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Resumen

Los materiales compuestos de matriz polimérica reforzados por fibras tienen pro-
piedades mecánicas muy adecuadas para su utilización en aplicaciones estructurales.
Estos materiales, debido a los altos valores de rigidez y resistencia específica, están
desplazando a materiales convencionales en numerosas aplicaciones en las que se re-
quiere la mejor relación entre las prestaciones mecánicas y el peso. Hoy en día, en
el diseño de estructuras con materiales compuestos se utilizan criterios de fallo con
base fenomenológica que requieren de un gran número de ensayos experimentales
para obtener todos los parámetros del material necesarios y garantizar la seguridad
de los componentes construidos. Este inconveniente en la aplicación de materiales
compuestos se debe a la complejidad de su comportamiento mecánico, que está go-
bernado por diversos procesos que ocurren a nivel microscópico. Este es el caso, por
ejemplo, de procesos como la concentración de tensiones y deformaciones, las deco-
hesiones entre las distintas fases del compuesto o el fallo de los microconstituyentes,
que determinan las propiedades finales del material.

En esta tesis se estudia la influencia de la microestructura y las propiedades de
los microconstituyentes en el comportamiento mecánico en la dirección perpendicu-
lar al refuerzo de un laminado unidireccional de fibras de vidrio embebidas en una
matriz epoxi. Las propiedades mecánicas de la matriz polimérica y de las inter-
caras fibra/matriz se caracterizaron mediante técnicas de nanoindentación y push-
out, respectivamente. Los mecanismos de deformación y daño desarrollados en la
microestructura del material compuesto se analizaron mediante la realización de en-
sayos mecánicos de compresión y flexión en tres puntos en el interior de un microscopio
electrónico de barrido. Como resultado, se encontró que el daño del material com-
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puesto sometido a cargas en la dirección perpendicular al refuerzo comenzaba en las
intercaras fibra/matriz y se propagaba a través de la unión de las intercaras dañadas
mediante la rotura de los ligamentos de matriz entre fibras decohesionadas.

El comportamiento mecánico del laminado hasta rotura se modeló mediante la
simulación por elementos finitos de modelos micromecánicos que representaban la
microestructura real del material. Siguiendo las observaciones experimentales, el
modelo numérico incluía la decohesión de las intercaras y la rotura de la matriz.
Los resultados de las simulaciones mostraron un buen acuerdo con los experimentos
tanto en su respuesta macroscópica como en los mecanismos de deformación y daño
microscópicos.

El modelo numérico desarrollado sirvió para obtener la envolvente de fallo del
material compuesto bajo cargas normales en la dirección perpendicular al refuerzo y
cortante fuera de plano. Los resultados obtenidos de las simulaciones se compararon
con las predicciones de los criterios de Hashin y Puck para el fallo de laminados.
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Abstract

Fiber-reinforced polymers (FRPs) exhibit outstanding mechanical properties, ideal
for their use in structural applications. Due to the high specific values of stiffness and
strength, these composites are replacing conventional materials in applications where
a superior mechanical performance in combination with weight saving is necessary.
However, the lack of reliable and experimentally contrasted models to accurately
predict the failure strength of FRPs makes the optimization process of composite
structures to be carried out by means of a costly and time-consuming trial-and-error
approach, which requires an immense burden of testing and restricts the promising
improvements of the use of composites. This difficulty in the simulation of mechan-
ical behavior and damage of composites is due to the fact that an accurate model
should account for the phenomena which take place at the micron scale, which is
in the size of the reinforcement. This is the case, for instance, of the stress and
strain concentration, decohesion of the reinforcement and damage of the material
constituents.

This thesis studies the influence of the microstructure and the properties of the
microconstituents in the mechanical behavior of a unidirectional laminate of glass
fiber embedded in a matrix of epoxy resin, for the transverse loading cases. To this
end, the mechanical properties of the polymeric matrix and the fiber/matrix interfaces
have been experimentally characterized by means of nanoindentation and push-out
techniques, respectively. The deformation and damage mechanisms developed in the
microstructure of the composite have been analyzed through compression and three-
point bending tests carried out inside the scanning electron microscope. It was found
that the damage process began by the decohesion of the fiber/matrix interfaces,
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and continues with the subsequent propagation of the damage by the link up of the
interface fractures by breaking the matrix ligaments between debonded fibers.

The mechanical behavior of the unidirectional laminate until final fracture was
modeled by the finite element simulation of micromechanical models which repre-
sented the microstructure of the real material. Following the previous experimental
observation, the interface decohesion and the failure of the matrix were included
in the computational model. The simulation results were in very good agreement
with the experiments in terms of the macroscopic response and of the microscopic
mechanisms.

Finally, the numerical model was also employed to obtain the failure envelope
of the composite under transverse loads and out-of-plane shear. The model results
were assessed with the predictions of the Hashin and Puck’s crieria for the failure of
laminate.
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Chapter1
Introduction

1.1 Background

Composite materials are created by the combination of two or more different
constituents or phases which remain separate and distinct within the composite mi-
crostructure. The combination of the different mechanical properties of each indivi-
dual constituent brings the opportunity to tailor a specific material with the required
properties for a given application. For this reason, composite materials are playing
nowadays an increasing role in technological industries such as aerospace, automobile,
construction, energy or biomedical. It is possible to find good examples of technolog-
ical applications with ceramic matrix and metal matrix composites in cutting tools,
armors for military vehicles, disc brakes for sport cars or gas turbine components.
However, among all the high performance composite materials, fiber-reinforced poly-
mers (FRPs) are the most extensively used for lightweight structural applications.

FRPs are made by a polymeric matrix reinforced with high performance fibers
(carbon, glass, aramid, PBO, etc). The fibers can be weaved, knitted or braided to
created a textile sheet which make easier the composite manufacturing. However, for
high strength applications, structures are assembled from thin plies of unidirectional
fibers which have been pre-impregnated with the polymeric matrix. The individual
plies are successively laid down, creating a laminate. Each ply can be oriented to
tailor a specific laminate to fulfill the design requirements. The fibers are the load-
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Chapter 1. Introduction

bearing phase, while the matrix is mainly used to maintain the fibers oriented in the
design direction. Due to their outstanding specific mechanical properties and the ma-
ture level of the processing and quality control techniques, FRPs are extensively used
nowadays in structural applications where weight saving is a mandatory requirement.
Good examples of the FRPs applications can be found in the aerospace industry: the
A380, the last civil Airbus aircraft, contains up to 25% in weight of composite materi-
als (used for wings, fuselage sections and tail surfaces) or the Boeing 787 Dreamliner
which claims to be the first airliner with a fully composite fuselage manufactured
with advanced carbon components technologies. Nowadays, engineers have excellent
tools for predicting the load distribution throughout the structure when the material
behavior is linear-elastic, but predictions become problematic once damage begins.
The fundamental difficulty is that damage in these engineering materials involves
extremely complicated nonlinear processes acting at different scales, from the atomic
to the structure level.

The standard strategy to tackle the failure predictions in FRPs starts from a
numerical analysis of the whole structure in a top-bottom approach. This initial
evaluation identifies hot spots in which damage is likely to occur, and these regions
are subjected to further refined analysis. Nonlinear constitutive models based on
phenomenological approaches are used to predict the material behavior until frac-
ture. Although this strategy focuses on engineering necessities, it has also important
limitations. An extensive experience and costly testing campaigns are necessary to
calibrate these models employed in the critical regions. Innovations in materials are
limited because of the lack of reliable data to assess the onset and propagation of
damage upon loading. And finally, the extrapolation of current knowledge to different
loading/environmental conditions is problematic due to the phenomenological nature
of the models.

Recent developments in multiscale simulations, together with increased computa-
tional power and improvements in modeling tools, are enabling an alternative strategy
that overcomes the limitations of the top-bottom approach. Nowadays, it is beginning
to be possible to predict accurately, and without adjustable parameters, the behavior
until failure of composite coupon specimens and simple components. This strategy, a
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1.1 Background

new hierarchical, bottom-up approach is being developed to carry out virtual tests of
composite materials and structures (LLorca and González, 2011). The overall mul-
tiscale simulation scheme is depicted in Fig.1.1 and takes advantage from the fact
that composite structures are made up of laminates which in turn are obtained by
stacking individual plies with different fiber orientation. This leads to three different
entities (ply, laminate and component) whose mechanical behavior is characterized
by three different length scales, namely fiber diameter, ply and laminate thickness,
respectively. Fiber diameters are of the order of 5-20 µm, while ply thicknesses are in
the range 100-300 µm and standard laminates are several mm in thickness and above.
This clear separation of length scales is very useful to carry out multiscale model-
ing by computing the properties of one entity (e.g. individual plies) at the relevant
length scale, homogenizing the results into a constitutive model, and passing this
information to the simulations at the next length scale to determine the mechanical
behavior of the larger entity (e.g. laminate). Thus, multiscale modeling is carried
out through the transfer of information between different length scales rather than
by coupling different simulation techniques.

Virtual testing of composites up to the component level is thus carried out in
three successive steps within the framework of the finite element method, assuming
that continuum mechanics describes the behavior even for the smaller scales. In the
first one, computational micromechanics is used to predict the ply properties from
the thermo-mechanical properties of the constituents (fiber, matrix and interfaces),
together with the volume fraction and spatial distribution of the fibers within an in-
dividual ply. Fiber properties (stiffness, strength, coefficients of thermal expansion)
are usually provided by the fiber manufacturer, which carries out a thorough charac-
terization of the fiber properties as part of the optimization process. On the contrary,
matrix and interface properties depend on the consolidation process (time, pressure
and temperature, effect of fiber dispersion) and have to be characterized in situ by
means of nanomechanics. Starting from the homogenized ply properties and infor-
mation about the laminate lay-up as well as the interply behavior, computational
mesomechanics is then used to determine the homogenized behavior of laminates.

3



Chapter 1. Introduction

Figure 1.1: Multiscale bottom-up simulation strategy to carry out virtual me-
chanical tests of composite materials and structures.
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1.2 Damage mechanisms in FRPs

These results are finally used within the framework of computational mechanics to
obtain the response until fracture of structural components made of composites.

1.2 Damage mechanisms in FRPs

Most structural materials present one dominant physical failure process upon
deformation (e.g., void nucleation, growth and coalescence in ductile metals or shear
bands formation in polymers) and the simulation of failure only has to include this
micromechanism. On the contrary, FRPs present several different physical failure
mechanisms and the dominant one depends on the loading conditions (see Fig. 1.2
for unidirectional composites). Fracture due to tensile stresses parallel to the fibers
is controlled by the tensile fracture of the fibers, while compressive stresses along the
fibers lead to fracture by fiber kinking in compression, a mechanism which mainly
depends on the fiber misorientation and the matrix shear strength. Tensile fracture
perpendicular to the fibers is brittle and controlled by the fracture of the polymeric
matrix and of the fiber-matrix interface, while fracture caused by compressive stresses
perpendicular to the fibers or by shear is accompanied by large deformations as a
result of the non-linear response of the matrix when subjected to compression and/or
shear. Finally, interply delamination is another typical failure mechanism in FRPs
due to the thermo-elastic mismatch between adjacent plies with different orientation.
Hence, accurate models of fracture of FRPs have to include all these micromechanisms
and the complex interaction among them because they coexist in the same laminate
subjected to one type of load as a result of the different orientation of the fibers in
each ply (Fig. 1.3). For instance, intraply matrix cracks (which propagate parallel
to the fibers) are very often the origin of interply delaminations (Fig. 1.3), while it
is well known that the compressive strength parallel to the fibers is severely reduced
in the presence of shear stresses.

5
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1

2

3

(a) (b)

(e)(d)(c)

Figure 1.2: Diagram of the different failure micromechanisms in FRPs as a func-
tion of the loading conditions. (a) Longitudinal tension. (b) Longitudinal com-
pression. (c) Transverse tension. (d) Transverse compression. (e) Longitudinal
shear.
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1.2 Damage mechanisms in FRPs

Figure 1.3: X-ray computed tomography showing different failure micromecha-
nisms in a [90/−45/45/0/45/−45/90] composite laminate loaded in tension parallel
to the plies with fibers oriented at 0◦. Fiber fracture is dominant in the 0◦ plies,
while matrix cracking parallel to the fibers dictates the failure of the 90◦ and 45◦

plies. In addition, matrix cracks led to interface delamination between 45◦ and
−45◦ plies. Adapted from Wright et al. (2008).
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Chapter 1. Introduction

1.3 Failure criteria in FRPs

The failure criteria for composites are often used just in the initial calculations
to size a component. Beyond that point, experimental tests on coupons or structural
elements are required to determine the global design allowables. In order to reduce the
manufacturing time and the costs of new components, there is a need to establish the
level of confidence in the methods for failure prediction of FRPs. To this end,Hinton
et al. (2004) carried out the worldwide failure exercise (WWFE), assessing nineteen
different theoretical approaches for predicting the deformation and failure response of
FRPs. The experimental results for the strength of the FRPs subjected to complex
stress states showed significant differences with the predictions of many theories, even
when analyzing simple laminates.

