate a sequence of partitions for a graph G.

GenerateSequenceOfPartitions(G,D) : sequence of partitions
1 - - let G = (V,R)
2 - - for all l > 0, if Sl is defined, let Sl = (Sl

1, ..., S
l
rl

), V l =
⋃rl

j=1 S
l
j

3 S0 ← D
4 for each S0

x ∈ S0 do
5 Valid(S0

x)← (|S0| > 1) ∧HasLinks(S0
x, V

0, G)
6 end for
7 l← 0
8 while ∃Sl

x ∈ Sl : (|Sl
x| > 1) ∧HasLinks(Sl

x, V
l, G) do

9 P l ← IndexBestPivot(Sl, G)
10 if |Sl

P l | = 1 then
11 Rl ← VERTEX
12 v ← the only vertex in Sl

P l

13 Sl+1 ← VertexRefinement(Sl, v,GV l)
14 else
15 success ← FALSE
16 while Valid(Sl

P l) ∧ ¬success do
17 Valid(Sl

P l)← FALSE
18 Rl ← SET
19 Sl+1 ← SetRefinement(Sl, Sl

P l , GV l)

20 success ← ∃Sl+1
x , Sl+1

x+1 ∈ Sl+1 : Sl+1
x , Sl+1

x+1 ⊂ Sl
y for some Sl

y ∈ Sl
21 if ¬success then
22 P l ← IndexBestPivot(Sl, G)
23 end if
24 end while
25 if ¬success then
26 Rl ← BACKTRACK
27 v ← any vertex in Sl

P l

28 Sl+1 ← VertexRefinement(Sl, v,GV l)
29 end if
30 end if
31 l← l + 1
32 for each Sl

x ∈ Sl do
33 - - let Sl−1

y ∈ Sl−1 : Sl
x ⊆ Sl−1

y

34 Valid(Sl
x)← HasLinks(Sl

x, V
l, G) ∧ (Valid(Sl−1

y ) ∨ (|Sl
x| < |Sl−1

y |))
35 end for
36 end while
37 t← l
38 S← (S0, ...,St);R← (R0, ..., Rt−1);P← (P 0, ..., P t−1)
39 return (S,R,P)

3.2 Generation of a Sequence of Partitions

In this section we will explain all the algorithms related with the generation of a sequence of
partitions for a graph. The approach of the earlier version of conauto for the generation of
this sequence of partitions is the same, because instead of finding a specific canonical form of
both graphs to be compared, we take any easy to reproduce form (ordering of the vertices)
of one of the graphs. Furthermore, we also use partition (vertex or set) refinement to classify
vertices. Partition refinement has been traditionally performed by splitting cells according to
the adjacencies their vertices have with all the cells in a partition (see for example [33, 17, 1]).
However, this can be quite costly. Therefore, we do things the other way round; i.e., we take
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Algorithm 3 Find the best set Si ∈ S to be used as a pivot.

IndexBestPivot(S, G) : integer
1 b← IndexBestValidPivot(S, G)
2 if ¬Valid(Sb) ∧ |S| > 1 then
3 b← IndexBestIndividualizedCell(S, G)
4 end if
5 return b

cells, not to try to have them split, but to try to split other cells (or itself) using vertex or set
refinement. This approach is much less costly in terms of time and, on the short term, also space,
but, on the long term, it needs more space, and leads to the same stable (or equitable) partition.
Furthermore, it is not necessary to consider singleton cells (cells with only one vertex) more than
once [1]. Hence, we discard singleton cells once they have been used for a vertex refinement.
This reduces the complexity of the problem, and reduces the memory used for the algorithm.
The main feature of this version of conauto for the generation of the sequence of partitions is
the way we choose the pivot cell for vertex individualization, in order to obtain the minimum
number of backtrack levels in the final partition.

Algorithm 2, GenerateSequenceOfPartitions, starts from the degree partition D of a graph G,
and generates successive partition refinements, until it finds a partition such that the vertices in
cells with more than one vertex have no adjacencies with the remaining vertices in that partition.
New partitions are generated from their previous ones in the following way:

1. If there are singleton cells in the partition, one of them is chosen as the pivot set and a
vertex refinement is performed to obtain the next partition in the sequence (lines 10-13).

2. Otherwise, the algorithm performs set refinements using different cells in the partition as
pivot sets, until one of them is able to split at least one cell (maybe itself), or all of them
have been tried unsuccessfully (lines 15-24).

3. If no cell meeting the conditions of Cases 1 and 2 has been found, then some cell is chosen
as the pivot set, and a vertex in that cell is used as the pivot vertex to generate the new
partition performing a vertex refinement (lines 25-29).

Valid is an attribute of the cells, used to improve the performance in Case 2. A cell Slx is invalid
if it has been proved to be unable to split any cells in partition S l, and valid otherwise. Thus,
new cells are valid unless they have no remaining links, since a cell without links will never be
able to split any cell. Before a cell is used as the pivot set for a refinement by set, it is marked
invalid in advance, because, if it is not able to split any cell, it will be proved invalid, and if it
is able to split some cell, once it has been used, it has split all the cells to its best, and it will
never be able to split any of the subcells it has generated (otherwise, it would have split them
at this point). Then, if it does not split itself with this refinement, it will remain invalid, whilst
if it does, its subcells will be valid, since they are new, and they are not known to be invalid yet.

The task of choosing the pivot set among a set of cells is done by Algorithm 3, IndexBestPivot .
This algorithm behaves as follows:

• It chooses the smallest valid cell with more remaining links (than those of same size),
if such a cell exists. If this cells is a singleton one, this corresponds to Case 1 above.
Otherwise, it correspond to Case 2 above.

• If there are no valid cells and there are more than one cell in the current partition, it
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Algorithm 4 Find the best valid set Si ∈ S to be used as a pivot.

IndexBestValidPivot(S, G) : integer
1 - - let S = (S1, ..., Sr) and V =

⋃r
i=1 Si

2 b← 1
3 for i← 2 to r do
4 if Valid(Si) then
5 if ¬Valid(Sb) ∨ (|Sb| > |Si|) ∨ (|Si| = |Sb| ∧NumLinks(Si, V,G) > NumLinks(Sb, V,G)) then
6 b← i
7 end if
8 end if
9 end for

10 return b

Algorithm 5 Find the best set Si ∈ S to be used as a pivot to individualize.

IndexBestIndividualizedCell(S, G) : integer
1 - - let S = (S1, ..., Sr) and V =

⋃r
i=1 Si

2 C = {i : (@j, j < i : NumLinks(Sj , V,G) = NumLinks(Si, V,G) ∧ |Sj | = |Si|)}
3 b← 1
4 n← 0
5 for each c ∈ C do
6 T ← NextEquitablePartition(S, G, c)
7 - - let T = {T1, ..., Tr′},W =

⋃r′

i=1 Ti
8 if @Tx ∈ T : (|Tx| > 1) ∧HasLinks(Tx,W,G) then (e.i. LAST partition reached)
9 return c

10 else if T is subpartition of S then
11 return c
12 else if r′ + (|V | − |W |) > n then
13 b← c
14 n← r′ + (|V | − |W |)
15 else if r′ + (|V | − |W |) = n ∧ |Sb| > |Sc| then
16 b← c
17 end if
18 end for
19 return b

chooses one among them using Algorithm 5, IndexBestIndividualizedCell, which returns
an optimal cell for individualization. This corresponds to Case 3 above.

The pivot set (for vertex and set refinements) is chosen according to three different criteria:
first, it is better a pivot set which has links than one without links, since a pivot set with no
links will not be able to split any cell. Among cells with links, a valid one is preferred, since
an invalid cell will not be used for a set refinement, and would lead to a backtrack level, which
is the algorithm’s worst option. Finally, a smaller cell is preferred, since it will be faster to
process than a bigger one. Among invalid cells (it would lead to a backtrack level), Algorithm 5
is responsible for choosing the pivot set. It is explained in next section.

3.2.1 Choosing a Cell for Individualization

Algorithm 5, IndexBestIndividualizedCell, starts from the partition S and the graph G. It
attempts to choose the optimal pivot cell for vertex individualization in this partition. For each
possible combination of cell size and available degree, the first cell in the partition, with that
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Algorithm 6 Generate the next equitable level of the partition S.

NextEquitablePartition(S, G, p) : Partition
1 - - let S = (S1, ..., Sr) and V =

⋃r
i=1 Si

2 v ← the first vertex of Sp

3 T ← VertexRefinement(S, v,GV )
4 - - let T = (T1, ..., Ts) and W =

⋃s
i=1 Ti

5 for each Tx ∈ T do
6 - - let Sy ∈ S : Tx ⊆ Sy

7 Valid(Tx)← HasLinks(Tx,W,G) ∧ (Valid(Sy) ∨ (|Tx| < |Sy|))
8 end for
9 P ← IndexBestValidPivot(T , G)

10 success ← FALSE
11 while Valid(TP ) ∧ ∃Tx ∈ T : (|Tx| > 1) ∧HasLinks(Tx,W,G) do
12 if |TP | = 1 then
13 v ← the only vertex in TP
14 T ′ ← VertexRefinement(T , v,GW )
15 success ← TRUE
16 else
17 Valid(TP )← FALSE
18 T ′ ← SetRefinement(T , TP , GW )

19 - - let T ′ = (T ′1, ..., T
′
s′) and W =

⋃s′

i=1 T
′
i

20 success ← ∃T ′x, T ′x+1 ∈ T ′ : T ′x, T
′
x+1 ⊂ Ty for some Ty ∈ T

21 end if
22 if success then
23 success ← FALSE

24 - - let T ′ = (T ′1, ..., T
′
s′) and W =

⋃s′

i=1 T
′
i

25 for each T ′x ∈ T ′ do
26 - - let Ty ∈ T : T ′x ⊆ Ty
27 Valid(T ′x)← HasLinks(T ′x,W,G) ∧ (Valid(Ty) ∨ (|T ′x| < |Ty|))
28 end for
29 T ← T ′
30 end if
31 P ← IndexBestValidPivot(T , G)
32 end while
33 return T

size and available degree, is considered (line 2). Then, for every one of these considered cells,
algorithm 6, NextEquitablePartition, returns the next equitable refined partition T from the
partition S. Let c be the cell chose. If the partition T is the last partition in the sequence, cell
c will be the pivot cell returned (lines 8-9). If the partition T is subpartition of S, cell c will be
the pivot cell returned (lines 10-11). Unless one of this two criteria were fulfilled, the algorithm
will behave as follows:

• We add the number of discarded vertices with the number of cells of T . Then, the cell of
S which yields the biggest such sum is chosen as the pivot cell.

• If the such sum of two considered cells of partition S is equal, the smaller cell is chosen,
since it will be faster to process than a bigger one.

Note that, since only one vertex in each cell is considered (the first one), the choice is not
isomorphism invariant and, hence, cannot be used for canonical labeling.
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Algorithm 7 Look for automorphisms.

FindAutomorphisms(G,Q) : extended sequence of partitions
1 - - let G = (V,R), Q = (S,R,P)
2 - - let S = (S0, ...,St), Sl = (Sl

1, ...S
l
rl

), V l =
⋃rl

i=1 S
l
i, for all l ∈ {0, ..., t}

3 B← ComputeBacktrackLevels(S,R, G)
4 L← ComputeLimitLevels(S,R, G)
5 F← ∅
6 Γ← ProcessCellsWithNoLinks(G,Q)
7 - - let E = (Q,B, L,F,Γ), Γ = {γ1, ..., γ|Γ|}
8 l← t− 1
9 while l ≥ 0 do

10 if Rl = BACKTRACK then
11 E′ ← E
12 E← CheckAutomorphisms(G,E′, l)
13 end if
14 l← l − 1
15 end while
16 return E

Algorithm 6, NextEquitablePartition, starts from the partition S, the graph G, and a pivot cell
index p of the partition. The first vertex v of this pivot cell is individualized (line 3) and the
obtained partition is subsequently refined until an equitable partition is reached. This algorithm
is similar to Algorithm 2, but does not compute a complete sequence of partitions and the pivot
cell selection is carried out by Algorithm 4. That is because we are only interested return a valid
cell and not to individualize (equitable level). We correct the choice of the first vertex of the
pivot cell (at individualization) instead of any other different vertex in the cell, with the failure
management (explained in section 2.5) while looking for automorphisms.

3.3 Search For Automorphisms

In this section we will show our automorphisms searching algorithm, which computes the auto-
morphism group of a graph (i.e., set of generators, size of the automorphism group, and orbits).
Because we use a backtrack algorithm, this implies a computationally hard work, so then we
need some techniques in order to prune the automorphism search space. The use of these tech-
niques are described in this chapter. Since the detection of automorphisms consist on reproduce
(if exists, and consequently exists an automorphism) an alternative and compatible sequences
of partitions from the original one, this same techniques (or part of them) will be used in next
section (Section 3.4), towards finding an isomorphism of a graph.

Algorithm 7, FindAutomorphisms, performs the search of automorphisms. It starts from the
graph G and its sequence of partitions Q. First of all, it computes the backtrack levels and
the limit-search levels, in order to use both Theorems 2.3 and 2.2 respectively. Next, it uses
Algorithm 10, ProcessCellsWithNoLinks, which attempt to use Lemma 2.1 at each level in
{0, ..., t} in order to find the trivial automorphisms. Then, the search for automorphisms at
each backtrack level begins from the last partition in the sequence, traversing it up to the first.
This way, Lemma 2.3 will be applicable, so the automorphisms already found may be used when
processing previous partitions in the sequence. The searching for automorphisms itself, at each
backtrack level, is performed through Algorithm 11, CheckAutomorphisms.

23



Algorithm 8 Compute the backtrack level of each backtrack level of a Partition.

ComputeBacktrackLevels(S,R, G) : sequence of integers
1 - - let S = {S0, ...,St}, R = {R0, ..., Rt−1}, G = (V,R)
2 for each l ∈ {0, ..., t− 1} do
3 if Rl = BACKTRACK then
4 k ← (l − 1)
5 while k ≥ 0 ∧ (Rk 6= BACKTRACK ∨ Sl is subpartition of Sk do
6 k ← (k − 1)
7 end while
8 Bl ← k
9 else

10 Bl ← (l − 1)
11 end if
12 end for
13 B← (B0, ..., Bt−1)
14 return B

Algorithm 9 Compute the automorphism-search limit level of each backtrack level of a Parti-
tion.
ComputeLimitLevels(S,R, G) : sequence of integers
1 - - let S = {S0, ...,St}, R = {R0, ..., Rt−1}, G = (V,R)
2 for each k ∈ {0, ..., t− 1} do
3 if Rk = BACKTRACK then
4 l← (k + 1)
5 while l < t ∧ (Rl 6= BACKTRACK ∨ Sl is not subpartition of Sk do
6 l← (l + 1)
7 end while
8 Lk ← l
9 else

10 Lk ← t
11 end if
12 end for
13 L← (L0, ..., Lt−1)
14 return L

Algorithm 10 Process cells with no links.

ProcessCellsWithNoLinks(G,Q) : Set of generators
1 - - let G = (V,R)
2 - - let Q = (S,R,P), S = (S0, ...,St), Sl = (Sl

1, ...S
l
rl

), V l =
⋃rl

i=1 S
l
i, for all l ∈ {0, ..., t}

3 π ← InducedOrder(Q)
4 Γ← ∅
5 for each l ∈ {0, ..., t} do
6 for each Sl

x ∈ Sl : ¬HasLinks(Sl
x, V

l, G) do
7 u← any vertex of Sl

x

8 for each v ∈ Sl
x : u 6= v do

9 π′ ← Exchange(π, u, v)
10 Γ← Γ ∪ π′
11 end for
12 end for
13 end for
14 return Γ
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Algorithm 11 Look for automorphisms at level l.

CheckAutomorphisms(G,E, l) : extended sequence of partitions
1 - - let G = (V,R), E = (Q,B, L,F,Γ)
2 - - let Q = (S,R,P), B = (B0, ..., Bt−1), L = (L0, ..., Lt−1), F = {F 0, ..., F t−1}, Γ = {γ1, ..., γ|Γ|}
3 - - let S = (S0, ...,St), R = (R0, ..., Rt−1), P = (P 0, ..., P t−1)
4 - - let Si = (Si

1, ...S
i
ri), V

i =
⋃ri

j=1 S
i
j , for all i ∈ {0, ..., t}

5 - - let p the pivot vertex used to generate partition Sl+1

6 for each v ∈ (Sl
P l \ {p}) do

7 Valid(OrbitOf (v,Γ))← TRUE
8 end for
9 success ← TRUE

10 F l ← ∅
11 for each v ∈ (Sl

P l \ {p}) do
12 - - let ∆ = {Γ}, T = (T 0, ..., T t)
13 - - for all i ∈ {0, ..., l}, let T i = Si
14 - - for all i ∈ {l + 1, ..., t}, if T i is defined, let T i = (T i

1, ..., T
i
ri), W

i =
⋃ri

j=1 T
i
j

15 if OrbitOf (p,Γ) 6= OrbitOf (v,Γ) ∧Valid(OrbitOf (v,Γ)) then
16 T l+1 ← VertexRefinement(Sl, v,Gvl)
17 compatible ← if Sl+1 and T l+1 are comptible under GV l+1 and GW l+1 respectively
18 if compatible then
19 (l′,Γ′, f)← SubtreeCompatible(l + 1,T, G,E,∆, l)
20 Γ← Γ′

21 compatible ← l′ > l
22 end if
23 if ¬compatible then
24 Valid(OrbitOf (v,Γ))← FALSE
25 success ← FALSE
26 F l ← F l ] f
27 end if
28 end if
29 if ¬Valid(OrbitOf (v,Γ)) then
30 F l ← F l ]GetOldFailure(S, v, F l, l)
31 end if
32 end for
33 if success then
34 Rl ← VERTEX
35 end if
36 return (Q,B, L,F,Γ′)

Algorithm 11, CheckAutomorphisms, looks for vertices equivalent to the pivot vertex, from the
same cell.