Failure in composite structures is commonly predicted through phenomenologi-
cally based failure criteria implemented in the finite element analysis of the structure.
Hashin (1980) was the pioneer in the identification of the different failure mechanisms
in unidirectional laminates and incorporate them separately in a piecewise smooth
failure surface. Two different mechanisms were considered, one related to the fiber
failure and the other to the matrix failure. The criteria assumed a quadratic inter-
action between tractions acting on the plane of failure (Fig. 1.4). However, Hashin’s
model was not able to determine the actual orientation of the fracture plane. For
this reason, the criteria did not capture the experimental results in the case of matrix
and fiber compression.

Puck and Schürmann (2002) proposed modifications to Hashin’s model to improve
its predictive capabilities. The key element of Puck’s criteria is the calculation of the
angle of the fracture plane in the case of matrix failure modes. Thus, transverse
tension loads produce a fracture in a plane which is normal to the loading direction
and parallel to the fibers. Meanwhile, transverse compression stresses produce a
fracture plane in an angle which varies between 38◦ and 55◦, depending on the in-
plane shear (Fig.1.5).

Puck’s predictions correlated very well with the experimental assessments in the
WWFE. However, these criteria use several non-physical parameters which can be
difficult to quantify without considerable experience in a particular material. To

8



1.3 Failure criteria in FRPs

Figure 1.4: Three-dimensional stresses on a UD composite element. The (1,2,3)
coordinate system is fixed to fiber direction (1), laminate (2) and thickness direction
(3). The (1,n,t) coordinate system is rotated by the fracture angle θfp, from the
(2) direction to the (n) direction which is normal to the fracture plane.
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Chapter 1. Introduction

Figure 1.5: Predictive failure curve derived from Puck’s criterion for the matrix
failure modes and their fracture angles.
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1.4 Micromechanical models of composite
materials

overcome this drawback, Dávila et al. (2005) proposed a non-empirical set of failure
criteria, denoted as LaRC03. It was based on the fracture mechanics analysis of
cracked plies (Dvorak and Laws, 1987) and Puck’s action plane concept. The experi-
mental assessment of the LaRC03 criteria showed a significant improvement over the
commonly used Hashin’s criteria, but it also fails to follow some experimental results.
This fact indicates that the existing knowledge on failure mechanisms of FRPs needs
further development.

1.4 Micromechanical models of composite
materials

The main objective of the micromechanics of composite materials is the prediction
of the effective or macroscopical properties (elastic modulus, strength, thermal ex-
pansion coefficient, etc) from the mechanical properties of its constituents and their
distribution inside the material.

The relation between the constituents and the effective properties of the material
can be obtained by studying the microstructure at different length scales. In metals,
ceramics, polymers and other homogeneous materials, the deformation mechanisms
usually involve micro- and nanometric level processes. Thus, their mechanical be-
havior can be obtained through detailed models of atomic and molecular processes
by means of quantum mechanics and molecular dynamics. However, in FRPs the
deformation and fracture processes take place at a scale of microns, and at this mi-
croscopic level, the composite constituents can be considered as continuum media
and their behavior are described by continuum mechanics.

Besides the prediction of the effective properties of the composite, the microme-
chanical models have different applications. They can also be used to obtain con-
stitutive equations to simulate, in the framework of computational mechanics, the
behavior of structural components, and to study the damage evolution within the
composite microstructure.

The micromechanical study of composites is a complex task and is necessary to

11



Chapter 1. Introduction

employ some approximations. Thus, micromechanical methods can be classified on
the basis of these assumptions (Böhm, 1998)

• Analytical methods

– Mean field approach

– Variational bounding method

• Computational methods

– Periodic microfield approach

– Embedded cell method

Homogenization and variational bounding methods are well-established, accurate
theories to compute analytically the overall or effective properties of inhomogeneous
materials in the elastic regime (Nemat-Nasser and Hori, 1999; Torquato, 2001). Addi-
tionally, they often provide solutions for the constitutive equation of these materials,
which can be included as materials models in structural analysis codes to assess the
mechanical response of components. Nevertheless, the extension to the non-linear
regime is more complex and the accuracy of the results is not always guaranteed
(Castañeda and Suquet, 1998). These limitations have been overcome with the rapid
development of computational micromechanics in the last decade. The high computa-
tional cost of the periodic and embedded cell methods can still be a major drawback,
but this cost has been reduced by the increasing power of the digital computers and
the robustness of the finite elements codes. The different micromechanical approaches
are briefly discussed in the next sections.

1.5 Analytical micromechanics

1.5.1 Mean field approaches

These models consider that the stress and strain fields within each constituent of
an inhomogeneous material can be approximated by their volumetric phase averages,

12



1.5 Analytical micromechanics

ε̄m and σ̄m for the matrix and ε̄r and σ̄r for the reinforcement. Considering Vm

and Vr as the volume occupied by the matrix and reinforcement, respectively. The
volumetric phase averages can be calculated as

σ̄m = 1
Vm

∫
Vm

σm(x)dV and ε̄m = 1
Vm

∫
Vm

εm(x)dV

σ̄r = 1
Vr

∫
Vr

σr(x)dV and ε̄r = 1
Vr

∫
Vr

εr(x)dV (1.1)

where Vm + Vr = V is the representative volume of the inhomogeneous material and
x is the vector which indicates the position of a material point.

Considering the matrix and the reinforcement phases as elastic solids, the relation
between the averages stresses and strains can be described as,

σ̄m = Lmε̄m and σ̄r = Lrε̄r (1.2)

being Lm and Lr the fourth order stiffness elastic tensors for each constituent phase.
The homogenization relations provide the effective or overall fields from the aver-

aged strains and stress of each phase,

σ̄ = (1− ξ)σ̄m + ξσ̄r and ε̄ = (1− ξ)ε̄m + ξε̄r (1.3)

where ξ stands for the volume fraction of the reinforcement.
The phase averaged strains and stresses can be related to the effective fields

through their corresponding concentration tensors, A and B, referred to the phase
stress and strain concentration tensors, respectively.

σ̄m = Bmσ̄ and ε̄m = Amε̄ (1.4)

σ̄r = Brσ̄ and ε̄r = Arε̄ (1.5)

The concentration tensors should fulfill the relations

(1− ξ)Am + ξAr = I and (1− ξ)Bm + ξBr = I (1.6)

where I is the fourth-rank identity tensor. The effective elastic properties of the
composite is directly linked with the properties of the phases and one of the four
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concentration tensors. Therefore, the elastic problem is reduced to obtain a concen-
tration tensor as a function of the composite microstructure and the phase properties.
These methods have been highly successful in describing the elastic response of inho-
mogeneous materials (Eshelby, 1957; Mori and Tanaka, 1973; Kroner, 1958). Their
use for modeling nonlinear composites is nowadays a subject of active research (Cas-
tañeda, 1991; Pettermann et al., 1999; González and LLorca, 2000; López-Pamiés and
Ponte-Castañeda, 2006).

1.5.2 Variational bounding methods

These methods use variational principles to obtain upper and lower bounds on
the overall elastic and physical properties of inhomogeneous materials. Bounds are
important tools for assessing other micromechanical approaches. Furthermore, in
many cases one of the bounds provides by itself good estimates for the physical
property under consideration. The uniform stress and strain conditions lead to the
simplest variational bounding expressions, the upper bounds of Voigt (1889) and the
lower bounds of Reuss (1929), which are also known as the Hill bounds (Hill, 1952).
These limits are very easy to calculate, but they are also too slack to provide good
predictions since the only information regarding to the microstructure is the volume
fraction of reinforcement. Further developments in this technique have obtained more
accurate bounds which offer good predictive capabilities when additional information
of the microstructure is included (Hashin and Shtrikman, 1963; Torquato, 1991).

1.6 Computational micromechanics

1.6.1 Periodic microfield approaches

In these methods, the inhomogeneous material is approximated by an infinitely
model made by a periodic phase arrangement. The resulting periodic microfields are
evaluated by analyzing the repeating cells of the microstructure describing microge-
ometries ranging from rather simplistic to highly complex representations of the real
microstructure of the composite. Periodic microfield approaches are often used to
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obtain constitutive equations for composite materials in the non-linear range. The
resolution at the microscale provided by this approach can be also useful for studying
the onset and progression of damage within the microstructure (Totry et al., 2008a,b;
Canal et al., 2009).

Several strategies have been developed to handle the analysis of heterogeneous
materials at the microlevel. The pioneer approach was the Method of cells (Aboudi,
1997). In this proposal, an analytical approximation is used to obtain the stress and
strain fields in a microstructure that corresponds to a square arrangement of fibers.
Another examples of analytical methods to solve the unit cell problem are the Trans-
formation field analysis (Dvorak, 1992) or the High-fidelity generalized methods of
cells (Aboudi, 2004). Although these analytical approximations use highly idealized
microstructures and provide limited information of the microscopic fields, they can
be used to obtain constitutive models with low computational cost, which is manda-
tory for the mechanical analysis of large composite structures. Besides the previous
simplistic approximations, the analysis of composites through periodic microfield ap-
proaches is usually tackled with more complex and realistic cells which are solved by
numerical tools such as the finite differences and the finite elements method.

Representative volume element

The mechanical behavior of composite materials can be studied through the finite
elements simulation of a representative volume element (RVE) of the microstruc-
ture. The RVE was defined by Drugan and Willis (1996) as the smallest material
volume element of an heterogeneous material for which the average stress and strain
microfields converge to an asymptotically constant value which is size independent
and represents the effective macroscopic constitutive response. Therefore, the RVE
should exceed a minimum size to ensure that the simulation results are independent
of the size and the spatial distribution of the reinforcements within the microstructe.
There are no procedures to predict the size of the RVE for the analysis of a particular
composite, but it should be confirmed by a posteriori assessment of the statistical
error. The size of the RVE is usually an important drawback for this kind of simu-
lations. If a large size of the RVE were needed to represent the composite, it would
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make impossible to perform the numerical computation. Fortunately, it was demon-
strated that only a few dozens of fibers or particles should be included in a RVE to
simulate accurately the mechanical behavior of metal matrix composites and FRPs
in elasto-plastic regime (Eckschlager et al., 2002; Segurado et al., 2003; Totry et al.,
2010).

Microstructure generation

In the multiparticle cell models, the computational micromechanical process to
simulate the behavior of composites begins with the creation of a RVE, which is is
usually taken as a cubic cell of side L. The microstructure of a composite is idealized
as a dispersion of spheres, ellipsoids, fibers, cubes or any other geometrical entity
which represents the shape of the inclusions.

To analyze the transverse behavior of unidirectional FRPs, assuming infinitely
long fibers, the microstructure can be idealized as a dispersion of circles of radius
r which represent the section of the fibers. This fiber distribution should be rep-
resentative of the actual transverse section microstructure of the studied material
(Totry et al., 2010, 2009), many different methodologies have been proposed to at-
tain this goal. Thus, there are techniques based on the replication of the images of
the microstructure (Trias, 2005), on the reproduction of statistical spatial descriptors
(t. J. Vaughan, 2011) or a direct technique which generates an idealized isotropic
and random microstructure (Segurado and LLorca, 2002). The later technique was
employed in this work to generate artificial microstructures of the FRPs, and the
description of this method is given below.

The positions of the inclusions were created randomly and sequentially with the
random sequential adsorption algorithm (RSA) (Segurado and LLorca, 2002). The
fiber diameter, D, was determined from the total number of fibers N and the volume
fraction ξ. The generation algorithm propose a center of fiber, i, which is accepted if
the distance between this fiber and all the fibers previously accepted j = 1, ..., i − 1
exceeded a minimum value, 1.035D, imposed by the feasibility of creating an ad-
equate finite elements mesh. If the fiber i cuts any of the square unit cell sides,
this condition has to be checked with the particles near the opposite surface because
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the microstructure of the composite is periodic (Fig.1.6). If ~xi stands for the center
coordinates of circle i these conditions are expressed by

min
{
||~xi − ~xj + ~h||

}
≥ 1.035D (1.7)

for any value of ~h = (k, l) where k and l can take the values 0, L,−L, leading to
5 conditions which should be checked for each pair of fibers. Moreover, to avoid
distorted finite elements during meshing, the fiber surface should not be very close
to the cell faces, and this led to an extra condition

||xik − r|| ≥ 0.045D ; k = 1, 2 (1.8)

||xik + r − L|| ≥ 0.045D ; k = 1, 2 (1.9)

Boundary conditions

The RVE together with the boundary conditions must generate valid tilings for
the underformed and the deformed states. Thus, gaps or overlaps between neigh-
boring cells and unphysical constraints should be avoided in the problem solution
as they lead to continuum mechanics inconsistencies. In order to achieve this, the
applied boundary conditions should generate the appropriate deformation modes for
the studied load cases. The most commonly employed boundary conditions are the
symmetry and periodicity.

Symmetric boundary conditions
Periodic microfield approaches can be employed to study composites through very

simplistic arrangements of inhomogeneities. Simple cubic, face centered cubic or
body centered cubic arrangements can be good approximations for three dimensional
studies of particle reinforced composites, and rectangular or hexagonal distributions
of inhomogeneities are often used for the two dimensional study. In theses cases, it is
possible to choose a unit cell in which the faces of the cell coincide with the symmetry
planes of the phase arrangement (Fig. 1.7), and symmetric boundary conditions can
be easily applied (Fig. 1.8).
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Figure 1.6: Unit cell containing a RVE of 30 fibers randomly distributed in a
square domain and the periodic microstructure generated by the repetition of the
unit cell.
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Figure 1.7: Periodic square and hexagonal fiber arrangement and its units cells
(Pettermann and Suresh, 2000).

Figure 1.8: Diagram of symmetric boundary conditions in a rectangular two
dimensional model.
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Figure 1.9: Diagram of periodic boundary conditions in a rectangular two dimen-
sional model.

Symmetric boundary conditions are typically very useful for describing simple
microgeometries, they are fairly easy to use and have very low computational cost.
However, the load cases that can be handled by symmetric boundary conditions are
limited to homogeneous thermal loads, mechanical loads acting in directions normal
to one or more pairs of faces, and combinations of them.

Periodic boundary conditions
Periodic boundary conditions are considered the more general way to introduce

a far-field stress and strain into the RVE. The application of periodic boundary
conditions to the edges of the RVE ensures the continuity between neighboring RVEs,
which deform like jigsaw puzzles (Fig. 1.9).

The periodic boundary conditions in a general three dimensional unit cell can be
expressed in terms of the displacement vectors ~U1, ~U2 and ~U3 between opposite faces
of the RVE
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~u(0, x2, x3)− ~u(L1, x2, x3) = ~U1 (1.10)

~u(x1, 0, x3)− ~u(x1, L2, x3) = ~U2 (1.11)

~u(x1, x2, 0)− ~u(x1, x2, L3) = ~U3. (1.12)

where L1, L2 and L3 are the dimensions of the RVE along their coreresponding di-
rections.

Periodic boundary conditions can be used to introduce any physically homoge-
neous deformation state within the unit cell. For example, a uniaxial tension along
the x3 axis is imposed with ~U3 = (0, 0, δt), where δt stands for the imposed tensile
displacement. The components of ~U1 and ~U2 are chosen so that the all the normal
and shear forces acting on the RVE surfaces are zero (besides those corresponding
to the imposed transverse tension). The corresponding logarithmic strain is given by
ε3 = ln (1 + δt/L3), and the corresponding Cauchy normal stress (σ3) can be com-
puted from the resultant normal forces acting on the RVE faces divided by the actual
cross-section.

An important drawback of periodic boundary conditions is the high computa-
tional cost when they are applied in a finite elements code because of the multipoint
constraints required for their implementation.

1.6.2 Embedded cells

The embedded cell consist in a model representing either a raw material or a
specimen with two different microstructural descriptions. First of all, a core, where
the microstructure is resolved with a high level of detail (including the matrix, re-
inforcement and interfaces). This domain is embedded in an outer region where
the microstructure is roughly resolved or even considered as a homogeneous domain.
Through this simulation strategy is possible reproduce in the core the stress and
strain fields developed at the microstructural level, while the embedding outer region
is responsible to transmit the far-field loads to the core. The schematic of a three-
point bending specimen is plotted in Fig. 1.10, where the high stress and strain region
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Figure 1.10: Schematic of an embedded cell approach to simulate the three-point
bending test of a notched beam specimen.

is modeled in detail while the remaining beam is considered to be an homogeneous
material.

Depending on the considered outer region, Böhm (1998) classified the embedded
cell approaches in three basic types:

• Models which employ discrete microstructures for the core and the embedding
regions, but discretized with different element size (Sautter et al., 1993). This
model can easily reproduce a full sample with a refined mesh in some regions of
interest, avoiding the usual layer effects produced at the interfaces between the
core and the outer region. However, this strategy has an important drawback
in the very high computational cost.

• Models which take into account the outer region as a homogeneous material
with a constituve law defined a priori based on empirical or micromechanical
approaches. These models are specially suited to study the localization and
growth of cracks in inhomogeneous materials (Wulf et al., 1996; González and
LLorca, 2007b) or the stress concentrations near the crack tips (Aoki et al.,
1996) or around local defects (Xia et al., 2001).

• Embedded cell approaches which obtain the effective behavior of the outer
region from the homogenized response of the core through a self-consistent
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1.7 Constitutive models for FRPs microconstituents

scheme. In a first step, trial properties are impose to the outer region, the stress
and strain fields are computed in the microstructure of the core. In the following
steps, the homogeneous response of the core is used for the constitutive behavior
of the outer region. This process is repeated until the convergence is achieved.
These models have been mainly employed for material characterization (Yang
et al., 1994; Chen, 1997). They are easily used in elastic regime, but they can
be very complex when dealing with elastoplastic behavior.

1.7 Constitutive models for FRPs microconstituents

A critical issue in computational micromechanics is to account for the actual de-
formation and failure micromechanisms of each phase and this is carried out normally
through the appropriate constitutive equations at the constituent level. In the par-
ticular case of unidirectional composites loaded in the transverse plane, the behavior
under compression is controlled by the shear yielding of the matrix and the deco-
hesion of the fiber-matrix interfaces. Moreover, under transverse tension loads the
brittle decohesion of the interfaces triggers the final failure of the material, leading
to a brittle behavior of the composite. The different processes have to be taken into
account in the numerical analysis to provide realistic results.

The polymer matrix in FRPs is usually a thermoplastic or thermoset resin and
their mechanical properties depend on the chemico-physical characteristics and the
manufacturing processes. Thermoset resins are made from molecules with relatively
small molecular weight called prepolymers. Since the length of these molecules is
short, the material is initially a liquid of low viscosity at room temperature and,
therefore, they are specially suited for processing of FRPs. The liquid resin is in-
jected or infused into the fibers preforms and easily flows through the reinforcement,
obtaining good impregnation of the fibers with low porosity. Once the fiber reinforce-
ment is completely saturated, the resin is cured to make it solid. In order to cure the
thermoset, the prepolymers must be tied together with other molecules. This pro-
cess, known as cross-linking, occurs under the appropriate conditions of temperature
and pressure. Thus, the resin is finally transformed into a solid, by the 3D chaining
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network created between the prepolymers. Since the cross-linking is a nonreversible
process, the shape of the created component cannot be changed after curing.

The most common polymeric matrices for high performance and aircraft grade
composites are the epoxy resins. They have been extensively used due to their ex-
cellent properties such as good adhesion, good corrosion resistance, low shrinkage
and processing versatility. On the other hand, epoxy resins present some important
drawbacks, such as their cost and higher viscosity than other thermosetting resins,
which results in more intricate and costly manufacturing processes. Therefore, the
epoxy is only employed in high added-value applications such as aircraft, sports, etc.

The matrix-fiber interfaces of FRPs are widely studied in different fields. Chem-
istry and molecular physics study topics as the nature of the bonds, surface density
or their ranges of action at molecular level (Fowkes, 1987; Mittal, 1995). However,
from a technical viewpoint, the most relevant problems of the interfaces are the stress
transfer efficiency, their strength and the process of decohesion (see Fig. 1.11) (Zhan-
darov and Mäder, 2005).

1.7.1 Plastic behavior of the matrix

The highly linked 3D network structure of a cured epoxy resin provides the solid
material with outstanding mechanical properties. As any polymeric system, its initial
deformation is dominated by the viscoelastic phenomena. However, due to the exten-
sively entangled of its macromolecules, these time dependent effects can be neglected
and modeled as an isotropic linear elastic solid until yielding.

The yield behavior of polymers depends on temperature and strain rate. However,
the conventional yield criteria can accurately describe the plastic behavior of polymers
by controlling the test conditions. Following this strategy, many studies of the yield
behavior of epoxies have bypassed the question of strain rate and temperature and
sought to establish a yield criterion (Cherry and Thomson, 1981; Kinloch and Young,
1983).

In tension at room temperature, epoxy resins usually fail at very low strain prior
to any yielding, but in contrast, they exhibit yielding during uniaxial compression
test, even at relatively low temperatures (Yamini and Young, 1980). The yield stress
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Figure 1.11: Scanning electron micrograph obtained during a three-point bending
test of a glass/epoxy composite.
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in these materials is often defined as the point of maximum load, at which that
the subsequent deformation occurs without further increase in stress (Yee et al.,
2000). Moreover, the yield behavior of epoxies is pressure-sensitive, and yield stress
decreases with hydrostatic tension and increases with hydrostatic compression. This
dependence is taken into account by pressure-dependent yield criteria like Mohr-
Coulomb or Drucker-Prager, which were initially developed to characterize the plastic
flow of soils and rocks.

Mohr-Coulomb yield criterion

The Mohr-Coulomb criterion assumes that yielding takes place when the shear
stress acting on a specific plane, τt, reaches a critical value, which depends on the
normal stress, σn, acting on that plane. This can be expressed as

τt = c− σn tanφ (1.13)

where c and φ stand, respectively, for the cohesion and the friction angle, two ma-
terials parameters which control the plastic behavior of the material. Physically,
cohesion c represents the yield stress under pure shear loading while the friction an-
gle takes into account the effect of hydrostatic pressure. When φ = 0◦ Mohr-Coulomb
model is reduced to the pressure-independent Tresca model while φ = 90◦ leads to
the “tension cut-off” Rankine model. The value of both parameters for an epoxy can
be approximated from the strength, σyc, and the orientation of the shear bands, θ, in
uniaxial compression tests. They are given by

σyc = 2c cosφ
1− sinφ and θ = 45 + φ/2 (1.14)

where θ is the shear band angle, typically 50◦ < θ < 60◦ for uniaxial compression
loads in epoxy matrices (Puck and Schürmann, 2002; Pinho et al., 2006; Aragonés,
2007; Totry et al., 2008a).

The yield surface of the Mohr-Coulomb model can be rewritten in terms of the
maximum and minimum principal stresses (σI and σIII)

FMC(σI , σIII) = (σI − σIII) + (σI − σIII) sinφ− 2c cosφ = 0 (1.15)
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Figure 1.12: Shear band created by a uniaxial compression stress and Mohr’s
circle for this stress state.

The Mohr-Coulomb criterion presents two important drawbacks for its practical
application. First, it does not depend on the intermediate principal stress, σII,
which underestimates the yield strength of the material in many cases (Mogi, 1971).
Second, the yield surface in Fig. 1.13 shows sharp corners which impairs its numerical
implementation.

Drucker-Prager yield criterion

The criterion was initially proposed to deal with the plastic deformation of soils
(Drucker and Prager, 1952). However, this yield criterion and its subsequent mod-
ifications have been extensively applied to other pressure-dependent materials like
rocks (Zhang and P. Cao, 2010), concrete (Arslan, 2007) or polymers (Quinson et al.,
1997).

The linear Drucker-Prager yield function can be expressed as

FDP (J1, J
′
2, α) =

√
3
2J
′2 + J1α− d = 0 (1.16)

where J1 is the first invariant of the stress tensor, J ′2 is the second invariant of the
deviatoric stress tensor, d is the yield stress of the material under pure shear loading
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Figure 1.13: Mohr-Coulomb and Drucker-Prager yield surfaces in the deviatoric
stress space.

and α is the pressure sensitivity parameter, which, according to experimental results,
is in the range 0.10-0.30 for glassy polymers (Kinloch and Young, 1983).