It starts from a graph G, an extended sequence of partitions E, and the level l in which it have
to search for automorphisms. First of all, the orbits of all the vertices in the pivot cell, except
vertex p used in the original sequence of partitions, are marked valid. Observe that p does not
need to be stored since it can be identified as the only vertex with links in S l that is not in
S l+1. Each vertex v of the pivot cell, except p, that belongs to an orbit different from the pivot
vertex, and which is valid, is processed. Then, vertex v is individualized, and it is obtained a
new partition T l+1, which is checked to be compatible with S l+1. If it is, the algorithm tries
to generate an alternative sequence of partitions compatible with the original one by means
of Algorithm 12, SubtreeCompatible. If it success, the returned level by this algorithm will be
the level in which the compatibility (and consequently, and automorphism) was found, so that
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l′ > l. Then, the set of generators Γ will be updated. Otherwise, the returned level will be
the backtrack level (so that, a value lower or equal than l), and the set of generator Γ will be
preserved. Last, in any case the vertex v does not yield an automorphism, its orbit is marked as
non valid, in order not to process any equivalent vertex, which will yield a similar result, and the
returned failure is recorded in the multiset of failures F l. On the other hand, if the vertex was
not valid, is known that not yields any automorphism and the failure produced by any vertex
which belongs the same orbit (recall that it is an invariant) is recorded in F l, but the vertex
will be not even attempt to individualize.

When, at a backtracking point, all the vertices in the pivot cell are found to be equivalent, Rl

is changed form BACKTRACK to VERTEX. Recall that, from Lemma 2.4, this equivalence
must hold for the other graph, so only one vertex in the corresponding pivot cell will need to be
tested during the search for an equivalent sequence of partitions.

The generation of the alternative sequences of partitions is done using Algorithm 12, which is
a recursive algorithm. First of all, before generating the partition T l+1 as an alternative to
S l+1, the following conditions are checked (note that a pre-condition of this algorithm is that
partitions S l and T l are compatible):

1. If partitions S l and T l are identical (lines 8-14), then it is not necessary to go further,
since the rest of both sequences must be the same. It is easy to complete the alternative
sequence of partitions T and obtain the automorphism π, which is added into the set of
generators Γ, and algorithm returns with return level value l notifing success up on.

2. If limit level Lk is reached (lines 15-18), then Theorem 2.2 is applied by means of the
function ProcessSubpartition. Such that function implements Defintion 2.28, obtaining
the automorphism π, which is added into the set of generators Γ, and algorithm returns
with return level value l, notifying success upward.

3. If T is a complete alternative sequence of partitions (lines 19-21), then the automorphism
π is obtained from T, which is added into the set of generators Γ, and algorithm returns
with return level value l, notifying success upward.

If the algorithm finds Rk = BACKTRACK at some level, it might be possible to find a sequence
of partitions compatible with the original one, for some vertex in the pivot set. Algorithm 13,
DeepeningInBacktrack , performs this work.

Finally, the partition T l+1 is generated using the same kind of refinement Rl with the cor-
responding pivot cell T l

P l
. If T l+1 and S l+1 are compatible the generation of an alternative

sequence of partitions follows with algorithm SubtreeCompatible again. If the returned value
level l′ is not the same that the current level l, then this value l′ is returned up on. Note that if
l′ > l then an automorphism will be reported. Otherwise (l′ < l), an unsuccessful generation of
an alternative sequence of partitions will be reported and the search will attempt to resume from
(at most) level l′, which may performs a backjumping depends on the l′ value. Furthermore, the
failure is set in f , for being recorded upward. Observe that, if a fail arise at an erased backtrack
level (now vertex), then the fail is set to negative value, because no fail supose to be there, since
all vertices in T l

P l
are equivalent. Thus, the fail value should be recorded in the past backtrack

level l, but it did not (has not failures) and then, it is especially marked with negative value for
recording at level k. In any other case (either level l + 1 not compatible or l′ = l), the value Bl

is returned up on.

The backtracking in the search for automorphisms is performed by Algorithm 13, which is used
when a backtrack level is reached in the search for automorphisms. In this case, some vertices
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Algorithm 12 Try to generate a compatible sequence of partitions.

SubtreeCompatible(l,T, G,E,∆, k) : tuple (integer, Set of generators, integer)
1 - - let T = (T 0, ..., T t)
2 - - for all i ∈ {0, ..., l}, let T i = (T i

1, ..., T
i
ri),W

i =
⋃ri

j=1 T
i
j

3 - - for all i ∈ {l + 1, ..., t}, if T i is defined, let T i = (T i
1, ..., T

i
ri),W

i =
⋃ri

j=1 T
i
j

4 - - let G = (V,R), E = (Q,B, L,F,Γ)
5 - - let Q = (S,R,P), B = (B0, ..., Bt−1), L = (L0, ..., Lt−1), F = {F 0, ..., F t−1}, Γ = {γ1, ..., γ|Γ|}
6 - - let S = (S0, ...,St), R = (R0, ..., Rt−1), P = (P 0, ..., P t−1),
7 - - for all i ∈ {0, ..., t}, let Si = (Si

1, ..., S
i
ri), V

i =
⋃rl

j=1 S
i
j

8 f ← 0
9 if T l = Sl then

10 for each i ∈ {l + 1, ..., t} do T i ← Si
11 π ← InducedOrder((T,R,P))
12 return (l,Γ ∪ π, f)
13 end if
14 if l = Lk ∧ l 6= t then
15 π ← ProcessSubpartition(Q,T, l)
16 return (l,Γ ∪ π, f)
17 end if
18 if l = t ∧ Sl and T l are compatible under GV l and GW l respectively then
19 π ← InducedOrder((T,R,P))
20 return (l,Γ ∪ π, f)
21 else if Rl = BACKTRACK then
22 return DeepeningInBacktrack(l,T, G,E,∆, k)
23 else
24 if Rl = VERTEX then
25 v ← any vertex in T l

P l

26 T l+1 ← VertexRefinement(T l, v,GW l)
27 else (i.e. Rl = SET)
28 T l+1 ← SetRefinement(T l, T l

P l , GW l)
29 end if
30 if Sl+1 and T l+1 are compatible under GV l+1 and GW l+1 respectively then
31 (l′,Γ′, f ′)← SubtreeCompatible(l + 1,T, G,E,∆, k)
32 if l′ 6= l then
33 return (l′,Γ′, f ′)
34 end if
35 end if
36 - - let p the pivot vertex used for refining level k
37 f ← GetFailure(G, T l, p)
38 if Rl = VERTEX ∧ |T l

P l | > 1 then
39 f ← (−1)
40 end if
41 end if
42 return (Bl,Γ, f)

of the pivot cell (maybe all of them) will be individualized and the looking for an alternative
sequence of partitions will go on.

It starts computing the partial orbits O using Algorithm 14, ComputePartialOrbits, and also a
set of set of generators is obtained in ∆′ from the previous ∆, used for the automorphism group
management. Then, this partial orbits (may be the trivial orbits) are marked valid and each
vertex v from the pivot cell T l

P l
whose orbit is valid is attempt to individualize and generate an

alternative sequence of partitions. When the orbit of the current vertex v is valid, inmediatly
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Algorithm 13 Deepen into a backtrack level searching a compatible sequence of partitions.

DeepeningInBacktrack(l,T, G,E,∆, k) : tuple (integer, Set of generators, integer)
1 - - let T = (T 0, ..., T t)
2 - - for all i ∈ {0, ..., l}, let T i = (T i

1, ..., T
i
ri),W

i =
⋃ri

j=1 T
i
j

3 - - for all i ∈ {l + 1, ..., t}, if T i is defined, let T i = (T i
1, ..., T

i
ri),W

i =
⋃ri

j=1 T
i
j

4 - - let G = (V,R), E = (Q,B, L,F,Γ)
5 - - let Q = (S,R,P), B = (B0, ..., Bt−1), L = (L0, ..., Lt−1), F = {F 0, ..., F t−1}, Γ = {γ1, ..., γ|Γ|}
6 - - let S = (S0, ...,St), R = (R0, ..., Rt−1), P = (P 0, ..., P t−1),
7 - - for all i ∈ {0, ..., t}, let Si = (Si

1, ..., S
i
ri), V

i =
⋃rl

j=1 S
i
j

8 - - let k′ the previous equitable level, such that k ≤ k′ < l
9 F ← ∅

10 (O,∆′)← ComputePartialOrbits(T, G,∆, k′, l)
11 for each v ∈ T l

P l do
12 Valid(Orb(v,O))← TRUE
13 end for
14 for each v ∈ T l

P l do
15 if Valid(Orb(v,O)) then
16 Valid(Orb(v,O))← FALSE
17 T l+1 ← VertexRefinement(T l, v,GW l)
18 if Sl+1 and T l+1 are compatible under GV l+1 and GW l+1 respectively then
19 (l′,Γ′, f)← SubtreeCompatible(l + 1,T, G,E,∆′, k)
20 if l′ 6= l then
21 return (l′,Γ′, f)
22 end if
23 end if

24 F ← F ] {
⊎|Orb(v,O)|

i=1 {f}}
25 if F 6⊆ F l then
26 return (Bl,Γ)
27 end if
28 endif
29 end for
30 return (Bl,Γ)
31

this orbit is marked non-valid in order to any other vertex of this orbit will not be attempt to
individualize. Next, the partition T l+1 is generated by VertexRefinement using the vertex v
as pivot vertex, and compatibility between S l+1 and T l+1 is checked. If they are compatible,
algorithm SubtreeCompatible goes on generating a compatible sequence of partitions. If the
return level value l′ is not equal than the current level l, then either an automorphism was found
(l′ > l) or a backjumping is performed hopping this backtrack level l (l′ < l) and the algorithm
returns with this value l′. Otherwise, neither an automorphism was found nor backjumping is
performed, so then a failure f arises and is added |Orb(v,O)| times to the multiset F , which next
is checked to be equal or a subset of F l (necessary condition for being in an automorphism path
of the search tree). If F 6⊆ F l, then the search for a compatible sequence of partitions in this
level l stop, because we are not in an automorphism path of the search tree and a backjumping
is performed (hopping this current level up on) returning with level value Bl. Otherwise, the
algorithm goes on with next vertex of T l

P l
.

The automorphism group management is performed by Algorithm 14, ComputePartialOrbits.
We start with a set of set of generators ∆, whose each set will be attempt to split (removing
the singleton sets) in subsets of generators which fix the discarded vertices up to level l. First of
all, the trivial orbits are created. And the goal is to create the partial orbits applicable at level
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Algorithm 14 Compute partial orbits.

ComputePartialOrbits(T, G,∆, k, l) : tuple (Orbits, Generators multiset)
1 - - let T = (T 0, ..., T t)
2 - - for all i ∈ {0, ..., l}, let T i = (T i

1, ..., T
i
ri), V

i =
⋃ri

j=1 T
i
j

3 - - let G = (V,R)

4 - - let ∆ = {Γ1, ...,Γn}, Γj = {γj1, ..., γ
j
mj}

5 ∆′ ← ∅
6 O← {{vi} : vi ∈ V }
7 for each Γj ∈ ∆ : |Γj | > 1 do

8 Γ′ ← γj1
9 for each γ′ ∈ {γj2, ..., γ

j
mj} do

10 if γj1 and γ′ fixed vertices from |V \ V k| to |V \ V l| then
11 Γ′ ← Γ′ ∪ {γ′}
12 for each u, v : (γj1)−1(u) = (γ′)−1(v) do
13 O← merge(O,Orb(u,O),Orb(v,O))
14 end for
15 end if
16 end for
17 if |Γ′| > 1 then
18 ∆′ ← ∆′ ∪ Γ′

19 end if
20 Γj ← Γj \ Γ′

21 end for
22 return (O,∆′)

l, for the set of partitions T, as follows:

• Each subset of generators Γ′ ∈ ∆ is split into other subsets that fix the discarded vertices,
from level k to l, of T. Note that, we only need to check discarded vertices from level
k, because the subsets were updated at level k from its previous corresponding backtrack
level.

• Each pair of generators of these news subsets, are used for merge orbits (Definition 2.26)
supported by Observation 2.4.

3.4 Matching

Algorithm 15, Match, is used to look for a sequence of partitions QH for a graph H, compatible
with the target QG, for a graph G, starting from its degree partition DH . Match is a recursive
backtracking algorithm which generates a new partition each time it is run, until it reaches the
last partition in the sequence. It starts from the partition T , that is compatible with S l, and
then it generates a new partition T ′ using the same refinement (Rl) used to generate S l+1 form
S l, with the corresponding pivot set TP l . If partitions T ′ and S l+1 are compatible, then it makes
a recursive call to process the new partition.

This algorithm works in the following way: if an isomorphism of G and H is found, it returns
t (the number of levels in the sequence of partitions, which is always positive). If it has been
impossible to find such an isomorphism, it returns −1. The actual value returned indicates up
to which level it is necessary to backtrack to continue the search (if it is smaller than l), that
an isomorphism has been found (if it is t), or that another option must be taken at this level, if
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Algorithm 15 Find a sequence of partitions compatible with the target.

Match(l, G,H,EG, T ,∆) : integer
1 - - let QG = (S,R,P), let S = (S0, ...,St), R = (R0, ..., Rt−1), P = (P 0, ..., P t−1)
2 - - let Sl = (Sl

1, ...S
l
rl

), V l =
⋃rl

j=1 S
l
j , for all l ∈ {0, ..., t}

3 - - let H = (VH , RH), let T = (T1, ...Trl),W =
⋃rl

j=1 Tj
4 if l = t then
5 if ∀x, y ∈ {1, ..., rl},ADeg(St

x, S
t
y, G) = ADeg(Tx, Ty, H) then

6 return t
7 end if
8 else
9 X ← TP l

10 if Rl = BACKTRACK then
11 (OH ,∆

′)← ComputePartialOrbits(T, H,∆, 0, l)
12 for each v ∈ X do
13 Valid(Orb(v,OH))← TRUE
14 end for
15 repeat
16 v ← any vertex in X
17 X ← X \ {v}
18 if Valid(Orb(v,OH)) then
19 Valid(Orb(v,OH))← FALSE
20 T ′ ← VertexRefinement(T , v,HW )
21 - - let T ′ = (T ′1, ..., T

′
r),W ′ =

⋃r
j=1 T

′
j

22 if Sl+1 and T ′ are compatible under GV l+1 and HW ′ respectively then
23 m← Match(l + 1, G,H,EG, T ′,∆′)
24 if l 6= m then
25 return m
26 end if
27 end if
28 end if
29 until X = ∅
30 else
31 if Rl = VERTEX then
32 v ← any vertex in X
33 T ′ ← VertexRefinement(T , v,HW )
34 else (i.e. Rl = SET)
35 T ′ ← SetRefinement(T , X,HW )
36 end if
37 - - let T ′ = (T ′1, ..., T

′
r),W ′ =

⋃r
j=1 T

′
j

38 if Sl+1 and T ′ are compatible under GV l+1 and HW ′ respectively then
39 m← Match(l + 1, G,H,EG, T ′,∆)
40 if l 6= m then
41 return m
42 end if
43 end if
44 end if
45 return Bl

possible (if it is l). To do so, it works in the following way:

• If at level t all the adjacencies are satisfied, then it returns t (an isomorphism has been
found).

• If Rl = VERTEX, then a vertex refinement is performed (line 33). If the resulting partition
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is compatible with S l+1 (tested at line 38), then a recursive call is made, to proceed to the
next level (line 39). Otherwise, since an incompatibility has been found, it returns to a
previous level that satisfies the condition of Theorem 2.3 (line 45), computed in Bl. Note
that, if the partition at the current level is equitable, then clearly Theorem 2.3 applies,
and if the partition at the current level is not equitable, then the value l − 1 would be
returned (stored in Bl).

If a recursive call was made, then the value returned by this call must be evaluated. If the
call returned a value which is bigger than l, then it must be t, and an isomorphism has
been found, so that value must be returned also by this invocation to the algorithm (lines
40 and 41). If it returned a value smaller than l, it is necessary to backtrack, at least,
to that level to be able to find an isomorphism. The reason is that a subsequent level,
an incompatibility was found, and, applying Theorem 2.3, it was decided to backtrack to
level m). Hence, that same value is returned to the caller (lines 40 and 41).

If the recursive call at line 39 returned a value m = l, then, since this is not a backtracking
point, it is necessary to backtrack. Line 45 decide to which level it is necessary to backtrack
from this level, just as if the incompatibility had been found at this level (computed in
Bl).