The Drucker-Prager yield criterion can also be rewritten in terms of the principal
stresses, as in the case of the Mohr-Coulomb criterion,

FDP (σI , σII , σIII) =
√

(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2

2
+ (σI + σII + σIII)α− d = 0 (1.17)

Interrelationship between Mohr-Coulomb and Drucker-Prager parameters

Mohr-Coulomb and Drucker-Prager criteria are commonly used to describe the
yield behavior of granular materials. In many cases, the available experimental data
are given for one of such criterion, being necessary to obtain the relation between
them. In this situation, the Drucker-Prager yield surface can be matched with the
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Mohr-Coulomb surface by the selection of the parameters α and d, through the fol-
lowing relations (Jiang and Xie, 2011)

α = − sinφ
cos η − (1/

√
3) sin η sinφ

(1.18)

d = c cosφ
cos η − (1/

√
3) sin η sinφ

(1.19)

where η is the Lode angle, which is controlled by the relationship of the intermediate
principal stress and the major and minor principal stresses, providing different possi-
bilities to match the Drucker-Prager and Mohr-Coulomb criteria (Fig. 1.14). If both
surfaces match along the compressive meridian (η = −30◦), the Drucker-Prager cone
represents an outer bound cone of the Mohr-Coulomb hexagonal pyramid. When
η = 0◦ the surfaces match along shear meridian, and the inner cone of the Mohr-
Coulomb yield surface coincides with Drucker-Prager at η = 30◦.

1.7.2 Matrix damage behavior

The epoxy resins employed in the matrix of FRPs exhibit large deformations
and plastic yielding under compressive loads, while tension stresses lead to sudden
failure. The characterization of the fracture behavior of the matrix is an essential
step to study the mechanical behavior of the FRPs.

Inglis (1913) made the first attempt to study mathematically the fracture in ma-
terials by analyzing the case of an elliptical hole in a plate subjected to a remote
tensile stress perpendicular to the major axis of the notch. He showed that the max-
imum stress occurs at the vertex of the major axis, where the radius of curvature
is minimum. Moreover, when the elliptical notch is collapsed into a perfect crack,
the stress field is singular. Since real materials only support finite stresses, this re-
sult indicated that a cracked component cannot sustain any loading if a criterion of
maximum stress is applied, which contradicts the experimental observations. Grif-
fith (1921) applied energy conservation principles to study the cracks propagation.
Griffith postulated that solids possess a surface energy, and in order to propagate a
crack, the externally added energy should exceed the surface energy associated with
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Figure 1.14: Matching between the Mohr-Coulomb and Drucker-Prager yield
surfaces in the deviatoric plane.
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the new area created during the crack propagation. Griffith introduced the concept
fracture energy of a material Gf , only applicable to perfectly brittle materials and the
experimental measurements of the energy necessary to propagate a crack were orders
of magnitude higher than the theoretical estimations. Experimental observations of
the crack surfaces showed that plastic deformation takes place at the notch of the tip,
even for brittle materials. This led to Irwin (1948) and Orowan (1955) to adopt the
concept of the fracture process zone for the region surrounding the crack tip. This
zone was characterized by a progressive softening, for which the stress decreases at
increasing deformation. The fracture process zone is surrounded by a nonsoftening
nonlinear region characterized by plasticity, for which the stress remains constant at
increasing deformation. In addition, Irwin estimated the size of the fracture process
zone through a parameter called characteristic length, which was defined by Hilleborg
et al. (1976) as

lch = EGf

σt2
(1.20)

in which E is the elastic modulus and σt
2 is the tensile strength of the material.

It is possible to distinguish between three types of fracture behavior depending on
the ratio between the size of the structure and the characteristic length (D/lch)(Fig.
1.15).

When the characteristic length is small compared to the structure size, fracture
takes place in a very small region. Linear elastic fracture mechanics (LEFM) is
specially suited for this case and is typically applied to brittle materials like glasses
or ceramics. The second type of behavior includes situations in which the nonlinear
zone is due to the plastic yielding of the material, and the size of the actual fracture
process zone takes place still in a small region. This kind of behavior is typical in
ductile metals, and its usually treated by means the elasto-plastic fracture mechanics
(EPFM). Finally, the third type of behavior includes situations in which a major part
of the nonlinear zone exhibits damage with material softening, due to crazing, void
formation, interface breakages and other similar phenomena. This kind of behavior
is observed in many materials like concrete, rocks or toughened ceramics, which are
known as quasi-brittle materials (Bažant and Planas, 1998).
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Figure 1.15: Types of fracture process zone. Diagrams at the bottom show the
trends of the stress distributions along the crack line. From Bažant and Planas
(1998).

Epoxies fail in tension exhibiting very limited elongation and this brittle behavior
has been classically treated by means of LEFM (Kinloch and Young, 1983). However,
the theoretical fracture toughness, considering a perfectly brittle material, usually
underestimates the experimental measurements (Berry, 1964). This fact has been
confirmed by fractografic observations were massive plastic deformations by shear
banding and crazing around the crack tip were observed (Patrick, 1973). These
findings confirmed that toughening mechanisms are operating during the fracture of
the epoxy resin and they can be also treated as quasibrittle materials. The fracture
process in these materials can be properly described by two simplified approaches:
cohesive crack models and continuum damage models.

Cohesive crack models

This is the simplest model that can completely describe the progressive fracture
process. The cohesive crack approach was initially proposed by Dugdale (1960) to
represent the nonlinear processes located at the front of a pre-existing crack in metals
and has been extended to quasibrittle materials like concrete, rocks, composites, etc
(Hilleborg et al., 1976; Bažant and Oh, 1983; Planas et al., 2003; Sancho et al., 2007;
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Figure 1.16: Real rough crack idealized as a cohesive crack and a continuum
damage model. Stress-elongation curve for the idealized stable tension test.

Fang et al., 2011). In this model the entire fracture process zone is lumped into
the crack line and is characterized in the form of a stress-displacement law which
exhibits softening (Fig. 1.16(a)). Thus, a cohesive crack is a fictitious crack able to
transfer stresses from one face to the other, according to a softening function which
is considered a material property. The cohesive crack can be implemented in finite
elements codes by means of different methods like extended finite elements, cohesive
elements, strong embedded discontinuities, etc. These strategies have been employed
to simulate the fracture behavior epoxy resins (Diehl, 2008; Campilho et al., 2011;
Y. T. Kim, 2011).

The progressive interface fracture upon loading can be taken into account through
the cohesive crack model at the interface between dissimilar materials (Camanho
and Dávila, 2002; Segurado and LLorca, 2004). The mechanical behavior of the
cohesive crack was expressed in terms of a traction-separation law which relates the
displacement jump across the interface with the traction vector acting on it. The
initial response of the cohesive elements is linear in absence of damage. Therefore,
for a two dimensional cohesive element, the traction-separation law could be written
as

tn = Kδn and ts = Kδs (1.21)
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where tn, ts, δn and δs stand for the normal and tangential tractions and displacement
jumps across the interface respectively. The linear behavior ends at the onset of
damage, which is dictated by a maximum stress criterion expressed mathematically
as

max{〈tn〉
N

,
ts
S
} = 1 (1.22)

in which 〈〉 stand for the Macaulay brackets indicate that does not develop when the
interface is under compression. N and S are the normal and tangential interfacial
strengths, respectively. Once damage begins, the stress transferred through the crack
is reduced depending on the interface damage parameter d, which evolves from 0 (in
the absence of damage) to 1 (no stresses transmitted across the interface), as shown
in Fig. 1.17. The corresponding traction-separation law is expressed by

tn = (1− d)Kδn if δn > 0

tn = Kδn if δn ≤ 0 (1.23)

ts = (1− d)Kδs

For a linear softening law, the evolution of the damage parameter is controlled
by an effective displacement, δ̄, defined as the norm of the displacement jump vector
across the interface as

δ̄ =
√
< δn >2 +δ2

s , (1.24)

and d depends on the maximum effective displacement at the interface attained during
the loading history at each material integration point δ̄max according to

d = δ̄f (δ̄max − δ̄0)
δ̄max(δ̄f − δ̄0)

(1.25)

where δ̄0 and δ̄f stand for the effective displacement at the onset of damage (d = 0)
and when the interface has failed completely (d = 1), respectively. In this cohesive
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Figure 1.17: Schematic of the traction-separation law governing the behavior of
the cohesive crack at the fiber/matrix interface.

model, the energy necessary to completely break the interface is the interface fracture
energy G, which can be defined as

G = 1
2Teffδ

f (1.26)

being Teff the effective traction at the damage initiation

Teff =
√
N2 + S2 (1.27)

Continuum damage models

Continuum damage mechanics is a constitutive theory describing damage by the
generation, propagation and coalescence of cracks or voids at the microscopic level.
The progressive degradation of the material leads to its final failure (Fig. 1.16(b)).
Continuum damage models do not account for individual cracks, but smear their
effect over a region of the material by degrading the stiffness and strength of the
cracked material. The continuum damage models have been implemented in finite
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elements codes through the degradation of the elastic moduli, the decreasing of the
yield stress or combining both. The different approaches have a similar response upon
the material loading, but differences appear during the unloading (Fig. 1.18).

The first continuum damage model was proposed by Kachanov (1958) and Rabot-
nov (1968) by introducing a scalar internal variable to take into account the reduction
of the cross-sectional area produced by microcracking during the creep failure in met-
als. Therefore, denoting respectively by Ao and A the effective load bearing areas of
the pristine and damage material, the damage variable, DK , was introduced by

DK = A− Ao
A

(1.28)

where DK = 0 represents undamaged material and DK = 1 fully damaged material
with a total loss of load-bearing capacity. Considering the damage variable, the
observed stress, σ, is replaced by the effective stress, σeff .

σeff = σ

1−D (1.29)

Lemaitre (1984) also considered a scalar damage variable, DL, to represent the
stiffness degradation experimentally observed in ductile metals under load-unload
cycles

E = (1−DL)Eo (1.30)

The damage evolution can also be coupled with the plastic behavior of metals,
Gurson (1977) described the mechanism of damage by void growth in porous metals
producing an evolution of the yield surface. Initially, when the material is undamaged
DG = 0, the plastic behavior is governed by the von Mises yield criterion. However,
in presence of damage, DG 6= 0, the yield behavior becomes pressure-sensitivity and
the yield surface shrinks.

The continuum damage models have been extensively used in finite element anal-
ysis because of their easy implementation in computational codes as constitutive
equations at Gauss points at material level. These strategies have been successfully
employed to simulate the fracture in a wide variety of materials such as metals (Tver-
gaard and Needleman, 1984), concrete (Mazars, 1986), polymers (Jeong, 2002; Canal
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Figure 1.18: Illustration of loading-unloading curve for the smeared crack model
implemented through the degradation of the elastic moduli and the decrease of the
yield stress.

et al., 2009) or FRPs (Ladevèze and Lubineau, 2001; Camanho et al., 2007; Maimí
et al., 2007).

Strain localization and mesh adjustment

When the crack opening is modeled by a displacement jump, as it is done by
the cohesive crack models, it is possible to formulate an objective traction-separation
law. In this case, the numerical result does not exhibit pathological mesh sensitivity.
On the other hand, when the crack is smeared over a softening region of an arbitrary
size (e.g. the element size), the resulting model can be physically incorrect and
numerically ill-posed.

For illustrating this problem, let us consider a homogeneous bar of initial length L
subjected to a tensile load and made of softening material. This bar can be subdivided
in N identical pieces which act as equal elements coupled in series. In this case, after
the peak of maximum stress, strain localizes in only one element, resulting in different
stress-strain curves, depending on the length of the pieces, implying that the result
obtained through finite element models would completely depend on the mesh density
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Figure 1.19: Homogeneous bar subdivided into N equal elements and the result-
ing stress-strain curves.

(Fig. 1.19). This problem is referred as lack of mesh objectivity or spurious mesh
sensitivity.