• If Rl = SET, then a set refinement is performed, and the algorithm behaves the same as
in the previous case, where Rl = VERTEX.

• In the case where Rl = BACKTRACK, the algorithm has to try possible matchings for the
pivot vertex, until an isomorphism is found or all the choices have been tried or discarded.
Observe that it is also used the algorithm ComputePartialOrbits in order not to try to use
all the vertices in the pivot cell. For that, we use the orbits attribute, valid, which at the
begining is set TRUE for all orbits. As a vertex is chosen to individualize, inmediatly its
orbit is marked as non valid. When the vertex refinement results in a new partition T ′
that is compatible with S l+1, a recursive call is made. Otherwise, the next possible choice
will be tried in the next iteration. As in the previous cases, this call returns a value m
which can be bigger, equal, or less than l.

If m = l, a new choice is tried, just as if the incompatibility were found at this level.

If m > l, then, it must be t, in which case an isomorphism has been found, so that value
is returned. This is done in lines 24 and 25.

If m < l, then an incompatibility was found in a subsequent level, and applying the result
of Theorem 2.3, it is not necessary to try any other possibility at this level, so m is directly
returned. This is accomplished by lines 24 and 25.

When all the possibilities have been tried unsuccessfully, backtracking is needed. Then,
applying Theorem 2.3 in line 45, the algorithm tries to find a previous level where at least
two of the cells in the current partition were not differentiated yet. If one such level is
found, it is returned to the caller, so that the algorithm backtracks directly to that level,
no matter whether there are intermediate backtracking points. If there is no such level,
then −1 is returned, since no possible isomorphism can be found.

Observe that, althought the failure recording it is not used in algorithm Match, it could be used
exactly in the same way as it is used in Algorithm 13. The failures arising, during the search
for a compatible sequence of partitions, will be collected at each backtrack level, and compared
against FG. Recall that the failures through a removed backtrack level, have to be set to (−1).
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At implementation, it is used as just described.

3.5 Correctness of the Algorithm

In this section we show that the proposed algorithm correctly determines whether two graphs are
isomorphic. The algorithm generates compatible sequences of partitions for both graphs being
tested. We will prove that compatible sequences of partitions induce an isomorphism between
the graphs, and that, if such compatible sequences of partitions exist, our algorithm is able to
find them.

Lemma 3.1 Let G = (VG, RG) and H = (VH , RH) be two isomorphic graphs. Then, there are
two compatible sequences of partitions QG = (SG,RG,PG), and QH = (SH ,RH ,PH) for graphs
G and H, respectively.

Proof: Let QG = (SG,RG,PG) be any sequence of partitions for graph G. Let SG = (S0, ...,St),
S0 = DegreePartition(G), RG = (R0

G, ..., R
t−1
G ), and PG = (P 0

G, ..., P
t−1
G ), and for all i ∈ {0, ..., t},

let Si = (Si1, ..., S
i
ri), and V i =

⋃ri
j=1 S

i
j .

Let m be a mapping of the vertices of VG onto the vertices of VH that preserves the (m exists since
G and H are isomorphic). Then we will generate a sequence of partitions QH = (SH ,RH ,PH)
for graph H which is compatible with QG. Let SH = (T 0, ..., T t), RH = (R0

G, ..., R
t−1
G ) (the

same type of refinement is performed at each step), and PH = (P 0
G, ..., P

t−1
G ) (corresponding

pivot sets are used at each refinement). Moreover, for all i ∈ {0, ..., t}, m maps the vertices in
corresponding cells of Si and T i.

Let T 0 = DegreePartition(H). Note that, since G and H are isomorphic, S0 and T 0 must be
compatible (the number of vertices of each degree must be the same for both graphs). Hence,
|S0| = |T 0|. Let S0 = (S0

1 , ..., S
0
r ), and T 0 = (T 0

1 , ..., T
0
r ). Then, m maps the vertices in Si to

the vertices in Ti, for all i ∈ {1, ..., r}.

Now, by induction, we assume that compatibility exists up to partitions S l and T l, i.e. for all
i ∈ {0, ..., l} partitions Si and T i are compatible, and m maps the vertices in corresponding cells
of Si and T i. Then we generate partition T l+1 and prove that it is compatible with S l+1, and
that m still maps the vertices in corresponding cells of S l+1 and T l+1.

Note first that if a cell Sls was discarded when deriving S l+1 from S l, that was because it had
no remaining links. Since S l and T l are compatible, T ls can not have links either, and will also
be discarded in T l+1. Then, depending on the value of Rl, three different cases arise in the
generation of partition S l+1 from S l:

1. Rl = VERTEX.

2. Rl = SET.

3. Rl = BACKTRACK.

In Case 1, for graph H, we can generate a new partition T l+1 from T l using vertex refinement
with the pivot set T l

P l
, which contains a single vertex, image under m of the only vertex in Sl

P l

(from the induction hypothesis). Let S l = (Sl1, ..., S
l
r), and T l = (T l1, ..., T

l
r). Also from the

induction hypothesis, the vertices in cell Sli ∈ S l are mapped under m to the vertices in cell
T li ∈ T l for all i ∈ {1, ..., r}. Hence, if the pivot vertex in Sl

P l
has a certain kind of link with k

vertices in some cell Sli, then the vertex in T l
P l

must also have a link of that kind with k vertices

in cell T li . Otherwise, there would be vertices in Sli which could not be mapped by m to vertices
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in T li for having different adjacencies with the corresponding pivot vertices. Therefore, the new
cells generated will have the same number of vertices, and their vertices will have the same kind
of adjacency with the respective pivot vertex, as their corresponding cells in S l+1. Hence, the
new partition T l+1 must be compatible with partition S l+1, and the vertices every cell of S l+1

can only be mapped by m, to the vertices in its corresponding cell in T l+1.

In Case 2, we generate partition T l+1 using set refinement with the corresponding pivot set
T l
P l

. By the induction hypothesis, cells Sl
P l

and T l
P l

must have the same adjacencies with the

corresponding cells in partitions S l and T l respectively. Therefore, the new cells generated will
have the same adjacencies with the pivot set in both graphs. Hence, the new cells in S l+1 must
be mapped by m to the corresponding new cells in T l+1, and partitions S l+1 and T l+1 must be
compatible.

In Case 3, let p be the pivot vertex chosen from cell Sl
P l

for the vertex refinement applied to

partition S l. This vertex could be mapped by m to any vertex in T l
P l

. However, one of them must

be m(p) since S l and T l are compatible and, from the induction hypothesis, the vertices in Sl
P l

can only be mapped to vertices in T l
P l

. Using m(p) as the pivot vertex, it is possible to generate

a new partition T l+1 compatible with S l+1 since p and m(p) have the same adjacencies with the
corresponding cells in partitions S l and T l respectively, as in Case 1. Hence, the new partition
T l+1 must be compatible with partition S l+1, and m maps the vertices in corresponding cells
in S l+1 and T l+1.

This way, we reach partitions St and T t. Compatibility of these final partitions is straight-
forward. Since all cells with remaining links are singleton ones, and m maps the vertices in
corresponding cells, the adjacency between any two vertices v and w in singleton cells of par-
tition St must be the same as the adjacency between m(v) and m(w) (corresponding cells) in
partition T t. Thus, we complete the proof.

Lemma 3.2 Let G = (VG, RG) and H = (VH , RH) be two graphs, |VG| = |VH | = n. Let
QG = (SG,RG,PG), and QH = (SH ,RH ,PH) be two compatible sequences of partitions for graphs
G and H respectively. Let πG be the order induced by QG on the vertices of VG, and let πH be
the order induced by QH on the vertices of VH . Then, graphs G and H are isomorphic, and
mapping m defined as m(iπG) = iπH for all i ∈ {1, ..., |VG|} is an isomorphism of G and H.

Proof: Let Adj(G) = A, and Adj(H) = B. Let SG = (S0, ...,St) and TG = (T 0, ..., T t). Since
QG and QH are compatible sequences of partitions, their final partitions must also be compatible.
Let St = (St1, ..., S

t
r) and T t = (T t1, ..., T

t
r) be the final partitions, and let |V t

G| = |V t
H | = s. Then,

from Definition 2.19, we know that for all x, y ∈ {1, ..., r},ADeg(Stx, S
t
y, G) = ADeg(T tx, T

t
y, H).

Since all non-singleton cells in the final partitions have no remaining links, this means that for all
i, j ∈ {1, ..., s}, A(n−s+i)πG ,(n−s+j)πG = B(n−s+i)πH ,(n−s+j)πH . Hence, subgraphs GV tG and HV tH
are isomorphic, and mapping m restricted to the vertices in V t

G and V t
H is an isomorphism of

them.

Now, by induction, we assume that subgraphs GV lG
and HV lH

are isomorphic, and mapping m

restricted to the vertices in V l
G and V l

H is an isomorphism of them. Then, we add the vertices
in V l−1

G \ V l
G and V l−1

H \ V l
H , and prove that subgraphs GV l−1

G
and HV l−1

H
are isomorphic, and

mapping m restricted to the vertices in V l−1
G and V l−1

H is an isomorphism of them.

Note first that the vertices in V l−1
G \ V l

G and V l−1
H \ V l

H come from cells with no remaining links,
or they are the pivot vertices used in the refinement, in case partitions S l and T l are a vertex
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refinement of partitions S l−1 and T l−1, respectively.

Let W l−1
G = {v ∈ V l−1

G : ¬HasLinks({v}, V l−1
G , G)} the set of vertices with no remaining links in

V l−1
G , and W l−1

H = {v ∈ V l−1
H : ¬HasLinks({v}, V l−1

H , H)} the set of vertices with no remaining

links in V l−1
H . It is easy to see that GW l−1

G ∪V lG
and HW l−1

H ∪V lH
are isomorphic (adding the same

number of isolated vertices to two isomorphic graphs yields two isomorphic graphs). Clearly,
mapping m restricted to the vertices in W l−1

G ∪ V l
G and W l−1

H ∪ V l
H is an isomorphism of them,

since it is when restricted to the vertices in V l
G and V l

H (from the induction hypothesis). Note
that the vertices in W l−1

G precede all the vertices in V l
G in order <QG

, and the vertices in W l−1
H

precede all the vertices in V l
H in order <QH

. Hence, m maps he vertices in W l−1
G to the vertices

in W l−1
H .

In case partitions S l and T l are a vertex refinement of partitions S l−1 and T l−1 respectively, let
v and w be the pivot vertices used in the refinement of partitions S l−1 and T l−1 respectively.
Clearly, v ∈ V l−1

G but v 6∈ V l
G, and w ∈ V l−1

H but w 6∈ V l
H . Besides, since partitions S l−1

and S l are compatible with T l−1 and T l respectively, for all x ∈ {1, ..., r},ADeg({v}, Slx, G) =
ADeg({w}, T lx, H). Hence, mapping m restricted to {v}∪V l

G and {w}∪V l
H is an isomorphism of

G{v}∪V lG
and H{w}∪V lH

. Note that v precedes all the vertices in V l
G in order <QG

, and w precedes

all the vertices in V l
H in order <QH

. Hence, m(v) = w.

Consequently, if m restricted to the vertices in V l
G and V l

H is an isomorphism of GV lG
and HV lH

,

it must also be when extended to the vertices in V l−1
G and V l−1

H , thus proving our claim.

Theorem 3.1 Two graphs G and H are isomorphic if and only if there are two compatible
sequences of partitions QG and QH for graphs G and H respectively.

Proof: It follows directly from Lemmas 3.1 and 3.2.

Now, to prove that our algorithm correctly determines if two graphs G and H are isomorphic
or not, it is enough to prove that it tests every possible sequence of partitions for one of the
graphs against one sequence of partitions for the other graph. Thus, if it is not able to find a
compatible one, that is because no such sequence of partitions exist.

Theorem 3.2 Two graphs G and H are isomorphic if and only if AreIsomorphic(G,H) returns
TRUE.

Proof: First, Algorithm AreIsomorphic tests some simple necessary conditions for isomorphism:
both graphs must have the same number of vertices and the same number of arcs, and their
degree partitions must be compatible; otherwise, the can not be isomorphic.

Then, a sequence of partitions is generated for each graph, and these sequences of partitions are
searched for automorphisms. This has two effects: some backtracking points may be changed
to simple VERTEX refinements, and equivalences among vertices are stored for use during the
search for a sequence of partitions compatible with the target.

If a backtracking point is eliminated at level l, that is because all the vertices in the pivot cell
are considered equivalent. This equivalence may have been established by three different means:

1. It may have been explicitly found by obtaining equivalent sequences of partitions, in which
case, from Lemma 2.2, this equivalence holds.

34



2. It may have been found at some other level l′ such that l′ > l. In this case, from Lemma 2.3,
it also holds at level l.

3. It may have been inferred applying Remark 2.1, in which case it also holds.

Since Rl is changed to VERTEX only at Line 26 in Algorithm 7, when all the vertices in the
pivot cell are found equivalent according to the three criteria just mentioned, it is guaranteed
that all the vertices in the pivot cell are certainly equivalent. Also, from Lemma 2.4, this
equivalence must hold for the other graph, in case an equivalent sequence of partitions exists
for that graph. Hence, eliminating this backtracking point is not an impediment for finding an
equivalent sequence of partitions if it exists, and it will be enough to try one vertex in the pivot
cell at this level. This argument may be applied to all the eliminated backtracking points.

Besides, in Algorithm 15, the orbit partition partition of graph H is used to prune the search
at the remaining backtracking points. However, this equivalences among vertices are considered
only in the case that all the vertices already discarded belonged to singleton orbits. From
Observation 2.6, for each two vertices u and v that belong to the same semiorbit in a semiorbit
partition, there is at least one automorphism that fixes all the vertices that belong to singleton
semiorbits and permutes u and v. Hence, there is an automorphism that permutes them and
fixes all the vertices already discarded (since they belong to singleton orbits). Thus, if one of
them did not lead to a compatible sequence of partitions, none of the members of its orbit will.

Consequently, the pruning achieved by Algorithms 7 and 15 do not eliminate paths in the search
tree that might lead to an isomorphism of graphs G and H. Therefore, if Algorithm 15 returns
FALSE, there is no sequence of partitions compatible with the target, and, from Lemma 3.1,
graphs G and H are not isomorphic. If Algorithm 15 finds a sequence of partitions for one graph
which is compatible with the one generated for the other graph, from Lemma 3.2, graphs G and
H are isomorphic. Hence, Algorithm AreIsomorphic returns TRUE if and only if graphs G and
H are isomorphic.
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Chapter 4

Performance Evaluation

4.1 Graphs Benchmark

Benchmarking is crucial for practical graph isomorphism programs. Depending on the intended
use of the algorithm, different families of graphs would be significant. In our case, since we
want a general purpose algorithm, we want to test it with very different graph families. For
this purpose, we have chosen the following classes of graphs which will be described in detail:
random graphs, regular meshes, Point-Line graphs of Desarguesian projective planes, Strongly
Regular Graphs, Component-Based Graphs, and Graphs based on Miyazaki’s construction.

Moreover, other graph families have been considered such as point-line graphs of affine geometries
and Kronecker Eye Flip graphs, from bliss benchmark [8].

4.1.1 Random Graphs

Random graphs are usually very simply tested for isomorphism. Yet, they are the most common
graphs found in practice. For this reason, an algorithm that is relatively fast for difficult graphs
but has bad performance with random graphs will not be practical. The random graphs included
in our benchmark have been taken directly from [24]. They are graphs in which the arcs connect
vertices without any structural regularity. The probability of an arc connecting two vertices is
independent of the vertices. The generation of these graphs adopted the same model proposed
in [31]. This model fixes the probability η of an arc connecting two distinct vertices. For
our benchmark, only the graphs in [24] with η = 0.1 have been used, though there are other
alternatives available in their database. These graphs have few, if any, automorphisms, and
therefore, they are easy to test. Their vertices are very different from each other and easy to be
differentiated.

Since all the graphs in [24] are directed, we have built another family of random graphs, obtained
by simply converting these digraphs into undirected graphs. This allows to study changes in the
behavior of the algorithms for these slight changes in their structure. In the benchmark, only
pairs of isomorphic graphs will be included. It is easy to see that, with very high probability, a
simple graph invariant like the degree sequence, will distinguish non-isomorphic random graphs.
In [24], it is shown how vf2 is faster than nauty for these non-isomorphic random graphs.
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4.1.2 Regular Meshes

Unlike random graphs, meshes do have a structure. This structure makes the graphs to have
symmetries, and therefore automorphisms, what should make testing the isomorphism of these
graphs harder. The graphs of this class include in the benchmark have also been taken form [24].
We have chosen to include in our benchmark only 2D-meshes, although there are also 3D- and
4D-meshes available, since their results would be similar (they have similar structure). These
graphs are all square meshes like the 4 × 4 mesh showed in Figure 4.1.(a). The meshes of a
given size included in the benchmark are all isomorphic. This means that the arcs are always
directed rightwards and downwards as in the figure. These graphs have been shown to be very
hard for nauty 2.0 [24]. The subsequent version 2.2 of nauty performs much better, though it is
still quite slower than vf2.

(b)(a)

Figure 4.1: 2D-meshes.

Like in the previous case, the corresponding undirected graph family has been derived from the
directed version, obtaining graphs like the one shown in Figure 4.1.(b).