The mesh sensitivity is not acceptable in finite elements calculations and it must
be avoided. The simplest remedy, frequently used in engineering applications, is
based on an adjustment of the stress-strain diagram depending on the size of the
element. This technique was proposed for softening plasticity models (Pietruszczak
and Mroz, 1981) and later applied to damage models (Bažant and Oh, 1983). The
degradation of the material is due to the opening of microcracks which later collapse
into a macroscopic crack producing the final failure. If the crack opening is modeled
by a displacement discontinuity, as is done in the cohesive crack models, it is possible
to formulate a traction-separation law as the constitutive description of the damage.
Since the crack opening does not depend on the element size, the numerical results
do not exhibit pathological mesh sensitivity because the physical description of the
fracture process is objective. Then, a stress-strain law can be constructed at each
material point by taking into account the width of the simulated process zone (which
depends on the type and size of the corresponding finite elements).

The traction-separation law for the crack can be defined by
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1.7 Constitutive models for FRPs microconstituents

σn = f(w) (1.31)

where σn is the traction stress perpendicular to the crack plane and w is the crack
opening. Considering for simplicity a uniaxial problem (σn = σ), if the crack is
smeared over a distance h, the resulting cracking strain is

εcrack = w

h
= f−1(σ)

h
(1.32)

The total strain in the localization region (Ls) is obtained by combining the
cracking and the elastic strains

ε = εelastic + εcrack = σ

E
+ f−1(σ)

h
(1.33)

The remaining part of the material (Lu = L − Ls) is in elastic regimen and its
strain is given by εelastic. Thus, the total elongation of the material is

u = Luεelastic + Ls(εelastic + εcrack) = Lεelastic + Lsεcrack = Lσ

E
+ Ls

h
f−1(σ) (1.34)

When Ls = h, the term corresponding to the crack opening becomes independent
of the finite elements discretization. Therefore, to avoid the mesh sensitivity it is
necessary to obtain the value of Ls from the mesh characteristic length and set h
equal to this value. In uniaxial problems Ls is the size of the element, but the
selection of this parameter can be difficult in multidimensional problems or second-
order elements (Oliver, 1989).

1.7.3 Damage-plasticity coupled model of the matrix

The cracking process in quasi-brittle materials is not a sudden onset of new free
surfaces, but a continuous nucleation and coalescence of microcracks (Kinloch and
Young, 1983; Metha and Monteiro, 1993) and the evolution of microcrack density
produces a macroscopical softening in the material.

The plastic-damage approach was first employed by Lubliner et al. (1989); Lee
and Fenves (1998) to model the mechanical behavior of quasi-brittle materials. This
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model employees a modification of the Drucker-Prager yield function to account for
the different strength under tension and compression stress states. In terms of the
invariants of the stress tensor, J1 and J ′2, the yield function is given by

FQB(J1, J
′
2, σI , β, α) =

√
3
2J
′2 + J1α + β〈σI〉 − d(ε̃plc ) = 0 (1.35)

where σI is the maximum principal stress and β is a function of the tensile and
compressive yield stresses, σt(ε̃plt ) and σc(ε̃plc ) respectively, it is given as

β = σc(ε̃plc )
σt(ε̃plt )

(1− α)− (1 + α) (1.36)

In many cases, it is useful to avoid the use of the cohesion d by rewriting the yield
function in term of the compression yield stress

FQB(J1, J
′
2, σI , β, α) = 1

1− α

(√
3
2J
′2 + J1α + β〈σI〉

)
− σc(ε̃plc ) = 0 (1.37)

the yield surface under plane stress conditions is plotted in Fig.1.20. For compression
stress states, the quasi-brittle material yields following the standard Drucker-Prager
yield criterion. However, under tension loads, the criterion predicts a yielding mainly
controlled by the maximum principal stress, similar to the Rankine model applied
for perfectly brittle materials. The model assumes two competing deformation mech-
anisms: the tensile cracking and compressive shear banding. The evolution of the
yield surface is controlled by two internal damage variables ε̃plt and ε̃plc , depending on
the failure mechanisms under tension and compression loading, respectively.

Under uniaxial compression the response of the material is linear and elastic until
the value of the initial yield σc0 which corresponds with the onset of the plastic
regime. For uniaxial tension, the stress-strain response follows a linear behavior until
the value of the failure stress σt0 is reached. The failure stress corresponds to the
onset of microcracking in the material (Fig. 1.21), beyond this point failure stress
the formation of microcracks produces softening by decreasing the yield stress.
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1.7.4 Fiber-matrix interface

Matrix-reinforcement decohesion is one of the main damage mechanisms in FRPs
because it leads to significant reductions of the strength, ductility and toughness of
the material (LLorca, 2000). Interface fracture initiates by the nucleation of a crack
as the stress at the interface exceeds the interfacial strength. Damage progresses
as the crack propagates along the matrix-fiber interface and reduces the amount
of load transferred from the matrix to the reinforcement. Finally, the fracture of
the composite can occur by the coalescence of interface cracks connected by shear
bands in the matrix. For these reasons, the fiber-matrix decohesion is considered a
key mechanism which should be taken into account to analyze the overall composite
behavior.

Interface fracture in composites has been modeled by two different strategies.
Mean-field approximations (Zhao and Weng, 1996; Sun et al., 2003) represented
the composite as a three-phase material formed by the continuous matrix, intact
and debonded reinforcement. It was assumed that interface fracture was strength-
controlled, and that decohesion occurred when the average tensile stress in the rein-
forcement along the loading axis surpassed a critical value identified as the interface
strength. These models provided the first estimations of damage evolution by in-
terface fracture during deformation but present some limitations. First, interface
fracture is controlled by maximum stress values which may be very different from the
average stress in the reinforcement. Second, they assumed that the interface decohe-
sion was complete, while experimental observations always showed partial decohesions
(Fig. 1.11).

Most of these limitations to simulate the matrix-fiber decohesion are overcome
by the second strategy. In this approximation interface fracture is simulated by a
cohesive crack model using interface elements inserted between fibers and matrix.
This technique takes into account the effect of interface strength and toughness,
and its results are in good agreement with the experimental patterns of interface
decohesion (Canal et al., 2011) and the effective properties of composites subjected
to elastic (Gusev, 1997; Michel et al., 1999; Segurado and LLorca, 2002) and elasto-
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plastic deformation (Böhm and Han, 2001; Segurado et al., 2003; González et al.,
2004).

1.8 Objectives

FRPs present outstanding mechanical properties (stiffness and strength) and low
density, which compete favorably with metallic alloys, the standard structural mate-
rials for engineering applications. Since FRPs became affordable, as a result of the
maturation of the processing and quality control techniques, their use in structural
components was spread in many industrial sectors. The strength of a composite lami-
nate is assessed nowadays through the application of physically-based phenomenolog-
ical failure criteria. These criteria establish a failure locus in the stress space, which
is formed by the intersection of various smooth surfaces, each one representing the
critical condition for a given fracture mode. However, the comparison of their pre-
dictions with the experimental results indicate that the existing knowledge on failure
mechanisms of FRPs needs further development. Therefore, without accurate models
to predict the failure strength of laminates, it is necessary to perform a high number
of tests to validate the safety of composite structures through a costly trial-and-error
approach.

Recent developments in computational micromechanics have demonstrated that
the mechanical behavior until fracture of a composite lamina can be obtained, know-
ing the mechanical properties of its constituents, from numerical simulations of the
composite microstructure. This can be the first step in a new multiscale modeling
strategy aimed to predict the strength of composite structures. Nevertheless, to per-
form this virtual testing strategy successfully it is necessary to gain a substantial
knowledge of the mechanical properties of the FRPs constituents (matrix, fiber and
interfaces) and the failure mechanisms developed in the microstructure. Thus, the
objectives of this thesis can be identified as follows.

The main objective of this study is to develop computational micromechanical
models to predict the transversal behavior of unidirectional fiber reinforced polymers.
These numerical models should be consistent with the main deformation and failure
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processes occurring at the microscale. For this reason the second goal of this work
is the detailed experimental characterization of a glass fiber/epoxy laminate, where
the most relevant mechanical properties of the matrix and the fiber/matrix interfaces
were obtained by means of nanoindentation and push-out tests. Moreover, additional
information about the deformation and damage mechanisms at the micron scale was
obtained through the application of in situ SEM testing carried out on cross-section
specimens of the laminate. Finally, to assess the validity of the computational models,
their results were compared with experimental results and the predictions of the
standard failure criteria for FRPs.
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Chapter2
Characterization of the transverse
properties of unidirectional FRPs

The compressive and tensile mechanical properties of a commercial unidirectional
laminate of epoxy-matrix reinforced with glass fibers were determined, in the trans-
verse direction, by means of the ASTM standard test methods.

2.1 Material

Unidirectional laminates ([0]14) were manufactured from pre-impregnated sheets
of E-glass/MTM 57 epoxy resin (Advanced Composite Group, UK). Rectangular
panels of 350 x 300 x 2.5 mm3 were heated at 3◦C/min and consolidated at 120◦C
under 0.64 MPa of pressure in an autoclave for 30 min. They were cooled at the
same rate of 3◦C/min and the pressure was released at 80◦C. After manufacturing,
the panels were inspected by ultrasound to ensure that they were free of delaminations
or other defects. The nominal fiber volume fraction was 54 %.
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Figure 2.1: Schematic picture of the transversal compression test specimens.

2.2 Compressive properties determination

The transverse compressive properties of the unidirectional E-glass/MTM 57
epoxy laminate were determined according to the ASTMD 3410 standard test method.
This test procedure introduces the compression into the specimen through shear forces
acting throughout the grips. The compression specimens were machined from the
panels of unidirectional laminate with the dimensions recommended by the ASTM
standard (Fig. 2.1). Tabs of woven E-glass FRPs were employed to prevent the
premature failure of the specimen in the grip area. The tabs were bonded to the
specimen surface with an epoxy adhesive, leaving 10 mm of free gage length between
them.

The shear load is applied via wedge grips using the IITRI compression test fixture
shown in Fig. 2.2. The wedges grips fit into a mating set of wedges that also fit into
the upper and lower wedge housing block assemblies. Finally, the housing block as-
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2.2 Compressive properties determination

semblies are attached to the crosshead of the testing machine. Tests were carried out
in a servo-hydraulic mechanical testing machine Instron 8803, under stroke control
using a constant cross-head speed of 1mm/min while the load and the displacement
were measured using a 25kN Instron load cell and the displacement transducer of
the mechanical rig, respectively. The transversal strain was measured using a digital
image correlation technique (Vic, Correlated Solutions, Inc.). To this end, one of the
specimen surfaces was painted in white and then sprayed in black to created a ran-
dom pattern of black dots over the white background. The digital image correlation
system acquired a high-resolution image of the surface every 2 s and tracked the dis-
placement of the black dots to create a map of the displacement field on the specimen
surface. The local lagrangian strain tensor was computed directly as the derivative of
the interpolated displacement field obtained from the digital image correlation sys-
tem. Further details on this measurement technique are described in Chapter 5. In
addition, some of the specimens were instrumented with 350 Ω strain gages at both
sides to monitor the degree of bending introduced and to check the accuracy of the
optical strain method. The strains measured by the strain gages were equivalent to
that obtained by the digital image correlation until the strain gages were detached
form the specimen.

2.2.1 Experimental results

Ten transversal compression tests were performed on unidirectional [0]14 E-glass
/ MTM 57 coupons according to the ASTM 3410 standard. The stress-strain curves
(σ2 − ε2) are plotted in Fig. 2.3. The stresses were computed from the readings of
the load cell and the initial cross sectional area of the specimen, while the digital
image correlation system allowed the measurement of full-field deformations. The
tests were reproducible and exhibited a limited experimental scatter. The shape of
the stress-strain curves was typical of unidirectional polymer composites subjected to
transversal compression. The behavior was initially linear and the slope of the curve
was used to compute the transverse elastic modulus of the laminate E2 ≈ 12±2 GPa.
The initial elastic zone ends with a non-linear region in which deformations are mainly
controlled by the plastic deformation of the polymeric matrix and the softening effect
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Figure 2.2: Schematic of the IITRI compression test fixture.
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Figure 2.3: Transverse compressive stress vs. strain curves for E-glass/MTM 57
epoxy specimens.

of the decohesion of the fibers. In turn, this region ended with the catastrophic failure
of the laminate. The strength of the material was obtained, according to the ASTM
standard, as the ultimate load divided by the cross sectional area of the specimen,
which provided a value of Yc ≈ 160± 10 MPa

Fracture surfaces were visually inspected after the compression tests. In all cases,
the fracture plane was parallel to the fiber direction and perpendicular to the trans-
verse plane 23, which is an acceptable failure mode according to ASTM standard.
Due to the short gage length of the specimens, the failure was mostly located near
the tab region, but never inside the grip portion of the specimen, which also meets
the requirements of the Standard. The fracture surface of one of the tested coupon
is shown in Fig. 2.4. The angle between the fracture plane and the direction per-
pendicular to the loading axis was also measured by optical microscopy leading to a
value of Θ ≈ 54± 2.0◦.