4.1.3 Point-Line graphs of Desarguesian Projective Planes

Let n = q2+q+1, and let π be a finite projective plane of order q with point set P = {p1, ..., pn}
and line set L = {l1, ..., ln}. A bipartite graph G with partitions (P,L) is said to be the incidence
point-line graph of the projective plane π if for all i, j ∈ {1, ..., n}, {pi, lj} is an edge of G if and
only if pi ∈ lj . See for example the paper of Lazebnik and Thomason [13] for a method to
generate the point-line incidence graphs of projective planes.

Point-line graphs of projective planes are known to be amongst the hardest graphs for isomor-
phism testing. For the generation of the graphs, we have used the point-line incidence matrices,
provided by Gordon Moorhouse [20], of the Desarguesian projective planes. This gives rise to
a family a very hard graphs. There may be more than one projective plane for a given size.
However, they differ in basic parameters, like the degree, so they are easy to differentiate. Hence,
we have only considered the Desarguesian projective planes, so we will only perform positive
tests.

The structure of these graphs is better understood with an example. Figure 4.2 shows the point-
line graph of the Desarguesian projective plane of order 2. Although this graph is bipartite, it
has been drawn taking one vertex, and placing the rest of the vertices according to their distance
to this vertex. This way, it is clear that the diameter of the graph is 3. In fact, the diameter
remains constant for all the graphs in the family.
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Figure 4.2: Point-line graph of the Desarguesian projective plane of order 2.

4.1.4 Strongly Regular Graphs

Strongly regular graphs (SRG) lie somewhere between highly structured and apparently random
graphs. A strongly regular graph with parameters (n, k, λ, µ) is a regular graph of degree k on
n vertices, such that each pair of adjacent vertices has λ common neighbors, and each pair of
non-adjacent vertices has µ common neighbors.

In fact, though SRGs can be precisely characterized as a class of graphs, they can not be
considered a proper family. Graphs of the same family should have more things in common.
Strongly regular graphs can be further classified into several families, and even some of them
might be impossible to fit into any family. Here, we will only take into consideration four
families of strongly regular graphs: Paley graphs, triangular graphs, Latin Square graphs and
lattice graphs.

Paley graphs

The strongly regular Paley graph P (q) is a graph whose vertex set is the Finite Field of order
q, Fq, for q an odd prime power, q ≡ 1 (mod 4), where two vertices are adjacent if and only if
their difference is a nonzero square in Fq. These SRGs have parameters n = q, k = (q − 1)/2,
λ = (q − 5)/4, and µ = (q − 1)/4.

Paley graphs are not only vertex transitive, but also very regular with small automorphism
groups. This makes it easy to compute their automorphism groups and canonical forms. How-
ever, since they do not have many automorphisms, they may be hard for direct backtracking
algorithms.

Two subfamilies of Paley graphs have been distinguished: one contains the graphs generated for
q prime, and the other contains the graphs generated for q a proper prime power. When q is
prime, the corresponding graph has a smaller automorphism group than in the case q is a proper
prime power. This is supposed to make computing the automorphism group, for the case where
q is prime, faster.

For the case of q prime, an ad hoc program has been used to generate the graphs in our
benchmark, while the graphs for the case of q a proper prime power have been generated with
the aid of the GAP package [7] with Grape [26], which provide a very helpful tool to generate
Finite Fields, and to operate with them. Then, random permutations have been generated for
each graph size. Since there is only one Paley graph with certain parameters, only positive tests
will be performed on this family of graphs.
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Triangular Graphs

Let Sq be a set of cardinality q ≥ 5, then the vertex set of the triangular graph T (q) is the set
of 2-element subsets of Sq, which contains q(q− 1)/2 vertices. In T (q) two vertices are adjacent
if and only if they are not disjoint sets. The triangular graphs have parameters n = q(q − 1)/2,
k = 2(q − 2), λ = q − 2, and µ = 4.

These graphs are vertex transitive and have large automorphism groups. Therefore, for direct
backtracking algorithms, isomorphism would be easier to test than non-isomorphism since it
only needs to find the first isomorphism. However, for algorithms that compute the whole
automorphism group of the graphs, triangular graphs should be harder than Paley graphs,
though this may be mitigated by an efficient way to discover and make use of automorphisms.

There is only one triangular graph for each value of q, and no other SRG has the same parameters
as a triangular graph, except for q = 8 (cf. [2]). Therefore, only positive tests will be considered
for this family of graphs.

Latin Square Graphs

The family of Latin square graphs is generated from Latin squares. A Latin square of order n,
n ≥ 2, is an n× n matrix with n different symbols, where each symbol occurs once per row and
column of the matrix.

Let L1 = (aij) and L2 = (bij) be two Latin squares with n symbols, n ≥ 2. L1 and L2 are
orthogonal if and only if every ordered pair of symbols occurs exactly once among the n2 pairs
(aij , bij), i, j ∈ {1, ..., n}. A set of Latin squares of order n where each pair of Latin squares are
orthogonal is called a set of mutually orthogonal Latin squares (MOLS).

From each set of MOLS of order n, n ≥ 2, a strongly regular graph can be generated in the
following way: the vertices of the graph are the n2 items of a Latin square of order n, and two
vertices are adjacent if and only if the items are in the same row, in the same column, or they
have the same symbol in one of the orthogonal Latin squares.

A Latin square graph is built using the construction above from a set of g − 2 MOLS of order
m, m ≥ g ≥ 2, and denoted Lg(m). It is a strongly regular graph with parameters n = m2,
k = g(m− 1), λ = m− 2 + (g − 1)(g − 2), and µ = g(g − 1).

Since there are m− 1 MOLS of order m, it is possible to generate
(
m−1
g−2
)

combinations of Latin

squares that yield
(
m−1
g−2
)

Latin square graphs, some of which may be isomorphic. Remember that
this holds for any g, m ≥ g ≥ 2. For a fixed g, the generated graphs have the same parameters
and are potentially non-isomorphic, what allows the generation of negative tests. These graphs
have a large automorphism group but at the same time, they are not so regular as the Paley or
triangular graphs, what makes them harder examples of strongly regular graphs. The existence
of non-isomorphic Latin square graphs with the same parameters suggests difficulty. In fact, for
a long time, they have been considered hard instances for graph isomorphism (cf. [27]).

For our benchmark, we have included different permutations of Latin square graphs L3(5), L4(7),
L5(9), L6(11), L7(13), L9(17), L10(19), L12(23), L13(25), L14(27), L15(29), and L16(31). Other
combinations of m and g were also possible, and also different values of g for a fixed m could
have been considered. However, we believe that the graphs included are significant enough for
our purpose.
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The generation of these graphs has been performed with the aid of GAP [7] and GUAVA [4],
that has a function that generates the sets of MOLS required to build the graphs. For each
set of parameters g and m, several graphs have been generated. Then, they were tested for
isomorphism in order to discard redundant instances. Permutations of the resulting graphs were
generated in order to obtain one hundred pairs of each size. Thus we can study the behavior of
the algorithms with different permutations of the same graph, and with different graphs with
the same parameters.

Lattice Graphs

A lattice graph is a graph whose vertices are the elements of an m×m square and two vertices
are adjacent if and only if they are in the same row or in the same column. This graph may be
seen as a Latin square graph L2(m) –for g = 2, there are no MOLS to consider–, and then, its
parameters will be n = m2, k = 2(n− 1), λ = n− 2, and µ = 2.

Lattice graphs are determined by their parameters. Except for n = 4, they are the unique
strongly regular graphs with these parameters. This, along with their high regularity suggests
that they may be quite simpler than proper Latin square graphs for direct backtracking al-
gorithms, while their large automorphism group can make them still hard for algorithms that
compute canonical labelings. Since no other SRG has the same parameters as a given lattice
graph, only positive isomorphism tests will be performed for this family of graphs.

Steiner Triple Systems

These are the line graphs srg(v(v− 1)/6, 3(v− 3)/2, (v+ 3)/2, 9) of Steiner triple systems which
have (v(v + 1)− 2)/18 orbits.

4.1.5 Component-Based Graphs

Unions of Tripartite Graphs

This is a family of graphs built from small graph pieces. We have designed two small tripartite
graphs that are very similar, yet non isomorphic. Their directed versions are shown in Figure 4.3.
Their undirected versions are straightforward.
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Figure 4.3: Tripartite graphs.

Our original idea was to generate graphs that were disjoint unions of several copies of these
graphs. Since vf2 cannot deal with disconnected graphs, we considered computing the inverses
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of the graphs, and using these connected graphs for the tests. However, we decided to modify
the generation process, so that instead of the disjoint union, we would connect each vertex in a
connected component to every other vertex in the graph. This also produces a connected graph.

We have generated graphs with a different but similar number of copies of each component.
Therefore, the graphs will be very similar. They have the same number of vertices, the same
number of arcs, and the same sequence of vertex degrees. We expect these graphs to be hard,
both for direct backtracking algorithms, and for those which compute canonical forms of the
graphs since they have many automorphisms, but these come from structurally different com-
ponents.

Directed and undirected versions of the graphs have been generated, and pairs of isomorphic
and non isomorphic graphs will be used for the tests. Here, we expect the negative tests to be
especially hard for direct backtracking algorithms.

Unions of Strongly Regular Graphs

Unions of strongly regular graphs with the same parameters are known to be good candidates
to force nauty to exponential time. They are also likely to have the same effect on direct
backtracking algorithms. Hence, we should test our algorithm with this kind of graphs and see
if it suffered from the same disease. Since any set of strongly regular graphs would do the job,
we just chose some (29, 14, 6, 7) strongly regular graphs that are small enough to allow building
graphs of the required sizes and there are enough to build sufficiently large graphs for the tests.
These graphs were provided by Sven Reichard [23].

The unions of these strongly regular graphs have been accomplished in the same way as in
the case above. Also, several permutations of different graphs have been generated for each
size, so that both positive and negative tests may be performed. Again, for direct backtracking
algorithms, the negative cases are expected to be much harder than the positive ones.

Cubic Hypo-Hamiltonian clique-connected

This family is built using as basic components two non-isomorphic cubic Hypo-Hamiltonian
graphs with 22 vertices. Both graphs have four orbits of sizes: one, three, six, and twelve. A
graph CHH cc(m,n) has n complex components built from m basic components. The com-
ponents of a complex component are connected through a complete m-partite graph using the
vertices that belong to the orbits of size three of each basic component. The n complex com-
ponents are interconnected with a complete n-partite graph using the vertices of each complex
component that belong to the orbits of size one in the basic components.

4.1.6 Graphs based on Miyazaki’s Construction

Another family of graphs included in our benchmark is the Miyazaki’s Fürer gadgets. The graphs
of this class have been generated with a program provided by Takunari Miyazaki, who showed
in [19] that nauty needed exponential time to compute canonical forms for these graphs. In fact,
since we do not consider colored graphs, and we do not force certain orderings of the vertices
that could make the graphs harder, we will not be able to force nauty to require exponential
time with all the instances. Our graphs can be assimilated to what Miyazaki calls his type-C
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family (with vertices randomly ordered). However, we will include also a directed version of
these graphs, which are likely to force nauty to require exponential time.
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Figure 4.4: The graph Yα.

The graphs are built in the following way: first, consider the undirected multigraph Yα shown in
Figure 4.4 with vertex set V (Yα) = {v1, ..., vα, w1, ..., wα} and edge set E(Yα) = {E1 ∪E2 ∪E3}
where:

(i) E1 = {e1, eα+1 : e1 = (v1, v1), eα+1 = (wα, wα)},
(ii) E2 = {ei, e′i : ei = e′i = (wi−1, vi), 2 ≤ i ≤ α}, and
(iii) E3 = {fi : fi = (vi, wi), 1 ≤ i ≤ α}.

Each node in Yα has an incident cycle (one or two e-edges) and an incident bridge (edge f).
Then, applying FÃ1

4rer’s construction (cf. [34]), we obtain a new (simple, not multi) graph, in

which each vertex in the multigraph Yα is substituted by a FÃ1
4rer gadget. Thus, we obtain a

3-regular graph. Figure 4.5 shows the resulting graph, and its directed version.
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Figure 4.5: Miyazaki’s graphs.

These are bounded valence graphs and, therefore, their canonical forms can be computed in
polynomial time using the method of [16], what yields a polynomial time isomorphism test.
However, as shown by Miyazaki, nauty may require exponential time to compute their canonical
forms.

In our benchmark, different permutations of the graphs are used for each graph size. To provide
for non-isomorphism tests, we generate graphs where one random bridge is changed for a switch.
This yields, graphs that are very similar to the original ones, but not isomorphic. Finding this
subtle difference should be hard for direct backtracking algorithms, but they are also hard for
nauty (cf. [19]). Examples of such graphs with twenty vertices are shown in Figure 4.6.
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Figure 4.6: Miyazaki’s switch graphs.

4.2 Example: Automorphism Group Computation

In this section we will show how the automorphism group computation of our algorithm works,
for the graph of Figure 4.7. This is an undirected instance of a simple union of two non-
isomorphic tripartite graphs (Figure 4.3).

16

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

.............

............................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................................................................................................................................................................................................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
...

...................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
.

...................................
...................................

...................................
...................................

...................................
...................................

...................................
...................................

...................................
...................................

...................................
...................................

...................................

...................................................................................................................................................

............................................................................................................................................................................................................

............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
........

.............................
.............................

.............................
.............................

.............................
.............................

.............................
.............................

.............................
.............................

.............................
.............................

...........................

...................................................................................................................................................

....................................................................................................................................................................................................................................................................................................................................................................................................
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.........................................................................................................................................................................................................................................................................................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
...............

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
....................................................................................................................................................................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.........................................................................................................................................................

.............................................................................................................................................................................................................................................................................................
............
............
............
............
............
............
............
............
............
............
............
...

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
............................................................................................................................................................................................................... ..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

...........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

........................................................................................................................................................................................................................
............

............
............

............
............

............
............

............
............

............
............

...

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

....................................................................................................................................................................................................................................................................................................................................
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
................................................................................................................................................................................................................................................................................................................................................................................................................................

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
...............................................................................................................................................................................................................................................................................................................................................................................................

........................................................................................................................................................................................................................................................................................................................................
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

.

.......................................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................................................................................................................................................................................................................................................................................................
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
......................................................................................................................................................................................................................................................................................................................................................................................................

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
......................................................................................................................................................................................................................................................................................................................................................................................................................

.......................
.......................

.......................
.......................

.......................
.......................

.......................
.......................

.......................
.......................

.......................
.............................................................................................................................................................................................................................................................................................................................................................................................................................................

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..............................................................................................................................................................................................................................................................................................

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...

..............................................................................................................................................................
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
......

............
............
............
............
............
............
............
............
............
............
............
............
.........................................................................................................................................................................................................................

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
...............................................................................................................................................................................................................................................................................................................................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
......

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...

.......................
.......................

.......................
.......................

.......................
.......................

.......................
.......................

.......................
.......................

.......................
.......................

...........................................................................................................................................................................................................................................................................................................................................................................................................

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...

................
................

................
................

................
................

................
................

................
................

................
................

................
................

................
................

................
................

................
................

................
................

................
................

................
.........................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................
...................................

...................................
...................................

...................................
...................................

...................................
...................................

...................................
...................................

...................................
...................................



....................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..........................................................................................................................................................................................................................................................................................................................................................................

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
......

..........................................
..........................................

..........................................
..........................................

..........................................
..........................................

..........................................
..........................................

..........................................
..........................................

..........................................
..........................................

...............................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
...

Graph G

0
3 4 9 11 19

2
7 8

12

21

22

23

15

24

17

5 6 13
18

1 20 2510 14

Figure 4.7: Sample graph for automorphism group computation.

First of all, the algorithm generates a sequence of partitions for the graph G. It starts computing
the degree partition D, and we get:

Graph G: D = (D1, D2, D3)
D1 = {12, 15, 17, 21, 22, 24} with Deg(D1, G) = (8, 0, 0)
D2 = {2, 5, 6, 7, 8, 13, 18, 23} with Deg(D2, G) = (6, 0, 0)
D3 = {0, 1, 3, 4, 9, 10, 11, 14, 16, 19, 20, 25} with Deg(D3, G) = (4, 0, 0)

Once the degree partitions have been obtained a sequence of partitions will be generated for
graph G, applying algorithm GenerateSequenceOfPartitions.
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4.2.1 Generation of a Sequence of Partitions

Initially, algorithm GenerateSequenceOfPartitions sets S0 = D = (S0
1 , S

0
2 , S

0
3) = ({12, 15, 17, 21,

22, 24}, {2, 5, 6, 7, 8, 13, 18, 23}, {0, 1, 3, 4, 9, 10, 11, 14, 16, 19, 20, 25}), and marks the tree cells
as valid. Next, the three cells are tried for a set refinements in order 1, 2 and 3 (according to
algorithm IndexBestValidPivot), but none of them succeeds in splitting any cell and so that, they
are marked as non valid. Then, each cell type according to algorithm IndexBestIndividualizedCell
is attempt to be individualized (recall that only the first vertex of each cell is considered). The
result of these individualization is performed by algorithm NextEquitablePartition and the results
are as follows (parameter n is set to 0 initially):

• Partition T as result using cell 1 (vertex 12, level 8 reached):

T 8
1 = {15, 17, 24} with ADeg(T 8

1 ,W,G) = (6, 0, 0)
T 8
2 = {2, 7, 8, 23} with ADeg(T 8

2 ,W,G) = (3, 0, 0)
T 8
3 = {13, 18} with ADeg(T 8

3 ,W,G) = (5, 0, 0)
T 8
4 = {14} with ADeg(T 8

4 ,W,G) = (0, 0, 0)
T 8
5 = {1, 25} with ADeg(T 8

5 ,W,G) = (1, 0, 0)
T 8
6 = {10, 16} with ADeg(T 8

6 ,W,G) = (1, 0, 0)
T 8
7 = {0, 3, 4, 9, 11, 19} with ADeg(T 8

7 ,W,G) = (4, 0, 0)

Since the result partition T is not last partition, and it is not subpartition of S0, the normal
criteria is applied to continue the attempting with next cell. The sum of the number of
cells of partition T and the discarded vertices (7 + 6) is greater than n = 0, so that b (best
cell) is set to 1 and n is set to 7 + 6 = 13.

• Partition T as result using cell 2 (vertex 2, level 8 reached):

T 8
1 = {12, 21, 22} with ADeg(T 8

1 ,W,G) = (6, 0, 0)
T 8
2 = {5, 6, 13, 18} with ADeg(T 8

2 ,W,G) = (3, 0, 0)
T 8
3 = {7, 8} with ADeg(T 8

3 ,W,G) = (5, 0, 0)
T 8
4 = {4, 19} with ADeg(T 8

4 ,W,G) = (2, 0, 0)
T 8
5 = {1, 10, 14, 16, 20, 25} with ADeg(T 8

5 ,W,G) = (4, 0, 0)

Since the result partition T is not last partition, and it is not subpartition of S0, the normal
criteria is applied to continue the attempting with next cell. The sum of the number of
cells of partition T and the discarded vertices (5 + 9) is greater than n = 13, so that b
(best cell) is set to 2 and n is set to 5 + 9 = 14.

• Partition T as result using cell 3 (vertex 0, level 8 reached):

T 8
1 = {12, 21, 22} with ADeg(T 8

1 ,W,G) = (8, 0, 0)
T 8
2 = {2, 23} with ADeg(T 8

2 ,W,G) = (5, 0, 0)
T 8
3 = {5, 6, 13, 18} with ADeg(T 8

3 ,W,G) = (5, 0, 0)
T 8
4 = {7, 8} with ADeg(T 8

4 ,W,G) = (5, 0, 0)
T 8
5 = {3, 11} with ADeg(T 8

5 ,W,G) = (2, 0, 0)
T 8
6 = {4, 19} with ADeg(T 8

6 ,W,G) = (2, 0, 0)
T 8
7 = {1, 10, 14, 16, 20, 25} with ADeg(T 8

7 ,W,G) = (4, 0, 0)

Since the result partition T is not last partition, and it is not subpartition of S0, the normal
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criteria is applied to continue the attempting with next cell. The sum of the number of
cells of partition T and the discarded vertices (7 + 5) is not greater than n = 14, so that
b is not modified.

Cell S0
2 is chosen as the pivot set (P 0 = 2), setting R0 = BACKTRACK and a vertex

refinement is performed, obtaining a new partition S1 = (S1
1 , S

1
2 , S

1
3 , S

1
4 , S

1
5), where V 1 =

{0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}, and:

S1
1 = {12, 21, 22} with ADeg(S1

1 , {2}, G) = (1, 0, 0) and Valid(S1
1) = TRUE

S1
2 = {15, 17, 24} with ADeg(S1

2 , {2}, G) = (0, 0, 0) and Valid(S1
2) = TRUE

S1
3 = {5, 6, 7, 8, 13, 18, 23} with ADeg(S1

3 , {2}, G) = (0, 0, 0) and Valid(S1
3) = TRUE

S1
4 = {0, 3, 11} with ADeg(S1

4 , {2}, G) = (1, 0, 0) and Valid(S1
4) = TRUE

S1
5 = {1, 4, 9, 10, 14, 16, 19, 20, 25} with ADeg(S1

5 , {2}, G) = (0, 0, 0) and Valid(S1
5) = TRUE

All cells of S1 are valid since they are new. Therefore, they must be tried for a set refine-
ment. Algorithm IndexBestValidPivot selects them in increasing order size, preferring a greater
available degree for those of equal size. Hence, it chooses S1

2 (P 1 = 2) as the pivot set. Ap-
plying a set refinement to S1, we obtain a new partition S2 = (S2

1 , S
2
2 , S

2
3 , S

2
4 , S

2
5 , S

2
6 , S

2
7), where

V 2 = {0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}, R1 = SET ,
and:

S2
1 = {12, 21, 22} with ADeg(S2

1 , {15, 17, 24}, G) = (0, 0, 0) and Valid(S2
1) = TRUE

S2
2 = {15, 17, 24} with ADeg(S2

2 , {15, 17, 24}, G) = (0, 0, 0) and Valid(S2
2) = FALSE

S2
3 = {5, 6, 13, 18} with ADeg(S2

3 , {15, 17, 24}, G) = (3, 0, 0) and Valid(S2
3) = TRUE

S2
4 = {7, 8, 23} with ADeg(S2

4 , {15, 17, 24}, G) = (0, 0, 0) and Valid(S2
4) = TRUE

S2
5 = {0, 3, 11} with ADeg(S2

5 , {15, 17, 24}, G) = (2, 0, 0) and Valid(S2
5) = TRUE

S2
6 = {4, 9, 19} with ADeg(S2

6 , {15, 17, 24}, G) = (2, 0, 0) and Valid(S2
6) = TRUE

S2
7 = {1, 10, 14, 16, 20, 25} with ADeg(S2

7 , {15, 17, 24}, G) = (0, 0, 0) and Valid(S2
7) = TRUE

Again, since there are valid cells but no singleton ones, algorithm IndexBestValidPivot chooses
cell S2

1 and S2
4 without success for a set refinement. Finally cell S2

6 is chosen as a pivot set (P 2 =
6), and this yields a new partition S3 = (S3

1 , S
3
2 , S

3
3 , S

3
4 , S

3
5 , S

3
6 , S

3
7 , S

3
8 , S

3
9 , S

3
10), where V 3 =

{0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}, R2 = SET , and:

S3
1 = {12, 21, 22} with ADeg(S3

1 , {4, 9, 19}, G) = (0, 0, 0) and Valid(S3
1) = FALSE

S3
2 = {15} with ADeg(S3

2 , {4, 9, 19}, G) = (3, 0, 0) and Valid(S3
2) = TRUE

S3
3 = {24} with ADeg(S3

3 , {4, 9, 19}, G) = (2, 0, 0) and Valid(S3
3) = TRUE

S3
4 = {17} with ADeg(S3

4 , {4, 9, 19}, G) = (1, 0, 0) and Valid(S3
4) = TRUE

S3
5 = {5, 6, 13, 18} with ADeg(S3

5 , {4, 9, 19}, G) = (0, 0, 0) and Valid(S3
5) = TRUE

S3
6 = {7, 8} with ADeg(S3

6 , {4, 9, 19}, G) = (3, 0, 0) and Valid(S3
6) = TRUE

S3
7 = {23} with ADeg(S3

7 , {4, 9, 19}, G) = (0, 0, 0) and Valid(S3
7) = TRUE

S3
8 = {0, 3, 11} with ADeg(S3

8 , {4, 9, 19}, G) = (3, 0, 0) and Valid(S3
8) = TRUE

S3
9 = {4, 9, 19} with ADeg(S3

9 , {4, 9, 19}, G) = (0, 0, 0) and Valid(S3
9) = FALSE

S3
10 = {1, 10, 14, 16, 20, 25} with ADeg(S3

10, {4, 9, 19}, G) = (0, 0, 0) and Valid(S3
10) = TRUE

Having a valid singleton cell S3
2 , it will be selected as the pivot set (P 3 = 2) for a ver-

tex refinement, what yields partition S4 = (S4
1 , S

4
2 , S

4
3 , S

4
4 , S

4
5 , S

4
6 , S

4
7 , S

4
8 , S

4
9 , S

4
10), where V 4 =

{0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}, R3 = VERTEX , and:
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S4
1 = {12, 21, 22} with ADeg(S4

1 , {15}, G) = (0, 0, 0) and Valid(S4
1) = FALSE

S4
2 = {24} with ADeg(S4

2 , {15}, G) = (0, 0, 0) and Valid(S4
2) = TRUE

S4
3 = {17} with ADeg(S4

3 , {15}, G) = (0, 0, 0) and Valid(S4
3) = TRUE

S4
4 = {5, 6, 13, 18} with ADeg(S4

4 , {15}, G) = (1, 0, 0) and Valid(S4
4) = TRUE

S4
5 = {7, 8} with ADeg(S4

5 , {15}, G) = (0, 0, 0) and Valid(S4
5) = TRUE

S4
6 = {23} with ADeg(S4

6 , {15}, G) = (0, 0, 0) and Valid(S4
6) = TRUE

S4
7 = {0} with ADeg(S4

7 , {15}, G) = (1, 0, 0) and Valid(S4
7) = TRUE

S4
8 = {3, 11} with ADeg(S4

8 , {15}, G) = (0, 0, 0) and Valid(S4
8) = TRUE

S4
9 = {4, 9, 19} with ADeg(S4

9 , {15}, G) = (1, 0, 0) and Valid(S4
9) = FALSE

S4
10 = {1, 10, 14, 16, 20, 25} with ADeg(S4

10, {15}, G) = (0, 0, 0) and Valid(S4
10) = TRUE

Again, having a valid singleton cell S4
2 , it will be selected as the pivot set (P 4 = 2) for a

vertex refinement, what yields partition S5 = (S5
1 , S

5
2 , S

5
3 , S

5
4 , S

5
5 , S

5
6 , S

5
7 , S

5
8 , S

5
9 , S

5
10), where V 5 =

{0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25}, R4 = VERTEX , and:

S5
1 = {12, 21, 22} with ADeg(S5

1 , {24}, G) = (0, 0, 0) and Valid(S5
1) = FALSE

S5
2 = {17} with ADeg(S5

2 , {24}, G) = (0, 0, 0) and Valid(S5
2) = TRUE

S5
3 = {5, 6, 13, 18} with ADeg(S5

3 , {24}, G) = (1, 0, 0) and Valid(S5
3) = TRUE

S5
4 = {7, 8} with ADeg(S5

4 , {24}, G) = (0, 0, 0) and Valid(S5
4) = TRUE

S5
5 = {23} with ADeg(S5

5 , {24}, G) = (0, 0, 0) and Valid(S5
5) = TRUE

S5
6 = {0} with ADeg(S5

6 , {24}, G) = (0, 0, 0) and Valid(S5
6) = TRUE

S5
7 = {3, 11} with ADeg(S5

7 , {24}, G) = (1, 0, 0) and Valid(S5
7) = TRUE

S5
8 = {4, 19} with ADeg(S5

8 , {24}, G) = (1, 0, 0) and Valid(S5
8) = TRUE

S5
9 = {9} with ADeg(S5

9 , {24}, G) = (0, 0, 0) and Valid(S5
9) = TRUE

S5
10 = {1, 10, 14, 16, 20, 25} with ADeg(S5

10, {24}, G) = (0, 0, 0) and Valid(S5
10) = TRUE

The same process it is done while having a valid singleton cell S5
2 , it will be selected as the pivot

set (P 5 = 2) for a vertex refinement, what yields partition S6 = (S6
1 , S

6
2 , S

6
3 , S

6
4 , S

6
5 , S

6
6 , S

6
7 , S

6
8 , S

6
9),

where V 6 = {0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25}, R5 = VERTEX ,
and:

S6
1 = {12, 21, 22} with ADeg(S6

1 , {17}, G) = (0, 0, 0) and Valid(S6
1) = FALSE

S6
2 = {5, 6, 13, 18} with ADeg(S6

2 , {17}, G) = (1, 0, 0) and Valid(S6
2) = TRUE

S6
3 = {7, 8} with ADeg(S6

3 , {17}, G) = (0, 0, 0) and Valid(S6
3) = TRUE

S6
4 = {23} with ADeg(S6

4 , {17}, G) = (0, 0, 0) and Valid(S6
4) = TRUE

S6
5 = {0} with ADeg(S6

5 , {17}, G) = (1, 0, 0) and Valid(S6
5) = TRUE

S6
6 = {3, 11} with ADeg(S6

6 , {17}, G) = (1, 0, 0) and Valid(S6
6) = TRUE

S6
7 = {4, 19} with ADeg(S6

7 , {17}, G) = (0, 0, 0) and Valid(S6
7) = TRUE

S6
8 = {9} with ADeg(S6

8 , {17}, G) = (1, 0, 0) and Valid(S6
8) = TRUE

S6
9 = {1, 10, 14, 16, 20, 25} with ADeg(S6

9 , {17}, G) = (0, 0, 0) and Valid(S6
9) = TRUE

The cell S6
4 is selected as the pivot set (P 6 = 4) for a vertex refinement, what yields partition

S7 = (S7
1 , S

7
2 , S

7
3 , S

7
4 , S

7
5 , S

7
6 , S

7
7 , S

7
8), where V 7 = {0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19,

20, 21, 22, 25}, R6 = VERTEX , and:

47



S7
1 = {12, 21, 22} with ADeg(S7

1 , {23}, G) = (1, 0, 0) and Valid(S7
1) = FALSE

S7
2 = {5, 6, 13, 18} with ADeg(S7

2 , {23}, G) = (0, 0, 0) and Valid(S7
2) = TRUE

S7
3 = {7, 8} with ADeg(S7

3 , {23}, G) = (0, 0, 0) and Valid(S7
3) = TRUE

S7
4 = {0} with ADeg(S7

4 , {23}, G) = (1, 0, 0) and Valid(S7
4) = FALSE

S7
5 = {3, 11} with ADeg(S7

5 , {23}, G) = (1, 0, 0) and Valid(S7
5) = FALSE

S7
6 = {4, 19} with ADeg(S7

6 , {23}, G) = (0, 0, 0) and Valid(S7
6) = TRUE

S7
7 = {9} with ADeg(S7

7 , {23}, G) = (0, 0, 0) and Valid(S7
7) = TRUE

S7
8 = {1, 10, 14, 16, 20, 25} with ADeg(S7

8 , {23}, G) = (0, 0, 0) and Valid(S7
8) = TRUE

The cell S7
7 is selected as the pivot set (P 7 = 7) for a vertex refinement, what yields partition

S8 = (S8
1 , S

8
2 , S

8
3 , S

8
4 , S

8
5), where V 8 = {1, 4, 5, 6, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 21, 21, 25}, R7 =

VERTEX , and:

S8
1 = {12, 21, 22} with ADeg(S8

1 , {9}, G) = (0, 0, 0) and Valid(S8
1) = FALSE

S8
2 = {5, 6, 13, 18} with ADeg(S8

2 , {9}, G) = (0, 0, 0) and Valid(S8
2) = FALSE

S8
3 = {7, 8} with ADeg(S8

3 , {9}, G) = (1, 0, 0) and Valid(S8
3) = FALSE

S8
4 = {4, 19} with ADeg(S8

6 , {9}, G) = (0, 0, 0) and Valid(S8
6) = FALSE

S8
5 = {1, 10, 14, 16, 20, 25} with ADeg(S8

8 , {9}, G) = (0, 0, 0) and Valid(S8
8) = FALSE

Note that not only the pivot vertex was discarded but also cells S7
4 and S7

5 , because they do
not have links. At this level, it is known, from the choosing of pivot cell at level 0, that level
8 is an equitable level (because it is not last level). So that, every cell is marked as non valid
and the algorithm IndexBestIndividualizedCell selects the optimal cell for individualization as
follows (parameter n = 0):

• Partition T as result using cell 3 (vertex 7, level 10 reached):

T 10
1 = {12, 21, 22} with ADeg(T 10

1 ,W,G) = (4, 0, 0)
T 10
2 = {5, 6, 13, 18} with ADeg(T 10

2 ,W,G) = (3, 0, 0)
T 10
3 = {4, 19} with ADeg(T 10

3 ,W,G) = (0, 0, 0)
T 10
4 = {1, 10, 14, 16, 20, 25} with ADeg(T 10

4 ,W,G) = (4, 0, 0)

Since the result partition T is subpartition of S8, we not attempt to individualize any
other cell and this cell is chosen as pivot set.