Experimental evidences and micromechanical simulations of the deformations and
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fracture processes of FRPs have pointed out that the fracture plane orientation of
the composite under transverse compression can be mainly determined by the pres-
sure sensitivity of the matrix. During the test, before the maximum compressive
load is attained, shear bands of severe plastic deformation appear in the matrix.
These bands are tilted at a certain angle with respect to the plane perpendicular
to the loading axis and their orientation is dependent on the pressure sensitivity of
the polymer. The deviation of the experimental fracture angle with respect to the
maximum shear stress directions at ±45◦ is indicative of the hydrostatic pressure de-
pendent yielding of the polymer matrix (González and LLorca, 2007a). Continuing
with the compressive loading of the laminate, the damage by interface decohesion
is developed afterwards around the shear bands. The final fracture occurs by the
link-up of interface decohesions through the matrix, following the path previously set
by the shear bands.

The previously described failure mechanism indicates that the fracture plane ori-
entation is approximately given by the orientation of the shear bands of the polymeric
matrix. Therefore, the experimental measurement of direction of the failure plane
provides an estimation of the pressure sensitivity parameter of the epoxy matrix.
Considering that the plastic behavior of the matrix is represented adequately by a
non-dilatant Drucker-Prager yield model, the orientation of the shear bands is given
by (Rudnicki and Rice, 1975; Gao et al., 2011)

Θ = tan−1

√
ζ −Nmin

Nmax − ζ
(2.1)

where ζ = (1 + ν)(α)−N(1− ν), Nmax = σ′
I

τ̄
, N = σ′

II

τ̄
, Nmin = σ′

III

τ̄
, τ̄ = σmises/

√
3,

being ν the Poisson ratio and α the pressure sensitivity in the Drucker-Prager model.

Following this strategy, the measured orientation of the fracture plane Θ ≈ 54
represents a pressure sensitivity parameter of α ≈ 0.13 in the Drucker-Prager yield
model (Eq. 1.16).
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Figure 2.4: Fracture plane orientation on the lateral surface of an E-glass/MTM
57 loaded under transverse compression.
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Figure 2.5: Schematic picture of the transversal compression test specimens.

2.3 Tensile properties determination

The transverse tensile properties of the unidirectional E-glass/MTM 57 epoxy
laminate were determined according to the ASTM D 3039 standard test method. The
specimens were machined according to the standard with the dimensions specified in
Fig. 2.5. The result of the tensile test is extremely sensitive to specimen imperfec-
tions. For this reason, special precautions were taken to avoid notches, undercuts,
rough or uneven surfaces caused during the specimen preparation. The samples were
machined from the laminate panels by water-lubricated precision sawing, using an
abrasive cutting disk. Aluminum tabs were bonded to the specimen surface to pre-
vent gripping damage. Finally, every specimen was inspected and measured, and
showed flat and parallel edges within the tolerances specified in the standard.

Transverse tension tests were carried out in a servo-hydraulic mechanical testing
machine Instron 8803, under stroke control using a constant cross-head speed of
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1mm/min while the load and the displacement were measured using a 10kN Instron
load cell and the displacement transducer of the mechanical rig, respectively. The
transversal strain was measured using an Instron strain gauge extensometer with
50mm of gauge length.

2.3.1 Experimental results

Ten transversal tension tests were performed on unidirectional [0]14 E-glass /
MTM 57 coupons according to the ASTM 3039 standard. The failure mode was de-
termined by the visual inspection of the broken specimens. In many samples, due to
the brittle behavior of the laminate in the direction perpendicular to the fibers, the
failure was localized near to the tabs or inside the grip region. These failure modes
were considered unacceptable, according to the ASTM standard, and the measure-
ments were rejected. The stress-strain curves (σ2− ε2) of six specimens broken inside
the gauge area are plotted in Fig. 2.6. The stresses were computed from the readings
of the load cell and the cross sectional area of the specimen. The deformations were
acquired with the extensometer reading. The tests were reproducible and exhibited a
limited experimental scatter. The shape of the stress-strain curves were the expected
for unidirectional polymer composites subjected to transversal tension. The behavior
was linear until failure, showing the expected brittle behavior of the laminated. The
slope of the curve was used to compute the transverse elastic modulus of the com-
posite E2 ≈ 11± 2 GPa, the linear region ended with the catastrophic failure of the
laminate. The measured strength of the material was Yt ≈ 50± 5 MPa.

2.4 Concluding remarks

The transversal tensile and compressive properties of a unidirectional laminate of
E-glass/MTM 57 epoxy resin were determined by means of the ASTM standard test
methods.

Transverse compression tests showed an elasto-plastic behavior of the laminate
prior to its catastrophic failure. The measurements carried out during the compres-
sive tests provided an elastic modulus of E2 ≈ 12±2 GPa and a compressive strength
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Figure 2.6: Transverse tension stress vs. strain curves for E-glass/MTM 57 epoxy
specimens.
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of Yc ≈ 160± 10 MPa. The fracture was always localized parallel to the fiber direc-
tion and oriented at an angle slightly higher than 45◦ with respect to the direction
perpendicular to the loading axis. It was assumed that the orientation of the fracture
plane was related with the pressure sensitivity of the matrix. Thus, an estimation of
the pressure sensitivity parameter was provided by the measurement of the fracture
inclination.

Tensile tests showed a linear and elastic behavior of the composite until its catas-
trophic failure for limited deformations. The fracture was parallel to the fiber direc-
tion and perpendicularly oriented to the loading direction. Tensile test provided an
elastic modulus of E2 ≈ 11± 2 GPa and a strength of Yt ≈ 50± 5 MPa.
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Chapter3
Micromechanical characterization
of FRPs constituents

The properties of the fibers, matrix and fiber-matrix interfaces determine the
mechanical performance of FRPs. In this chapter, an innovative micromechanical
characterization framework is developed to measure the properties of the laminate
constituents within the actual composite ply. These techniques are then employed to
obtain the matrix and interface properties of the E-glass/MTM 57 laminate.

3.1 Matrix characterization

As a first approximation, the matrix properties can be determined by conventional
mechanical tests for rigid plastics on specially manufactured neat resin coupons. Two
ASTM standards define the conditions for tensile and compression tests at low uni-
form rate of loading (D7078, 2003a,b). The tensile test specimens have a parallel
gauge section of rectangular cross section, broadening at each end to provide attach-
ment points for the grips (dog-bone-shaped specimens). The preferred specimens for
the compression tests shall be in the form of straight cylinders or prisms whose length
is twice its principal width or diameter, in order to prevent barreling. During the
tests, contacting or remote extensometers are used to measure the separation between
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Table 3.1: Mechanical properties of the epoxy matrix and the glass fibers provided
by the prepreg supplier.

E νm σyc σyt

(GPa) (MPa) (MPa)
MTM 57 epoxy matrix 3.35 0.35 120 70

Glass fibers 74 0.2

two points on the gauge length, while a load cell records the applied force. This ex-
perimental information directly provides Young’s modulus, and the compressive or
tensile yield stresses. Following these procedures, the prepreg supplier (Advanced
Composite Group, UK) measured the basic matrix properties and the results are
summarized in Table 3.1.

However, the properties provided by neat resin coupons may not be representative
of the mechanical behavior of the matrix in the laminate. For instance, matrix
mechanical properties are controlled by the cross-linking process that takes place
during the cure cycle and hence by the exact processing conditions which could be
significantly modified by the presence of a large volume fraction of fiber reinforcement.
Therefore, the optimum solution proposed in this work, relies on using in situ testing
techniques to characterize the ply components at the microstructural level.

3.1.1 Determination of the Young’s modulus and compres-
sive yield stress

It has been recently shown that the mechanical properties of the matrix can be
determined by means of instrumented nanoindentation into resin pockets between the
fibers on a polished cross-section of the composite (Rodríguez et al., 2011). Special
care must be taken to place the nanoindentations sufficiently far away from the fibers
in order to avoid their constraining effect which induce a marked stiffening effect.
However, it is not difficult to find rich resin locations far away from any fiber because
of the inhomogeneous fiber arrangement at the microscopic level (Fig. 3.1).

During the nanoindentation, a very small diamond hard tip is pressed into the
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3.1 Matrix characterization

Figure 3.1: Optical microscopy image of the cross section of the E-glass/MTM
57 unidirectional laminate showing a nanoindentation in a resin pocket.
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sample. The load in the tip is increased as it penetrates, the applied load and the dis-
placement into the surface are continuously recorded with high precision instruments,
obtaining the load-displacement curves showed in Fig. 3.2.

The hardness of materials can be determined from the indentation test as the
ratio between the applied force (P ) and the projected contact area (A).

H = P

A
(3.1)

The contact area can be estimated from microscopical observations of the residual
imprint, but this practice can be difficult to be carry out at the small scale of the
nanoindentation tests. Oliver and Pharr (1992) developed an analytical method to
determine the elastic properties from the load-displacement curves measured during
the test. This technique has been extensively used to obtain the elastic modulus
through instrumented indentation experiments, the proposed method relates the ini-
tial slope of the unloading curve, S in Fig. 3.2, with the contact area and the elastic
modulus (E) by

Er =
√
π

2
S√
A

(3.2)

where A is computed from the geometrical characteristics of the tip and the record
of the displacement into the surface. Er stands for the reduced modulus, which takes
into account the effect of a non-rigid indenter

1
Er

= (1− ν2)
E

+ (1− ν2
i )

Ei
(3.3)

being E and ν the Young’s modulus and the Poisson’s ratio for the specimen and, Ei
and νi the same parameters for the indenter.

However, this method provides inaccurate predictions when it is applied to study
non-linear, viscoelastic or plastic materials. The pile-up and sink-in of the material
on the edges of the tip during the indentation process (Fig. 3.3) produces a variation
on the contact area, resulting in unaccuracies when the Oliver and Pharr method is
applied. Moreover, the imprint area is also afected by relaxation phenomena due to
the viscoelastic behavior of the polymers. In these cases, the analytical study of the
indentation process becomes unreachable.

60



3.1 Matrix characterization

Figure 3.2: Schematic of the load-displacement curve obtained from the nanoin-
dentation.
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Figure 3.3: Diagram showing pile-up/sink-in effects affecting the contact area of
indentation.
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Cheng and Cheng (2004) simulated the indentation process on a wide variety
of elasto-plastic materials, they obtained the following relation between the elastic
fraction work and the reduced modulus

We

Wt

≈ 1− 5H
Er

(3.4)

being Wt and We the total and the elastic work of the indentation process, respec-
tively.

In addition, Cheng and Cheng also provided an accurate method for the yield
stress determination in elasto-plastic materials. This method has been successfully
applied to metallic alloys, but it can not be accurately applied to materials whose
yielding presents pressure sensitivity. Rodríguez et al. (2011) extended this method-
ology to pressure dependent materials by simulating the indentation on materials
following a Drucker-Prager yield criterion. As a result, they proposed two empirical
curves. The first one relates the fraction of elastic and total work with the ratio
between the hardness and the yield stress, while the second curve relates the latter
magnitude with the ratio between the yield stress and the elastic modulus. These
curves were obtained for a wide range of pressure sensitivities parameters, making
possible their use for many different materials (Fig. 3.4 a and b).

Assuming that the yield behavior of the epoxy matrix is pressure sensitive, the
compressive strength and the elastic modulus were experimentally determined through
the nanoindentation process according to the Rodríguez et al. (2011) methodology.