The individualization is carried out with pivot set S8
3 (P 8 = 3), R8 = BACKTRACK and the

new partition S9 = (S9
1 , S

9
2 , S

9
3 , S

9
4 , S

9
5) is obtained, where V 9 = {1, 4, 5, 6, 8, 10, 12, 13, 14, 16, 18,

19, 20, 21, 22, 25}, and:

S9
1 = {12, 21, 22} with ADeg(S9

1 , {7}, G) = (1, 0, 0) and Valid(S9
1) = FALSE

S9
2 = {5, 6, 13, 18} with ADeg(S9

2 , {7}, G) = (0, 0, 0) and Valid(S9
2) = FALSE

S9
3 = {8} with ADeg(S9

3 , {7}, G) = (0, 0, 0) and Valid(S9
3) = TRUE

S9
4 = {4, 19} with ADeg(S9

4 , {7}, G) = (1, 0, 0) and Valid(S9
4) = FALSE

S9
5 = {1, 10, 14, 16, 20, 25} with ADeg(S9

5 , {7}, G) = (0, 0, 0) and Valid(S9
5) = FALSE

The only singleton cell S9
3 is chosen as the pivot set (P 9 = 3) for a vertex refinement, what yields

partition S10 = (S10
1 , S

10
2 , S

10
3 , S

10
4 , S

10
5 , S

10
6 , S

10
7 , S

10
8 ), where V 10 = {1, 4, 5, 6, 10, 12, 13, 14, 16, 18,

19, 20, 21, 22, 25}, R9 = VERTEX , and:
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S10
1 = {12, 21, 22} with ADeg(S10

1 , {8}, G) = (1, 0, 0) and Valid(S10
1 ) = FALSE

S10
2 = {5, 6, 13, 18} with ADeg(S10

2 , {8}, G) = (0, 0, 0) and Valid(S10
2 ) = FALSE

S10
3 = {4, 19} with ADeg(S10

3 , {8}, G) = (1, 0, 0) and Valid(S10
3 ) = FALSE

S10
4 = {1, 10, 14, 16, 20, 25} with ADeg(S10

4 , {8}, G) = (0, 0, 0) and Valid(S10
4 ) = FALSE

At this level, it is known, from the choosing of pivot cell at level 8, that level 10 is an equitable
level (because it is not last level). So that, every cell is marked as non valid and the algorithm
IndexBestIndividualizedCell selects the optimal cell for individualization as follows (parameter
n = 0):

• Partition T as result using cell 1 (vertex 12, level 17 reached):

T 17
1 = {13, 18} with ADeg(T 17

1 ,W,G) = (4, 0, 0)
T 17
2 = {14} with ADeg(T 17

2 ,W,G) = (3, 0, 0)
T 17
3 = {1, 25} with ADeg(T 17

3 ,W,G) = (0, 0, 0)
T 17
4 = {10, 16} with ADeg(T 17

4 ,W,G) = (4, 0, 0)

Since the result partition T is not last partition, and it is not subpartition of S10, the
normal criteria is applied to continue the attempting with next cell. The sum of the
number of cells of partition T and the discarded vertices (4 + 19) is greater than n = 0,
so that b (best cell) is set to 1 and n is set to 4 + 19 = 23.

• Partition T as result using cell 2 (vertex 5, level 17 reached):

T 17
1 = {13, 18} with ADeg(T 17

1 ,W,G) = (4, 0, 0)
T 17
2 = {14} with ADeg(T 17

2 ,W,G) = (3, 0, 0)
T 17
3 = {10, 16} with ADeg(T 17

3 ,W,G) = (0, 0, 0)
T 17
4 = {1, 25} with ADeg(T 17

4 ,W,G) = (4, 0, 0)

Since the result partition T is not last partition, and it is not subpartition of S10, the
normal criteria is applied to continue the attempting with next cell. The sum of the
number of cells of partition T and the discarded vertices (4 + 19) is equal than n = 23,
so that b (best cell) size is compared with cell 2 size and best cell b is less than cell 2 and
nothing changes.

• Partition T as result using cell 4 (vertex 1, level 18 reached):

T 17
1 = {18} with ADeg(T 17

1 ,W,G) = (4, 0, 0)
T 17
2 = {16} with ADeg(T 17

2 ,W,G) = (3, 0, 0)
T 17
3 = {10} with ADeg(T 17

3 ,W,G) = (0, 0, 0)

Since the result partition T is last partition, we not attempt to individualize any other
cell and this cell is chosen as pivot set.

Then, the cell S10
4 is chosen for individualization (P 10 = 4), and a vertex refinement is carried

out setting R10 = BACKTRACK . Since we know the algorithm will reached last level partition
without any other backtrack level, we summarize the generation of a sequence of partitions up
to the end as follows:

• S11 = ({12, 21}, {22}, {6, 13}, {5, 18}, {10, 14, 16, 20, 25}), R11 = VERTEX , and P 11 = 2.

• S12 = ({12, 21}, {6, 13}, {5, 18}, {10, 14, 16, 20}, {25}), R12 = VERTEX , and P 12 = 5.

49



• S13 = ({12, 21}, {6}, {13}, {18}, {5}, {10, 14, 16, 20}), R13 = VERTEX , and P 13 = 5.

• S14 = ({12, 21}, {6}, {13}, {18}, {10, 14, 16}, {20}), R14 = VERTEX , and P 14 = 6.

• S15 = ({12}, {21}, {6}, {13}, {18}, {10, 14, 16}), R15 = VERTEX , and P 15 = 2.

• S16 = ({12}, {6}, {13}, {18}, {10, 16}, {14}), R16 = VERTEX , and P 16 = 6.

• S17 = ({12}, {6}, {13}, {18}, {10, 16}), R17 = VERTEX , and P 17 = 3.

• S18 = ({18}, {16}, {10}).

This partition has only singleton cells. Therefore, the algorithm stops, inducing the following
order on the vertices of the graph, which will be used as base generator γ1 within the set of
generators: 2, 15, 24, 17, 23, 9, 0, 3, 11, 7, 8, 1, 4, 19, 22, 25, 5, 20, 21, 14, 13, 12, 6, 18, 16, 10.

4.2.2 Search for Automorphisms

The search for automorphisms is performed by algorithm FindAutomorphisms, which computes
the backtrack levels and limit search levels first of all. Let t = 18 be the total number of levels,
we only take into account those levels that are equitable (Rl = BACKTRACK ), since the other
values are not relevant for our purpose.

From the algorithm ComputeBacktrackLevels we get:

B0 = −1 since it is the first backtrack level and S0 it is not subpartition of any other level.
B8 = 0 since S8 is not subpartition of S0.
B10 = −1 since S10 is subpartition of both S8 and S0.

From the algorithm ComputeLimitLevels we get:

L0 = 10 since S10 is subpartition of S0.
L8 = 10 since S10 is subpartition of S8.
L10 = 18 since S10 is the last backtrack level.

Next, cells with no links are computed by algorithm ComputeCellsWithNoLinks, and it finds
out cells with no links and cell size grater than 1 at levels 7 and 10:

γ2: S7
5 = {3, 11}: 2, 15, 24, 17, 23, 9, 0, 11, 3, 7, 8, 1, 4, 19, 22, 25, 5, 20, 21, 14, 13, 12, 6, 18, 16, 10.

γ3: S10
3 = {4, 19}: 2, 15, 24, 17, 23, 9, 0, 3, 11, 7, 8, 1, 19, 4, 22, 25, 5, 20, 21, 14, 13, 12, 6, 18, 16, 10.

Then, the search tree will be traversed from the backtrack points in ascending order. The
only equivalence information that it is had, from Γ = {γ1, γ2, γ3}, is: (3, 11), (4, 19). Any
other vertex of the graph is in a singleton orbit. Since R10 = BACKTRACK , the vertices in
the pivot set S10

4 = {1, 10, 14, 16, 20, 25} other than 1 (the pivot vertex used in the original
sequence of partitions) are tested for equivalence. However, as the pivot cell is not affected
by the equivalences, the orbits of the vertices in the pivot cell are marked as valid. Algorithm
CheckAutomorphisms performs the search for automorphisms at this level 10, setting ∆ =
{{γ1, γ2, γ3}}.
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Vertex 10 is used for generate an alternative sequence of partitions, what as first step it is
individualized and partition T 11 = (T 11

1 , T 11
2 , T 11

3 , T 11
4 , T 11

5 ) is yielded, which is compatible with
S11 and:

T 11
1 = {21, 22} with ADeg(T 11

1 , {10}, G) = (1, 0, 0)
T 11
2 = {12} with ADeg(T 11

2 , {10}, G) = (0, 0, 0)
T 11
3 = {5, 18} with ADeg(T 11

3 , {10}, G) = (1, 0, 0)
T 11
4 = {6, 13} with ADeg(T 11

4 , {10}, G) = (0, 0, 0)
T 11
5 = {1, 14, 16, 20, 25} with ADeg(T 11

5 , {10}, G) = (0, 0, 0)

The followings compatible sequence of partitions, generated by algorithm SubtreeCompatible are
summarized as follows:

• T 12 = ({21, 22}, {5, 18}, {6, 13}, {1, 14, 20, 25}, {16}).

• T 13 = ({21, 22}, {5}, {18}, {13}, {6}, {1, 14, 20, 25}).

• T 14 = ({21, 22}, {5}, {18}, {13}, {1, 14, 25}, {20}.

• T 15 = ({22}, {21}, {5}, {18}, {13}, {1, 14, 25}).

• T 16 = ({22}, {5}, {18}, {13}, {1, 25}, {14}).

• T 17 = ({22}, {5}, {18}, {13}, {1, 25}).

• T 18 = ({13}, {25}, {1}).

The compatibility between partitions is complete, and so that, the induced order by the set
of partitions T {2, 15, 24, 17, 23, 9, 0, 3, 11, 7, 8, 10, 4, 19, 12, 16, 6, 20, 21, 14, 18, 22, 5, 13, 25, 1} is
added to the set of generators as γ4, and algorithm returns with value l′ = 18 and the next
vertex is considered. Now, the equivalences of the pivot cell remain as: (1, 10), (16, 25), from
the set of generators Γ = {γ1, ..., γ4}.

Vertex 14 is used for generate an alternative sequence of partitions, what as first step it is
individualized and partition T 11 = (T 11

1 , T 11
2 , T 11

3 , T 11
4 , T 11

5 ) is yielded, which is compatible with
S11 and:

T 11
1 = {12, 22} with ADeg(T 11

1 , {14}, G) = (1, 0, 0)
T 11
2 = {21} with ADeg(T 11

2 , {14}, G) = (0, 0, 0)
T 11
3 = {5, 6} with ADeg(T 11

3 , {14}, G) = (1, 0, 0)
T 11
4 = {13, 18} with ADeg(T 11

4 , {14}, G) = (0, 0, 0)
T 11
5 = {1, 10, 16, 20, 25} with ADeg(T 11

5 , {14}, G) = (0, 0, 0)

The followings compatible sequence of partitions, generated by algorithm SubtreeCompatible are
summarized as follows:

• T 12 = ({12, 22}, {5, 6}, {13, 18}, {1, 10, 16, 25}, {20}).

Partition T 12 is not compatible with S12, since ADeg(S12
1 , S

12
5 , G) 6= ADeg(T 12

1 , T 12
5 , G), and

this and the other differences between partitions (if any more) are used to generate the failure
recording F (hash value). The function returns until level 10.

Then, next vertex 16 is used for generate an alternative sequence of partitions, what as first step
it is individualized and partition T 11 = (T 11

1 , T 11
2 , T 11

3 , T 11
4 , T 11

5 ) is yielded, which is compatible
with S11 and:
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T 11
1 = {21, 22} with ADeg(T 11

1 , {16}, G) = (1, 0, 0)
T 11
2 = {12} with ADeg(T 11

2 , {16}, G) = (0, 0, 0)
T 11
3 = {5, 13} with ADeg(T 11

3 , {16}, G) = (1, 0, 0)
T 11
4 = {6, 18} with ADeg(T 11

4 , {16}, G) = (0, 0, 0)
T 11
5 = {1, 10, 14, 20, 25} with ADeg(T 11

5 , {16}, G) = (0, 0, 0)

The followings compatible sequence of partitions, generated by algorithm SubtreeCompatible are
summarized as follows:

• T 12 = ({21, 22}, {5, 13}, {6, 18}, {1, 14, 20, 25}, {10}).

• T 13 = ({21, 22}, {5}, {13}, {18}, {6}, {1, 14, 20, 25}).

• T 14 = ({21, 22}, {5}, {13}, {18}, {1, 14, 25}, {20}.

• T 15 = ({22}, {21}, {5}, {13}, {18}, {1, 14, 25}).

• T 16 = ({22}, {5}, {13}, {18}, {1, 25}, {14}).

• T 17 = ({22}, {5}, {13}, {18}, {1, 25}).

• T 18 = ({18}, {1}, {25}).

The compatibility between partitions is complete, and so that, the induced order by the set of
partitions T 2, 15, 24, 17, 23, 9, 0, 3, 11, 7, 8, 16, 4, 19, 12, 10, 6, 20, 21, 14, 13, 22, 5, 18, 1, 25 is added
to the set of generators as γ5, and algorithm returns with value l′ = 18 and the next vertex
is considered. Now, the equivalences of the pivot cell remain as: (1, 10, 16, 25), from the set of
generators Γ = {γ1, ..., γ5}.

Now, vertex 20 is used for generate an alternative sequence of partitions, what as first step it is
individualized and partition T 11 = (T 11

1 , T 11
2 , T 11

3 , T 11
4 , T 11

5 ) is yielded, which is compatible with
S11 and:

T 11
1 = {12, 22} with ADeg(T 11

1 , {20}, G) = (1, 0, 0)
T 11
2 = {21} with ADeg(T 11

2 , {20}, G) = (0, 0, 0)
T 11
3 = {13, 18} with ADeg(T 11

3 , {20}, G) = (1, 0, 0)
T 11
4 = {5, 6} with ADeg(T 11

4 , {20}, G) = (0, 0, 0)
T 11
5 = {1, 10, 14, 16, 25} with ADeg(T 11

5 , {20}, G) = (0, 0, 0)

The followings compatible sequence of partitions, generated by algorithm SubtreeCompatible are
summarized as follows:

• T 12 = ({12, 22}, {13, 18}, {5, 6}, {1, 10, 16, 25}, {14}).

Partition T 12 is not compatible with S12, since ADeg(S12
1 , S

12
5 , G) 6= ADeg(T 12

1 , T 12
5 , G), and

this and the other differences between partitions (if any more) are used to generate the failure
recording F (hash value). The function returns until level 10.

Vertex 25 is already known to be equivalent to vertex 1, and no more vertices remain. R10 is not
set, because not all vertices in S10

4 are equivalent. A next call to algorithm CheckAutomorphisms
is done in order to find out automorphisms at level 8.

Since R8 = BACKTRACK , the vertices in the pivot set S8
3 = {7, 8} other than 8 (the pivot

vertex used in the original sequence of partitions) are tested for equivalence. However, as the
pivot cell is not affected by the equivalences, the orbits of the vertices in the pivot cell are
marked as valid. It is set ∆ = {{γ1, ..., γ5}}.
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Vertex 8 is used for generate an alternative sequence of partitions, what as first step it is
individualized and partition T 9 = (T 9

1 , T
9
2 , T

9
3 , T

9
4 , T

9
5 ) is yielded, which is compatible with S9

and:

T 9
1 = {12, 21, 22} with ADeg(T 9

1 , {8}, G) = (1, 0, 0)
T 9
2 = {5, 6, 13, 18} with ADeg(T 9

2 , {8}, G) = (0, 0, 0)
T 9
3 = {7} with ADeg(T 9

3 , {8}, G) = (0, 0, 0)
T 9
4 = {4, 19} with ADeg(T 9

4 , {8}, G) = (1, 0, 0)
T 9
5 = {1, 10, 14, 16, 20, 25} with ADeg(T 9

5 , {8}, G) = (0, 0, 0)

The followings compatible sequence of partitions, generated by algorithm SubtreeCompatible are
summarized as follows:

• T 10 = ({12, 21, 22}, {5, 6, 13, 18}, {4, 19}, {1, 10, 14, 16, 20, 25}).

Since T 10 = S10 (equal partitions), algorithm stop searching for a compatible sequence of
partitions, because it is trivial to complete it. Thus, the induced order by the set of partitions
T 2, 15, 24, 17, 23, 9, 0, 3, 11, 8, 7, 1, 4, 19, 22, 25, 5, 20, 21, 14, 13, 12, 6, 18, 16, 10 is added to the set
of generators as γ6, and algorithm returns with value l′ = 10 and no more vertices remain
in the pivot cell. Then, algorithm sets R8 = VERTEX because all vertices in the pivot set
are equivalent. Observe that, if T 10 and S10 would have not been equal partitions, the search
limit level L8 = 10, so that an automorphism would have been found, if the partitions were
compatible, without continue the search of a compatible sequence of partitions up to the end.
A next call to algorithm CheckAutomorphisms is done in order to find out automorphisms at
level 0.

Since R0 = BACKTRACK , the vertices in the pivot set S0
2 = {2, 5, 6, 7, 8, 13, 18, 23} other

than 2 (the pivot vertex used in the original sequence of partitions) are tested for equivalence.
Now, the equivalences of the pivot cell are: (5, 6), (7, 8), (13, 18), from the set of generators
Γ = {γ1, ..., γ6}. It is set ∆ = {{γ1, ..., γ6}}.

Vertex 5 is used for generate an alternative sequence of partitions, what as first step it is
individualized and partition T 1 = (T 1

1 , T
1
2 , T

1
3 , T

1
4 , T

1
5 ) is yielded, which is compatible with S1

and:

T 1
1 = {15, 17, 24} with ADeg(T 1

1 , {5}, G) = (1, 0, 0)
T 1
2 = {12, 21, 22} with ADeg(T 1

2 , {5}, G) = (0, 0, 0)
T 1
3 = {2, 6, 7, 8, 13, 18, 23} with ADeg(T 1

3 , {5}, G) = (0, 0, 0)
T 1
4 = {10, 14, 16} with ADeg(T 1

4 , {5}, G) = (1, 0, 0)
T 1
5 = {0, 1, 3, 4, 9, 11, 19, 20, 25} with ADeg(T 1

5 , {5}, G) = (0, 0, 0)

The followings compatible sequence of partitions, generated by algorithm SubtreeCompatible are
summarized as follows:

• T 2 = ({15, 17, 24}, {12, 21, 22}, {2, 7, 8, 23}, {6, 13, 18}, {10, 14, 16}, {1, 20, 25},
{0, 3, 4, 9, 11, 19})

Clearly, vertex 5 does not generate a sequence of partitions compatible with the original one,
since T 2 is not compatible with S2 (number of cells). Then, this and the other differences
between partitions (if any more) are used to generate the failure recording F (hash value). The
function returns until level 0.

Vertex 6 is equivalent to vertex 5, which has been already tried.
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Next vertex 7 is attempt to generate an alternative sequence of partitions. It is individualized
and partition T 1 = (T 1

1 , T
1
2 , T

1
3 , T

1
4 , T

1
5 ) is yielded, which is compatible with S1 and:

T 1
1 = {12, 21, 22} with ADeg(T 1

1 , {7}, G) = (1, 0, 0)
T 1
2 = {15, 17, 24} with ADeg(T 1

2 , {7}, G) = (0, 0, 0)
T 1
3 = {2, 5, 6, 8, 13, 18, 23} with ADeg(T 1

3 , {7}, G) = (0, 0, 0)
T 1
4 = {4, 9, 19} with ADeg(T 1

4 , {7}, G) = (1, 0, 0)
T 1
5 = {0, 1, 3, 10, 11, 14, 16, 20, 25} with ADeg(T 1

5 , {7}, G) = (0, 0, 0)

The followings compatible sequence of partitions, generated by algorithm SubtreeCompatible are
summarized as follows:

• T 2 = ({12, 21, 22}, {15, 17, 24}, {5, 6, 13, 18}, {2, 8, 23}, {4, 9, 19}, {0, 3, 11},
{1, 10, 14, 16, 20, 25})

• T 3 = ({12, 21, 22}, {17}, {24}, {15}, {5, 6, 13, 18}, {2, 23}, {8}, {4, 9, 19}, {0, 3, 11},
{1, 10, 14, 16, 20, 25})

• T 4 = ({12, 21, 22}, {24}, {15}, {5, 6, 13, 18}, {2, 23}, {8}, {9}, {4, 19}, {0, 3, 11},
{1, 10, 14, 16, 20, 25})

• T 5 = ({12, 21, 22}, {15}, {5, 6, 13, 18}, {2, 23}, {8}, {9}, {4, 19}, {3, 11}, {0},
{1, 10, 14, 16, 20, 25})

• T 6 = ({12, 21, 22}, {5, 6, 13, 18}, {2, 23}, {8}, {9}, {4, 19}, {3, 11}, {0}, {1, 10, 14, 16, 20, 25})

• T 7 = ({12, 21, 22}, {5, 6, 13, 18}, {2, 23}, {9}, {4, 19}, {3, 11}, {0}, {1, 10, 14, 16, 20, 25})

• T 8 = ({12, 21, 22}, {5, 6, 13, 18}, {2, 23}, {3, 11}, {1, 10, 14, 16, 20, 25})

• T 9 = ({12, 21, 22}, {5, 6, 13, 18}, {23}, {3, 11}, {1, 10, 14, 16, 20, 25})

• T 10 = ({12, 21, 22}, {5, 6, 13, 18}, {3, 11}, {1, 10, 14, 16, 20, 25})

Since T 10 = S10 (equal partitions, because cell S10
3 has no links), algorithm stop searching for a

compatible sequence of partitions, because it is trivial to complete it. Thus, the induced order by
the set of partitions T 7, 17, 24, 15, 8, 0, 9, 4, 19, 2, 23, 1, 3, 11, 22, 25, 5, 20, 21, 14, 13, 12, 6, 18, 16, 10
is added to the set of generators as γ7, and algorithm returns with value l′ = 10 and the algorithm
goes on the searching. Observe that, if T 10 and S10 would have not been equal partitions, the
search limit level L8 = 10, so that an automorphism would have been found, if the partitions
were compatible, without continue the search of a compatible sequence of partitions up to the
end.

The equivalence among vertices are: (2, 8, 7, 23), (5, 6), (13, 18), from the set of generators Γ =
{γ1, ..., γ7}. Next vertex 13 is individualized and attempt to generate an alternative sequence of
partitions. The partition T 1 = (T 1

1 , T
1
2 , T

1
3 , T

1
4 , T

1
5 ) is yielded, which is compatible with S1 and:

T 1
1 = {15, 17, 24} with ADeg(T 1

1 , {13}, G) = (1, 0, 0)
T 1
2 = {12, 21, 22} with ADeg(T 1

2 , {13}, G) = (0, 0, 0)
T 1
3 = {2, 5, 6, 7, 8, 18, 23} with ADeg(T 1

3 , {13}, G) = (0, 0, 0)
T 1
4 = {1, 16, 20} with ADeg(T 1

4 , {13}, G) = (1, 0, 0)
T 1
5 = {0, 3, 4, 9, 10, 11, 14, 16, 25} with ADeg(T 1

5 , {13}, G) = (0, 0, 0)
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The followings compatible sequence of partitions, generated by algorithm SubtreeCompatible are
summarized as follows:

• T 2 = ({15, 17, 24}, {12, 21, 22}, {2, 7, 8, 23}, {5, 6, 18}, {1, 16, 20}, {10, 14, 25},
{0, 3, 4, 9, 11, 19})

Clearly, vertex 5 does not generate a sequence of partitions compatible with the original one,
since T 2 is not compatible with S2 (number of cells). Then, this and the other differences
between partitions (if any more) are used to generate the failure recording F (hash value). The
function returns until level 0.

Remaining vertices of pivot cell at level 0 are not tried, because belongs to non valid orbits (they
are equivalent to already tried vertices).

Thus, the automorphism group of the graph is computed (the set of generators Γ) from which
we know the orbit partitions:

(0, 9) (16, 25, 10, 1) (8, 7, 2, 23) (4, 19, 3, 11) (6, 5) (12, 22) (18, 13) (14) (17, 15) (20) (21) (24)

and the size of the automorphism group as follows:

• Calculate the product of factorials of the cell with no links sizes (greater than 1) which
were discarded. These cells were |S7

5 | = 2 and |S10
3 | = 2, and we obtain: 2! ∗ 2! = 22.

• Calculate the product of number of equivalent vertices to the pivot vertex at each initial
BACKTRACK level. These values are: for level 10 = 22, for level 8 = 2, and for level 0
= 22, and the number obtained is: 22 ∗ 2 ∗ 22 = 25.

• The automorphism group size is the product of these calculations: |Aut(G)| = 22∗25 = 27.

4.3 Example: Isomorphism Test

In this section we will show how our algorithm computes isomorphism test between two graphs
(Figure 4.8). These sample graphs are isomorphic, and we will observe the algorithm behaviour.

Graph H
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Figure 4.8: Sample graphs for isomorphism testing.

Since the algorithm generate a sequence of partitions for each graph, and then it does a search for
automorphism (computing the automorphism group), these steps have been detailed in previous
section, so then, we will ommit them, but summarize the results.
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For graph G, the sequence of partitions is as follows:

• S0 = ({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}), R0 = BACKTRACK , and P 0 = 1.

• S1 = ({2, 3, 4}, {1, 5, 6, 7, 8, 9, 10, 11, 12, 13}), R1 = SET , and P 1 = 1.

• S2 = ({2, 3, 4}, {1}, {5}, {7}, {6, 8, 9, 10, 11, 12, 13}), R2 = VERTEX , and P 2 = 2.

• S3 = ({2, 3, 4}, {5}, {7}, {6, 8, 9, 10, 11, 12, 13}), R3 = VERTEX , and P 3 = 2.

• S4 = ({2, 3}, {4}, {7}, {6}, {8, 9, 10, 11, 12, 13}), R4 = VERTEX , and P 4 = 3.

• S5 = ({4}, {6}, {11}, {8, 9, 10, 12, 13}), R5 = VERTEX , and P 5 = 3.

• S6 = ({6}, {12, 13}, {8, 9, 10}), R6 = VERTEX , and P 6 = 1.

• S7 = ({12, 13}, {8}, {9, 10}), R7 = VERTEX , and P 7 = 2.

• S8 = ({12, 13}, {9, 10}), R8 = VERTEX , and P 8 = 1.

• S9 = ({13}, {9, 10}), R9 = VERTEX , and P 9 = 1.

• S10 = ({9, 10}).

Note that, the partition at level 8 was a backtrack level which was changed to R8 = VERTEX
because all vertices of S8

P 8 was found to be equivalent.

And the automorphism group of graph G as follows:

• Set of generators:
γ1 = 0, 1, 5, 7, 2, 3, 11, 4, 6, 8, 12, 13, 9, 10
γ2 = 0, 1, 5, 7, 2, 3, 11, 4, 6, 8, 12, 13, 10, 9
γ3 = 0, 1, 5, 7, 3, 2, 11, 4, 6, 8, 12, 13, 9, 10
γ4 = 0, 1, 5, 7, 2, 3, 11, 4, 6, 8, 13, 12, 9, 10
γ5 = 1, 0, 5, 7, 2, 3, 11, 4, 6, 8, 12, 13, 9, 10
γ6 = 2, 3, 4, 6, 0, 1, 8, 5, 7, 11, 9, 10, 12, 13
γ7 = 9, 10, 11, 6, 12, 13, 5, 8, 7, 4, 2, 3, 0, 1

• Orbits:
(0, 1, 2, 3, 9, 10, 13, 12), (4, 5, 8, 11), (6, 7)

• |Aut(G)| = 22 ∗ 24 = 26

We obtain the extended sequence of partitions EG = (QG,BG, LG,FG,ΓG), where QG = (S,R,P),
and Γ = {γ1, ..., γ7}.

Since the sequence of partitions for graph G has remaining backtrack levels, a complete sequence
of partitions will be generated for grah H, and its sequence of partitions is as follows:

• S0 = ({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}), R0 = BACKTRACK , and P 0 = 1.

• S1 = ({1, 2, 3}, {4, 5, 6, 7, 8, 9, 10, 11, 12, 13}), R1 = SET , and P 1 = 1.

• S2 = ({1, 2, 3}, {4, 5, 6, 7, 8, 9}, {10, 11, 12, 13}), R2 = VERTEX , and P 2 = 3.

• S3 = ({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {11, 12, 13}), R3 = VERTEX , and P 3 = 7.

• S4 = ({3}, {2}, {1}, {4, 5, 6}, {7, 8, 9}, {11, 13}, {12}), R4 = VERTEX , and P 4 = 7.

• S5 = ({3}, {2}, {1}, {4, 5, 6}, {7, 8, 9}, {11, 13}), R5 = VERTEX , and P 5 = 1.
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• S6 = ({2}, {1}, {4, 5, 6}, {8, 9}, {7}, {11, 13}), R6 = VERTEX , and P 6 = 5.

• S7 = ({2}, {1}, {4, 5, 6}, {8, 9}, {11, 13}), R7 = VERTEX , and P 7 = 2.

• S8 = ({2}, {4, 5}, {6}, {8, 9}, {11, 13}), R8 = VERTEX , and P 8 = 1.

• S9 = ({6}, {8, 9}, {11, 13}), R9 = VERTEX , and P 9 = 2.

• S10 = ({9}, {11, 13}), R10 = VERTEX , and P 10 = 1.

• S11 = ({11, 13}).

Note that, the partitions at levels 2 and 9 were both backtrack level which were changed to R2 =
R9 = VERTEX because all vertices of S2

P 2 and S9
P 9 were found to be equivalent respectively.

And the automorphism group of graph H as follows:

• Set of generators:
γ1 = 0, 10, 12, 3, 7, 1, 2, 4, 5, 8, 6, 9, 11, 13
γ2 = 0, 10, 12, 3, 7, 1, 2, 4, 5, 8, 6, 9, 13, 11
γ3 = 0, 10, 12, 3, 7, 1, 2, 5, 4, 8, 6, 9, 11, 13
γ4 = 0, 10, 12, 3, 7, 1, 2, 4, 5, 9, 6, 8, 11, 13
γ5 = 0, 11, 13, 1, 6, 3, 2, 8, 9, 4, 7, 5, 10, 12
γ6 = 2, 4, 5, 7, 3, 6, 0, 10, 12, 11, 1, 13, 8, 9

• Orbits:
(0, 2), (1, 3, 6, 7), (4, 5, 8, 9, 10, 11, 12, 13)

• |Aut(H)| = 22 ∗ 24 = 26

We obtain the extended sequence of partitions EH = (QH ,BH , LH ,FH ,ΓH), where QH =
(S,R,P), and Γ = {γ1, ..., γ6}.

Since Aut(G) = Aut(H) and Orbits(EG) = Orbits(EH), the algorithm will attempt to find a
sequence of partitions compatible with the sequence of partitions of the other graph.

4.3.1 Match Graphs G and H

Being that both graph has the same number of backtrack levels (1), any of the sequences of
partitions may be the target one. The sequence of partitions SeqPart(EG) is chosen as the
target (line 20 of Algorithm AreIsomorphic). Then, Algorithm Match will try to find a sequence
of partitions for graph H compatible with this. It it is possible to find one such sequence, it
returns a value ≥ 0 (i.e., the level where the compatible was found).

Algorithm Match is called with parameters 0 for the starting level, G for the graph whose
sequence of partitions is SeqPart(QG), and H for the graph whose initial partition is DH =
({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}) and whose known orbits are Orbits(QH) = {{0, 2},
{1, 3, 6, 7}, {4, 5, 8, 9, 10, 11, 12, 13}}.

Since R0 = BACKTRACK and it is the first level (B0 = −1), the partial orbits computed
for graph H are the total orbits. Then, the compatibility between the orbits of both graph is
complete, and only those orbits of graph H, that are the same size as the orbit which pivot
vertex of the sequence of partitions for graph G belongs, are considered. Pivot vertex used
at level 0 in the sequence of partitions of graph G was vertex 0, which |OrbitsOf (0,ΓG)| = 8.
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Thus, only one orbit of graph H will be considered, and consequently, an only one vertex will
be attempted to obtain a sequence of partitions for graph H, compatible with the target.

First, vertex 4 is chosen, and a new partition T ′ = (T ′1, T
′
2) is generated refining the initial

partition T = DH by vertex using 4 as the pivot vertex, where:

T ′1 = {1, 10, 12} with ADeg(T ′1,W
′, G) = (1, 0, 0)

T ′2 = {0, 2, 3, 5, 6, 7, 8, 9, 11, 13} with ADeg(T ′2,W
′, G) = (0, 0, 0)

This new partition is compatible with the target partition S1 (recall that this will always be the
case, since both graphs are regular of degree three, and have the same number of vertices), so a
recursive call is made to process the next partition in the sequence.