Five nanoindentation tests were performed, using a Berkovich indenter tip, into
the resin pockets of the material microstructure. The load was applied at a constant
rate of 0.2µm/s, the results were reproducible and the scatter was very limited. A
representative load-displacement curve obtained in the process is plotted in Fig. 3.5.
The curve shows the load branch, produced when the tip is pressed into the specimen
surface, up to an approximate depth of 2µm. Then, the load is held during 10 seconds
to reduce the creep deformation upon the unloading, which could induce inaccuracy
predictions of the material properties. Following the hold period, the indenter is
lifted off from the surface, producing the unloading branch which is supposed to be
completely elastic.
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Figure 3.4: (a) H/σyc as a function of the elastic fraction work and (b) as a
function of the ratio between the compressive yield stress and the reduced modulus.
α stands for the pressure sensitivity parameter of the Drucker-Prager yield criterion
(Eq. 1.16). Adapted from Rodríguez et al. (2011)
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Figure 3.5: Load-displacement curve obtained from the nanoindentation into the
a matrix pocket of the FRP E glass/ MTM 57 epoxy.
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3.2 Fiber-matrix interface characterization

The measurement of the areas under the loading and unloading branches (Fig.
3.5) provided a ratio between the elastic and the total work of We/Wt ≈ 0.42. In
addition, the hardness H ≈ 200MPa was obtained through eq. 3.1 by measuring the
applied load and computing the contact area from the geometrical characteristics of
the tip and its displacement into the specimen surface. From these parameters and
the pressure sensitivity of the material (α ≈ 0.13, obtained in the previous chapter), it
is straightforward to obtain the compressive yield stress of the epoxy matrix through
the curves of Fig. 3.4(a). Following this strategy, the determined compressive yield
stress was σyc ≈ 105MPa. Finally, a Young’s modulus of E ≈ 3.5GPa was obtained
through the application of the curves of Fig. 3.4(b).

The experimental technique employed to characterize the mechanical properties of
the matrix has been carried out without manufacturing special specimens from resin
coupons and taking into account the exact processing conditions of the FRPs and
the influence of the temperature, water absorption, etc. This methodology has been
widely assessed for different pressure dependent materials, including thermoplastic
and thermosetting polymers (Rodríguez et al., 2011). In addition, the experimentally
determined values of the elastic modulus and the compressive yield stress of the epoxy
matrix were in good agreement with the properties reported by the material supplier
(Table 3.1). This fact confirmed that the presence of fibers did not substantially
modified the mechanical behavior of the epoxy resin.

3.2 Fiber-matrix interface characterization

3.2.1 Interface strength determination

Several experimental methods exist to characterize the interfacial adhesion be-
tween fiber and reinforcement in composite materials, such as the fragmentation test,
the pull-out test and the push-in and push-out tests. No ideal test exists, but each
of them presents advantages and disadvantages which should be considered to select
the most adequate for a specific purpose.

The fragmentation test was early proposed to study the interfaces in metal matrix
composites (Kelly and Tyson, 1965), and later it was extensively employed to study
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Chapter 3. Micromechanical characterization of FRPs constituents

Figure 3.6: Schematic illustration of the fragmentation test.

FRP (Zhou et al., 2001; Young et al., 2001). In this test, a single fiber is embedded
within a resin tensile specimen (Fig. 3.6). If the fiber failure strain is lower than
the corresponding to the matrix, the fiber breaks at several points. Thus, the elastic
recovery of the embedded broken fiber is controlled by the elastic behavior of the
matrix and the strength of the interface.

The fragmentation test is adequate for composites with ductile matrices and brit-
tle fibers. On the contrary, for tough fibers embedded in a brittle matrix are consid-
ered, the pull-out test usually provides better results (Zhandarov and Mäder, 2005).
This test is based on pulling out a partially embedded fiber from a resin specimen
(Fig. 3.7). In this test, the load is transfered from the fiber to the interface. Then,
the decohesion happens when the shear strength in the interface is reached.

The fragmentation test, pull-out test and their other modifications consisting on
embedding a single fiber in the matrix material can be very valuable, but testing
conditions are sometimes technically difficult to fulfill. In addition, they might suffer
from the fact that the results cannot be readily scaled-up to a real composite laminate
because a single isolated fiber is generally not representative of the mechanical and
physico-chemical conditions encountered in real composites (Kharrat et al., 1997).
To overcome these difficulties, the push-in and push-out tests can be carried out in a
specimen of the real composite.

In the push-in test, a single fiber is pushed by means of a nanoindentor on a
cross-section of a bulk specimen of the laminate until interface decohesion occurs
(Fig. 3.8). The main advantage of this technique is that it does not require any labo-

66



3.2 Fiber-matrix interface characterization
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Figure 3.7: Schematic illustration of the pull-out test.
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Figure 3.8: Schematic illustration of the push-in test.

rious sample preparation but interpretation is somehow difficult because the length
of the debonded interface below the surface is not known. Thus, the results should
be analyzed in terms of a shear lag model or FE simulations of the test (Molina-
Aldareguía et al., 2011).

The push-out test requires harder specimen preparation, but provides a more
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Figure 3.9: Schematic illustration of the push-out test.

direct measurement of the interface strength (Godara et al., 2010). This test is similar
to a push-in test but is carried out on a very thin specimen. The force applied on
the fiber leads to the complete fiber/matrix debonding and the fiber is pushed out
through out the plate (Fig. 3.9). The shear stress at the instant of fiber push-out
provides the direct measurement of the interface strength (Sinterface) given by

Sinterface = Pmax

2πre (3.5)

where Pmax is the maximum applied load and e is the specimen thickness.

In this work, the push-out test was selected to evaluate the strength of the
fiber/matrix interface. Very thin specimens were prepared by polishing the cross sec-
tion of E-glass/MTM 57 unidirectional laminate up to a thickness of ≈ 20 − 30µm.
These specimens were thin enough to allow decohesion over the whole interface and
the complete push out of the fiber. The samples were mounted on a MTS Nanoin-
denter XP instrumented equipped with a flat-punch tip with a diameter of 10µm.
The indentations were performed at a displacement rate of 50 nm/s. Fibers cover-
ing a wide range of diameters (between 10 and 30µm) and different environments
(positions of the neighboring fibers) were selected for the test. After the tests, the
specimens were inspected in the scanning electron microscope. The front and back
side of the tested slices were observed to check that the pushed fibers were completely
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3.2 Fiber-matrix interface characterization

Figure 3.10: SEM images of the front and section of the push-out test specimens.

debonded from the matrix. Furthermore, the micrographs were employed to measure
the diameter of the tested fibers and the thickness of the specimen (Fig. 3.10).

The main stages of the push-out test and the typical resulting load-displacement
curve are shown in Fig. 3.11. The curve presents an initial region dominated by
the elastic bending of the thin plate, followed by a region controlled by the elastic
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Figure 3.11: Schematic of the push-out process and load-displacement curve
resulting form the test.

deformation of the fiber and the surrounding matrix until maximum load. From this
point on, the test becomes instable, since the nanoindenter is load-controlled, showing
a plateau of constant load in the load-displacement curve.

Once the applied load is measured by the nanoindentor, and the specimen thick-
ness and the diameter of the fibers obtained through the SEM observations, it is
possible to calculate the interfacial shear stress through Equation 3.5. The resulting
shear-displacement curves were plotted in Fig. 3.12. The maximum stress for each
curve gives the shear strength of the fiber-matrix interface. The average measured
value was Sinterface ≈ 75 ± 15MPa. The relatively high value of the uncertainty was
possibly caused by the constrained effect of the nearest neighboring fibers. This val-
ues are in accordance with other measurements carried out in this material by the
push-in technique (Molina-Aldareguía et al., 2011).

In addition, it is interesting to notice that the shear strength of the interface could
be considered as a lower bound for the tensile yield stress of the matrix. The SEM
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Figure 3.12: Experimental shear stress-displacement curves obtained form the
tests.

observation of the fibers extracted during the push-out test (Fig. 3.12) showed that
the fibers were debonded through an “interfacial” failure, without any fragmentation
of the matrix around the extracted fibers (Fig. 3.13). Therefore, considering that
the shear stresses during the push-out did not produced the failure of the matrix, it
is possible to establish that σyt ≥ Sinterface.

It should be noted, however, that the push-out test does not provide the ac-
tual value of the normal interface strength, which may be different from the shear
strength. Ogihara and Koyanagi (2010) studied the interface failure under combined
shear and normal stress states in a glass fiber/epoxy composite. Their experiments
were conducted by using specimens reinforced with a single fiber, whose angle from
the loading direction was varied in order to create the different stress states in the
interface. The study concluded that the shear strength of the interface was higher
than its normal strength and proposed a quadratic stress criteria to represented the
debonding of the interface. Finally, assuming that the shear strength was 1.5 times
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Figure 3.13: Front and back sides of the specimen after the push-out test.
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3.3 Concluding remarks

higher than the normal strength, the proposed criteria fitted the experimental failure
envelope of the interface under the combined shear and normal stresses.

In view of these results, the normal interface strength of the E glass/MTM 57
was computed in our case from the shear strength obtained form the push-out test
as Ninterface = Sinterface/1.5 ≈ 50 MPa.

3.2.2 Interface toughness

The strength of the fiber-matrix interface is a key property to control the me-
chanical behavior of composites because it determines the initiation of the interface
fracture. In addition, the behavior of the interface during the fracture process is
also highly relevant. For example, if the interfaces between fibers and matrix were
perfectly brittle, the fibers would be completely debonded when the stresses at any
point of the interface reached the value of the strength. This might lead to the sudden
and catastrophic failure of the composite, and it would be impossible to make safe
structures with FRPs.

For this reason, the characterization of the fracture energy of the fiber-matrix
interface is an essential step to develop realistic micromechanical models of the com-
posite. The fracture energy of the fiber-matrix interfaces has been studied by means
of tests in single-fiber specimens (Zhou et al., 1999), but it cannot be easily deter-
mined through nanomechanical testing techniques in the actual composite ply. For
this reason, the push-out test performed with a load-controlled nanoindenter was not
able to provide an experimental value of the fracture toughness. In this case, due to
the absence of valid direct micromechanical measurement, the fracture energy was
indirectly evaluated through micromechanical simulations of the overall composite
behavior during its fracture (Chapter 4).

3.3 Concluding remarks

The mechanical properties of the matrix and the matrix-fiber interfaces have been
characterized in situ by means of nanoindentation and push-out test.
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In the case of the matrix, the elastic modulus and the compressive yield stress
were determined by carrying out nanoindentation tests into the resin pockets of the
composite microstructure. The properties obtained with this nanomechanical char-
acterization were in good agreement with those provided by the material supplier.
The mechanical behavior of the matrix can be modeled then by a continuous damage
model which explicitly takes into account the effect of the hydrostatic pressure on
the yielding and the quasi-brittle failure under tensile loads. The pressure sensitivity
of the epoxy was obtained through the observation of the fracture surfaces of the
unidirectional laminate under transverse compression.

The shear strength in the fiber-matrix interfaces was experimentally obtained by
means of the push-out test, and it was estimated for the case of normal opening.

As a final conclusion, the experimentally characterized values of the mechanical
properties of the matrix and fiber-matrix interfaces are compiled in the following
Table.

Table 3.2: Mechanical properties of the epoxy matrix and the fiber-matrix inter-
face obtained through nano-characterization techniques.

Em σyc σyt

(GPa) (MPa) (MPa)
3.5 105 ≥75

Ninterface Sinterface

(MPa) (MPa)
50 75
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Chapter4
Fracture behavior of FRPs

Unidirectional FRPs loaded in tension perpendicular to the fibers fail by the
initiation and propagation of a narrow crack perpendicular to the loading axis. The
microscopical inspection of the fracture process showed that the failure was caused by
the decohesion of the fiber-matrix interfaces and the failure of the matrix ligaments
localized between debonded fibers (Fig. 4.1).

Considering the aforementioned failure mechanisms, it is possible to state that
the fracture behavior of the composite depends on the strength and the fracture en-
ergy of the matrix and fiber-matrix interfaces. Some of the critical micromechanical
parameters which determine the failure properties of the composite can be indepen-
dently measured or taken for well-established values in the literature (see Chapter 3).
However, the fracture energy of the microconstituents cannot be directly determined
within the actual composite ply.

In this Chapter, the fracture behavior of E-glass/MTM 57 unidirectional laminate
in the direction perpendicular to the fibers is studied by means of tensile and three-
point bending tests. In addition, in order to evaluate the effect of the micromechanical
parameters on the fracture behavior of the final composite, both experimental test
were simulated through embedded cell approaches and their results were assessed
with the experimental measurements.
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Figure 4.1: Scanning electron micrograph showing the fracture process zone dur-
ing a three-point bending test of a E-glass / MTM 57 unidirectional laminate.
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Figure 4.2: Schematic picture of the three-point bending tests specimens.

4.1 Experimental techniques

Two kinds of tests were carried out to characterize the fracture behavior of the
laminate, transversal tensile tests and stable three-point bending test with prismatic
notched specimens.