Since R1 = SET , a set refinement is performed using cell {1, 10, 12} as the pivot set (recall that
P 1 = 1). This yields a partition T ′ = (T ′1, T

′
2, T

′
3, T

′
4, T

′
5), where:

T ′1 = {1, 10, 12} with ADeg(T ′1, {1, 10, 12}, H) = (0, 0, 0)
T ′2 = {5} with ADeg(T ′2, {1, 10, 12}, H) = (3, 0, 0)
T ′3 = {6} with ADeg(T ′3, {1, 10, 12}, H) = (2, 0, 0)
T ′4 = {0} with ADeg(T ′4, {1, 10, 12}, H) = (1, 0, 0)
T ′5 = {2, 3, 7, 8, 9, 11, 13} with ADeg(T ′2, {1, 10, 12}, H) = (0, 0, 0)

This partition is compatible with the target S2 and a recursive call is made to proceed to the
next partition in the sequence. Here, since P 2 = 2 and R2 = VERTEX , pivot cell {5} is used
for a vertex refinement, what yields a new partition T ′ = (T ′1, T

′
2, T

′
3, T

′
4), where:

T ′1 = {1, 10, 12} with ADeg(T ′1, {5}, H) = (0, 0, 0)
T ′2 = {6} with ADeg(T ′2, {5}, H) = (2, 0, 0)
T ′3 = {0} with ADeg(T ′3, {5}, H) = (1, 0, 0)
T ′4 = {2, 3, 7, 8, 9, 11, 13} with ADeg(T ′4, {5}, H) = (0, 0, 0)

This partition is compatible with the target S3 and a recursive call is made to proceed to the
next partition in the sequence. Here, since P 3 = 2 and R3 = VERTEX , pivot cell {6} is used
for a vertex refinement, what yields a new partition T ′ = (T ′1, T

′
2, T

′
3, T

′
4, T

′
5), where:

T ′1 = {10, 12} with ADeg(T ′1, {6}, H) = (1, 0, 0)
T ′2 = {1} with ADeg(T ′2, {6}, H) = (0, 0, 0)
T ′3 = {0} with ADeg(T ′3, {6}, H) = (0, 0, 0)
T ′4 = {2} with ADeg(T ′4, {6}, H) = (1, 0, 0)
T ′5 = {3, 7, 8, 9, 11, 13} with ADeg(T ′5, {6}, H) = (0, 0, 0)

This partition is compatible with the target S4 and a recursive call is made to proceed to the
next partition in the sequence. Here, since P 4 = 3 and R4 = VERTEX , pivot cell {0} is used
for a vertex refinement, what yields a new partition T ′ = (T ′1, T

′
2, T

′
3, T

′
4), where:

T ′1 = {1} with ADeg(T ′1, {0}, H) = (1, 0, 0)
T ′2 = {2} with ADeg(T ′2, {0}, H) = (1, 0, 0)
T ′3 = {3} with ADeg(T ′3, {0}, H) = (1, 0, 0)
T ′4 = {7, 8, 9, 11, 13} with ADeg(T ′4, {0}, H) = (0, 0, 0)
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This partition is compatible with the target S5 and a recursive call is made to proceed to the
next partition in the sequence. Here, since P 5 = 3 and R5 = VERTEX , pivot cell {3} is used
for a vertex refinement, what yields a new partition T ′ = (T ′1, T

′
2, T

′
3), where:

T ′1 = {2} with ADeg(T ′1, {3}, H) = (0, 0, 0)
T ′2 = {8, 9} with ADeg(T ′2, {3}, H) = (1, 0, 0)
T ′3 = {7, 11, 13} with ADeg(T ′3, {3}, H) = (0, 0, 0)

This partition is compatible with the target S6 and a recursive call is made to proceed to the
next partition in the sequence. Here, since P 6 = 1 and R6 = VERTEX , pivot cell {2} is used
for a vertex refinement, what yields a new partition T ′ = (T ′1, T

′
2, T

′
3), where:

T ′1 = {8, 9} with ADeg(T ′1, {2}, H) = (0, 0, 0)
T ′2 = {7} with ADeg(T ′2, {2}, H) = (1, 0, 0)
T ′3 = {11, 13} with ADeg(T ′3, {2}, H) = (0, 0, 0)

This partition is compatible with the target S7 and a recursive call is made to proceed to the
next partition in the sequence. Here, since P 7 = 2 and R7 = VERTEX , pivot cell {7} is used
for a vertex refinement, what yields a new partition T ′ = (T ′1, T

′
2), where:

T ′1 = {8, 9} with ADeg(T ′1, {7}, H) = (0, 0, 0)
T ′2 = {11, 13} with ADeg(T ′2, {7}, H) = (1, 0, 0)

This partition is also compatible with the target S8. Hence, a recursive call is made to process the
next partition. Recall that R8 was changed from BACKTRACK to VERTEX during the search
for automorphisms. Then, a vertex refinement is performed, using any vertex in T ′1 = {8, 9},
since P 8 = 1. Let us lexicographically choose vertex 8 as the pivot. Thus we get a partition
T ′ = (T ′1, T

′
2), where:

T ′1 = {9} with ADeg(T ′1, {8}, H) = (0, 0, 0)
T ′2 = {11, 13} with ADeg(T ′2, {8}, H) = (1, 0, 0)

This partition is compatible with the target S9 and a recursive call is made to proceed to the
next partition in the sequence. Here, since P 9 = 1 and R9 = VERTEX , pivot cell {9} is used
for a vertex refinement, what yields a new partition T ′ = (T ′1), where:

T ′1 = {11, 13} with ADeg(T ′1, {9}, H) = (1, 0, 0)

This last partition is compatible with the target S10, and as consequently, the complete alterna-
tive sequence of partitions for graph H results to be compatible with this for graph G. Thus, an
isomorphism of both graphs was found, which correspondence derives from the induced order of
both compatible sequences of partitions as follows:

Graph G 0 1 5 7 2 3 11 4 6 8 12 13 9 10
Graph H 4 5 6 0 11 12 3 1 2 7 8 9 11 13
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4.4 Experimental Results

In this section we compare the performance of conauto-2.0 against other algorithms for graph
isomorphism testing and automorphism group computation. The experiments have been carried
out in an Intel i7 Q 720 @ 1.6GHz with 8GiB of RAM under Ubuntu 10.04. All programs have
been compiled with gcc 4.4.3 with their respective default configuration, but modified to perform
isomorphism testing or automorphism group computation, depending on the experiment.

4.4.1 Graph Isomorphism Test Performance

We will compare the graph canonical labeling performance of bliss (both 0.35 and 0.72 versions)
and nauty, against our algorithm, which not compute any canonical labeling for graphs. This
experiment is intended to see how the size of the graphs affects the running time of isomorphism
testing programs. Each point shown in the plots corresponds to the average running time of
100 executions with different instances of the corresponding graph. The CPU time limit of each
execution has been set to 10,000 seconds for this experiment. Once an algorithm exceeds the
time limit for any graph size instance, this point is not considered, and the execution stops.
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Figure 4.9: Performance for GI-testing with CFI, CMZ, MZ2, and KEF graph families.

Cai Fürer and Immerman (CFI), CMZ series, Miyazaki Augmented2 (MZ2), and Kronecker
Eye Flip (KEF) graphs, are graph families from bliss benchmark [8], and we can see their
performance in Figure 4.9. The results for CFI graphs are similar for all the algorithms, being
bliss-0.72 the fastest, although conauto-2.0 seems to be closer as the graph sizes grows. It
is also observable that nauty is more than one order of magnitude slower. The results for
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CMZ and Miyazaki Augmented2 graphs are almost the same, where nauty and bliss-0.35 have
exponential behaviour and bliss-0.72 also seems to be exponential, while conauto-2.0 has clearly
no exponential behaviour in spite of not being the fastest for smaller graph sizes. And for KEF
graphs performance, conauto-2.0 is the fastest algorithm, while the rest are unable to finish,
before the time limit, for the largest graph instances.

Desarguesian Projective Planes of order 2 (PG2), and Affine Geometries graphs (AG2), are
graph families derived from projective planes and projective geometries respectively, and we can
see their performance in Figure 4.10. The results are quite similar, where nauty has exponential
behaviour in both cases, while the rest have similar results, being bliss-0.35 the fastest. It is
observable from [22] that the previous version of conauto was even slower than nauty, which is
unable to finish for more than 200 vertices graph instances, while now its performance is closer
to the fastest algorithm.
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Figure 4.10: Performance for GI-testing with PG2 and AG2 graph families.

We classify the Hadamard Matrices from bliss benchmark for their number of orbits. In Fig-
ure 4.11 we have considered those which have 1 (H1O) and 2 (H2O) orbits respectively for
performance. The results for Hadamard Matrices of 1 orbit are similar for all the algorithms,
being conauto-2.0 the fastest, and also it seems to be more stable when a time peak appears
in the figure. Moreover, conauto-2.0 is almost one order of magnitude faster than the next
closer algorithm. On the other hand, the results for Hadamard Matrices of 2 orbits seems to be
exponential for all the algorithms, but conauto-2.0, because the rest are unable to finish before
the time limit for the largest graph instances. Furthermore, conauto-2.0 is always one or more
orders of magnitude faster than the rest.
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Figure 4.11: Performance for GI-testing with H1O and H2O graph families.
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The Strongly Regular graph are considered very hard for graph isomorphism testing. However,
they are dealt within considerable time with the current algorithms. So that, the performance
for these graph families are similar for the algorithms considered, and the results does not
contribute relevant information. However, the Steiner Triple System (STS) and Latin Square
(LST) graph families are a little different performance, and they are shown in Figure 4.12, where
conauto-2.0 is the fastest. All the algorithm have not exponential behaviour, and all of them
have similar results. Moreover, conauto-2.0 is almost one order of magnitude faster than the
closer algorithm, bliss-0.72.
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Figure 4.12: Performance for GI-testing with Strongly Regular graphs (STS and LST).
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Figure 4.13: Performance for GI-testing with TNN, TND, CHH, and USR graph families.

We also show the performance for component-based graphs. For these graph families, we have
chosen Tripartite digraphs partially connected (TND) and its undirected version (TNN), Cubic
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Hypo-Hamiltonian clique-connected (CHH), and Unions of Strongly Regular graphs (USR). The
results are shown in Figure 4.13. The results for the component-base graphs are spectacular.
Conauto-2.0 is the only which is able to finish the whole experiments within the time limit, while
the rest have exponential time or seems to have exponential behaviour (in case of bliss-0.72, it
has a run-time internal error for this kind of graphs). It is observable that nauty is not able to
finish with the smaller TND graph (26 vertices) within the time limit.

Finally we show the results for Complete (COM) and Paley Tournament (TOU) graph families
in Figure 4.14. All the algorithms seems not to have exponential behaviour, being conauto-2.0
the fastest. However, conauto-2.0 is one order of magnitude faster than the closer algorithm
(nauty) for COM graphs. And for TOU graphs, nauty and conauto-2.0 are in the same order of
magnitude and both of them are one order of magnitude faster than bliss-0.72 and two orders
of magnitude faster than bliss-0.35.
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Figure 4.14: Performance for GI-testing with COM and TOU graph families.

4.4.2 Automorphism Group Computation Performance

We will compare the automorphism group computation of bliss (both 0.35 and 0.72 versions),
Traces, saucy, and nauty, against our algorithm’s. This experiment is intended to see how the size
of the graphs affects the running time of automorphism group computation of these programs.
Each point shown in the plots corresponds to the average running time of 100 executions with
different instances of the corresponding graph. The CPU time limit of each execution has been
set to 1,000 seconds for this experiment. Once an algorithm exceeds the time limit for any graph
size instance, this point is not considered, and the execution stops.

The automorphism group computation performance for PG2 and AG2 graph families are shown
in Figure 4.15. All the algorithms have quite similar behaviour (non exponential) except nauty
and saucy. While nauty are clearly exponential time for both experiments, saucy just have
exponential behaviour for AG2 graph family and not for PG2 graph family. Conauto-2.0 is not
the fastest but it keeps a regular behaviour.

For component-based graph families, CHH is considered, whose results are shown in Figure 4.16,
next to its normalized standard deviation. Traces, nauty and saucy have exponential behaviour,
where nauty and saucy have additionally disparity in results. Although bliss-0.72 seems to be the
fastest with the smaller graph sizes, the difference is quite little w.r.t. bliss-0.35 and conauto-2.0,
and its behaviour changes for larger graphs, being slower than bliss-0.35 and conauto-2.0. This
fact is also reflected in its normalized standard deviation. The figure shows that conauto-2.0
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Figure 4.15: Performance for Aut. Group Computation with PG2 and AG2 graph families.

and bliss-0.35 are closer as the size grows, and it seems that conauto-2.0 may be faster for larger
graphs.
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Figure 4.16: Performance for Aut. Group Computation with CHH graph family and its normal-
ized standard deviation.

Other component-based graph families are TNN and USR, whose results are shown in Figure 4.17
alongside their normalized standard deviation. Clearly, conauto-2.0 is the fastest algorithm
in order to deal with this kind of graphs, and hardly have time variation for different graph
instances. For TNN graph families, saucy, nauty and bliss-0.72 have exponential behaviour.
Although Traces has not seem to be exponential time, it is three orders of magnitude slower
than conauto-2.0 and bliss-0.35. For USR, only saucy has a clear exponential behaviour. The
rest of the algorithms have similar behaviour, but conauto-2.0 is one order of magnitude faster
than the closer. And it is observable, that nauty has a huge deviation of results, in spite of not
being exponential time.

For KEF graph family, results are shown in Figure 4.18, next to its normalized standard devia-
tion. All algorithms have similar behaviour, which is not exponential, but Traces is the slower
and the more irregular. This last fact, is reflected in the normalized standard deviation, where
Traces have a huge time variation for different graph instances.

For regular graphs, LST has been considered, and its results, alongside its normalized standard
deviation is shown in Figure 4.19. Although all algorithms seem to have the same behaviour,
there is a huge variation of results, depending on the graph instance. It is observable in the
normalized standard deviation figure, where nauty and conauto-2.0 are the fastest algorithms,
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Figure 4.17: Performance for Aut. Group Computation with TNN and USR graph families and
their normalized standard deviation.

but nauty behaviour tends to be more irregular.

For CMZ graph family, results are shown in Figure 4.20, next to its normalized standard devi-
ation. Saucy is the fastest algorithm, and it is one order of magnitude faster than the closer,
which is conauto-2.0. Moreover, this both algorithms have the more regular behaviour, what is
observable in the normalized standard deviation figure.

HAD graph family results, of 1 and 2 orbits respectively, are shown in Figure 4.21, alongside its
normalized standard deviation. In spite of the fact that conauto-2.0 is the fastest algorithm in
both cases, all algorithms present an irregular behaviour depending on the graph instance. This
fact is reflected in the normalized standard deviation figure.
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Figure 4.18: Performance for Aut. Group Computation with KEF graph family and its normal-
ized standard deviation.
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Figure 4.19: Performance for Aut. Group Computation with LST graph family and its normal-
ized standard deviation.
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Figure 4.20: Performance for Aut. Group Computation with CMZ graph family and its nor-
malized standard deviation.
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Figure 4.21: Performance for Aut. Group Computation with H1O and H2O graph family and
their normalized standard deviation.
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Chapter 5

Conclusions and Future Work

In this chapter, we summarize our conclusions and propose some extensions to our algorithm
that may help improving its performance.

5.1 Conclusions

The main contributions of this work are the two theorems based on the concept of sub-partition.
Although they are especially suited for graphs built from components which are uniformly con-
nected, they have a much general field of application, since they do not relay on the detection
of components. They allow early automorphism detection, and backjumping.

We have improved Algorithm conauto for graph isomorphism testing and added the capability
of computing the automorphism group computation of a graph. This new algorithm conauto-2.0
is not only faster than its predecessor for graph isomorphism testing, but also faster than the
other worldwide-known algorithms based on canonical labeling, namely nauty, bliss, and Traces,
for several graph families. Besides, when it is not the fastest, its behaviour seems to be close
to the best algorithm for each case. Furthermore, the algorithm does not seem to be sensitive
to permutations of the same graph. However, there are some graphs for which our algorithm is
outperformed by Traces (e.g. Non-Desarguesian Projective Planes).

If we focus on the automorphism group computation, the results are similar, among all algo-
rithms considered, for most families of graphs. In the particular case of graph families based
on components, bliss-0.72 and conauto-2.0 usually outperform the rest of algorithms. However,
bliss-0.72 seems to be much more sensitive to permutations. Different labelings of the same
graph yield running times that may differ in several orders of magnitude for both automorphism
group computation and canonical labeling. That is not the case of conauto-2.0, which has a
much more regular behavior.

We have overcome the drawback of conauto for the point line graphs of Desarguesian projective
planes with the new pivot sell selector algorithm for individualization. This cell selector also
helps generating sub-partitions, what allows the application of Theorem 2.2 during the search
for automorphisms.

To sum up, we have carried out almost all extensions proposed in [22], and other additional
extensions. As a result, we have developed a faster algorithm, which can be used for isomorphism
testing and for automorphism group computation.
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5.2 Future Work

Canonical Labeling should be the next step in the development of this algorithm. In order to deal
with the problem of canonical labeling, an idea proposed by Tener in [28] might help. He suggests
that the canonical labeling should be easier to find having knowledge of the automorphism group
in advance. Then, when vertex individualization is necessary to refine a partition, the pivot cell
selector algorithm could choose the cell with the smallest number of orbits of the corresponding
colored graph. Since we represent the automorphism group as a set of generators, an efficient
way to compute orbits of subgroups will be necessary for such a pivot cell selector.

Junttila and Kaski [9], and López-Presa [22] independently suggested the idea of conflict propa-
gation. Recording conflicts (non automorphisms) may help pruning bad paths in the search tree
when a conflict does not match any of the recorded (valid) conflicts at some backtrack point.
However, this is not all that can be done. When a conflict is found during the search for auto-
morphisms, the location of the original pivot vertex may be recorded, so when some conflict is
found later, only the vertices in the corresponding valid positions need to be tested. If all those
vertices have already been tested unsuccessfully, then this path is a dead end. In other words,
during the search for automorphisms, the unsuccessfully explored paths of the search tree bring
us closer to either the successful path or the discarding of the current path. However, for proper
detection of the pivot vertex location, an efficient automorphism group management is needed.

As it could be deduced, this improvements above, and almost any other sophisticated improve-
ment that anybody may suggest, is conditioned to an efficient automorphism group management.
The use of the Schreier-Sims algorithm for representing the automorphism group [25], by means
of Leon’s implementation [14], was adopted by Traces in [21]. However, this implementation has
some limitations (such as the number of generators that it can handle). A different variant of
the Schreier-Sims algorithm is being developed by Tener (called ’fssw’: the fastest Schreier-Sims
in the west) but not finished yet. However, our idea is not to use the Schreier-Sims representa-
tion, but another alternative what would be more compact. The Schreier-Sims representation
of the automorphism group may need O(n3) space (for graphs on n vertices), what means using
Gigabytes for graphs of one thousand vertices. Only O(n) space should be necessary, since no
more than n− 1 generators are needed to represent the automorphism group of a graph.

Finally, improvements at implementation level may be done for efficiency in the performance of
the algorithm, such as parallelization of the code for either computing the automorphism group
of both graphs simultaneously or parallel searching for automorphisms at some level.
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