The tensile strength in the direction perpendicular to the fibers was obtained
according to the ASTM D 3039 standard test method. The description of this test,
the experimental procedure and the obtained results have been already presented in
Chapter 2. These tests provided an elastic modulus of E2 ≈ 110 ± 20GPa and a
strength of σt ≈ 50± 5MPa.

The fracture behavior of the composite was determined using notched three-point
bending tests. Beams with a depth (D) of 2.8mm, a span (S) of 12mm and a thickness
(t) of 2mm were machined from unidirectional panels of E-glass/MTM 57 with the
fibers perpendicular to the beam axis and parallel to the thickness direction. A notch
was machined in the central section of the beams with a thin diamond wire, to a
notch root diameter of ≈ 130µm. The initial notch depth (ao) was 0.5D (Fig. 4.2).

Fracture tests were carried out in an Instron 5543A electromechanical testing
machine, under stroke control at a constant cross-head speed of 100µm/min. The
applied load (P) and the displacement of the loading point (δ) were continuously
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Figure 4.3: Detail of the experimental setup for the three-point bending test.

recorded during the tests with a load cell of 1kN and the cross-head position, respec-
tively. In addition to this, the displacement of the loading point and the crack mouth
opening displacement (CMOD) were more accurately measured through the digital
image correlation of the specimen images acquired during the tests. To this end, one
of the specimen surfaces was scratched with SiC paper of 250 grit to create a pat-
tern of points of random gray level which could be tracked by the analysis software.
Digital image correlation (DIC) is a non-contact method to measure displacements
and strains through the registration and tracking of images of the specimen. In the
three-point bending test DIC was used as an extensometer to measure the distance
between two points, but it can also provide the full field strain measurement on the
specimen surface. Additional information about this technique is provided in Chapter
5.

To obtain additional information about the damage micromechanisms in FRPs,
three fracture tests were carried out inside the scanning electron microscope. To this
end, the specimens were coated with gold by sputtering and the bending test fixture
was set up in a micro-electro-mechanical testing machine (Kammrath & Weiss Ten-
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Figure 4.4: (a) Miniaturized testing machine. (b) Scanning electron microscope
where the testing machine is inserted.

sile/Compression Stage) inside a scanning electron microscope (Zeiss EVO MA-15).
Micrographs of the central zone of the three-point bending specimens, the region
where the fracture process was localized, were taken at different magnifications (50X,
85X, 250X and 500X). The actuator was stopped at regular intervals of 5µm and
micrographs of the previously selected area were taken at the same magnification.
Load was not recorded because actual load signal (up to 16N) could not be distin-
guished from the background noise given the fact that the load cell was designed for
a maximum load of 10kN.

4.2 Experimental results

Five fracture tests were carried out on the transverse section of unidirectional [0]14

E-glass/MTM 57 laminate. The load-CMOD curves obtained from these tests are
plotted in Fig. 4.5. The curves were very repetitive within the experimental scatter,
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Figure 4.5: Load-CMOD curves of the fracture tests of E-glass / MTM57 unidi-
rectional laminates in the cross section.

which shows that the fracture mechanisms of this laminate in the transverse section
was reproducible. The load-CMOD curves exhibited a linear and elastic behavior
up to the peak of maximum load which was attained for a value of 15 ± 2N. After
this peak, load fell to the 60% or 70% of its maximum value. The sudden drop in
the load indicated the nucleation and development of the failure at the notch root.
Continuing with the test, the load stably decreased with the propagation of the crack
through the specimen section. The test ended with the splitting of the beam in two
halves.

The fracture tests provided two important parameters to characterize the fracture
behavior of this composite. The first one was the composite fracture energy, Gf ,
computed as the area under the P-δ curve divided by the area of the initial ligament,
as

Gf =
∫∞

0 Pdδ
(D − ao)t

(4.1)
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The second parameter was the characteristic length, which was defined by Hille-
borg et al. (1976) as

lch = EGf

Yt
2 (4.2)

where E is the elastic modulus and Yt is the tensile strength of the material. This
parameter is directly related to the cohesive zone extension during the fracture pro-
cess, and is commonly used to characterize brittleness of materials. The smaller the
lch value, the more brittle the material. The average value of the fracture energy
provided by the five tested specimens was Gf = 400 ± 50J/m2 and, considering the
elastic modulus and the tensile strength obtained through the transverse tensile tests,
it resulted in a characteristic length of 1.8 ±0.9 mm.

4.2.1 Fracture mechanisms

The in situ SEM fracture tests of the transverse section of unidirectional E-glass
/ MTM57 laminate allowed to study the main micromechanisms of deformation and
failure developed during fracture.

The initial loading of the specimen did not produce the development of failure
neither inelastic deformations. The first noticeable damage mechanism appeared for
a displacement of the load application point around ≈40µm. Initially, the crack
involved only the fiber-matrix interfaces (Fig. 4.6c), and the matrix ligaments be-
tween debonded fibers absorbed the deformations without noticeable signs of damage.
Continuing with the test, the crack tip advanced breaking the fiber-matrix interfaces
toward the load application point. Simultaneously, the matrix ligaments bridged the
crack opening making difficult its advance until the final failure of the ligaments (Fig.
4.6d). This process continued until the final splitting of the specimen in two halves.

The experimental observation of the fracture process described above showed that
fiber-matrix interfacial decohesion followed by the fracture of the matrix ligaments
were the two only active failure mechanisms during the fracture of the cross section
of the composite. The sequence of this process indicated that the strength in tension
of the fiber-matrix interfaces is lower than the tensile fracture stress of the matrix, in
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Figure 4.6: Scanning electron micrographs showing the sequence of the crack
propagation during a three-point bending test. The displacement of the load ap-
plication point corresponds to (a) 20µm, (b) 30µm, (c) 40µm, (d) 50µm and (e)
60µm.
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good agreement with the experimental measurements obtained by nanoindentation
techniques (see Chapter 3). Moreover, the SEM inspection showed two toughening
mechanisms. First, the circular shape of the cross section of the fibers produced the
deflection of the crack tip, increasing the area of the fracture surface and consequently
the final fracture energy. Second, the matrix ligaments between debonded fibers
bridged the crack opening, making the failure to progress slower. Considering the
intricate failure and toughening micromechanisms developed during the composite
fracture, it was not possible to directly extract any information about the fracture
energy of the microconstituents from the measurements of the three-point bending
test. For this reason, the fracture of the composite was studied by means of the
micromechanical simulations of the transverse tension and three-point bending tests.

4.3 Computational model

The transverse tension and three-point bending tests were simulated by means of
multiscale models based on the embedded cell approach. These simulations allowed
to study the failure micromechanisms and the influence of the fracture energy of the
microconstituents on the macroscopic fracture behavior.

4.3.1 Simulation of the transverse tension test

The geometric model to simulate the tension test comprised the cross section of
the central region of the transverse tension specimens up to a distance of 3.75mm.
Following the strategy of the embedded cell, the central region was divided into
two different zones (Fig. 4.7). The center of the model reproduced the actual mi-
crostructure the composite material, while the remaining sample above and below
the microstructured part was assumed to be an homogeneous solid. The simulation
was focused on capture the maximum load achieved in the transverse tension tests.
In the microstructured region, the cross section of the laminate was represented by a
random and homogeneous dispersion of circular fibers embedded in an epoxy matrix.
The fiber volume fraction within the microstructured region of the embedded cell was
54%, the same as in the real material.
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Figure 4.7: Schematic of the transverse tension test specimen and the embedded
cell used in the numerical simulations.

The mechanical behavior and the main damage mechanisms experimentally ob-
served in the microconstituents were included in the simulations through the ade-
quate constitutive models. Glass fibers were modeled as linear, thermo-elastic and
isotropic solids, their elastic constants were provided by the material supplier and
they are compiled in Table 4.1. The epoxy matrix was represented by an isotropic,
elasto-plastic solid, its Young’s modulus was experimentally determined by nanoin-
dentation techniques and the Poisson ratio was provided by the material supplier.
The elastic constants of the epoxy matrix employed in the simulations are also shown
in Table 4.1. Moreover, the plastic and damage of the matrix was represented by the
model for quasi-brittle materials presented in Chapter 1 (Equation 1.37). A pressure
sensitivity parameter α = 0.13, extracted from the observation of the fracture plane
orientation in the transverse compression tests (Chapter 2), was considered. The
compressive strength was measured by means of nanoindentation and it provided a
value of σyc = 105MPa (Chapter 3). Finally, the tensile strength employed in the
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Table 4.1: Mechanical properties of the epoxy matrix, glass fibers and the ho-
mogenized material employed in the numerical model.

Em (GPa) νm Ef (GPa) νf Eh (GPa) νh

3.5 0.35 74 0.2 11 0.3

model was σyt = 75MPa, a lower bound obtained from the push-out tests (Chapter
3).

Fibers and matrix were discretized with 6-node isoparametric modified triangles
in plane strain condition (CPE6M in Abaqus (2010)) with integration at three Gauss
points. The fiber-matrix decohesion was included in the simulations using interface
elements, which were inserted between both constituents (COH2D4 in Abaqus, Ca-
manho and Dávila (2002)). The final model had approximately 700000 nodes and
375000 elements.

The strength of the interfaces was obtained from push-out tests which provided
N=50MPa and S=75MPa, for the normal and shear interface strength respectively
(see Chapter 3). It was assumed that the fracture energy of the matrix and the
interfaces has not a key influence on the final load achieved in the transverse tensile
test. As a first approximation, the fracture energy values for the matrix and the
interface were obtained from the literature (Kinloch and Young, 1983; Zhou et al.,
2001) and, for the sake of simplicity, they were assumed to be the equal for both
components (Ginterface

f = Gmatrix
f = 150J/m2).

Finally, the homogeneous region of the model was represented by a linear, elastic
and isotropic solid. Its elastic modulus was obtained from the average result of the
transverse tension tests (Chapter 2), and the Poisson’s coefficient was supposed to
be a mixture of those of the composite microconstituents according to its volumetric
fraction. These properties are also compiled in Table 4.1.

Mesh sensitivity analysis

In the numerical simulations, the epoxy matrix was represented by a continuum
damage model. It is well known that this kind of models may lead to mesh-dependent
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results, which should be avoided in the numerical study of the composite failure. Sim-
ulations of uniaxial tension tests of a dog-bone specimen meshed with three different
discretizations were carried out to check the adequate implementation of the model
and the correction of the mesh sensitivity.

The same geometry was meshed with linear quadrilateral elements for plane strain
conditions (CPE4 in Abaqus (2010)). Three different element sizes were employed
to obtain the meshes plotted in Fig. 4.8. The same material properties were impose
to the models. The material behaved as a linear elastic solid up to the tensile yield
stress. From this point on, damage arose in the material producing a macroscopical
softening, which is determined by the fracture energy. The contour plot of the strain
in the loading direction for the three different discretizations showed that the strain
is localized in a band with the thickness of the element size (Fig. 4.9).

As a result, the smaller the element size, the higher the values of strain were
localized in the contours. However, the force-displacement curves obtained from the
simulations showed that the energy dissipated during the fracture was the same in
the three discretizations (Fig. 4.10), which confirmed the mesh objectivity of the
implementation of the damage model.

Results

The transverse tensile behavior of the E-glass/MTM57 laminate was simulated
using the computational model described above. The tension load was introduced by
applying a relative displacement between the upper and lower surfaces, as depicted
in Fig. 4.7.

The computational model reproduced the main deformation and failure micromech-
anism experimentally observed, as well as the macroscopical behavior. The mecha-
nisms of deformation and fracture in transverse tension can be observed in Fig. 4.11a,
which show a detail of the damage at the interfaces. Failure was initiated by the nu-
cleation of interface cracks, which grew along the interfaces. The stress concentration
in the matrix ligaments between decohesionated fibers promoted its damage, and the
macroscopic crack advanced through the specimen by the linking up of the debonded
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Figure 4.8: Three discretizations employed to studied the mesh sensitivity of the
damage model.
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Figure 4.9: Contour plot of the strains in the x-direction for three different
discretizations.

89



Chapter 4. Fracture behavior of FRPs

0

0,2

0,4

0,6

0,8

1

0 0,01 0,02 0,03 0,04 0,05 0,06

  1190 elements
  2700 elements
11200 elements

Fo
rc

e/
m

ax
im

um
 fo

rc
e,

 F
/F

m
ax

Displacement/specimen length, DL/L

Figure 4.10: Force-displacement curves obtained from the three different mesh
discretizations.
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interfaces, resulting in a sudden decrease of the load-carrying capability of the mate-
rial (Fig. 4.11b).

The stress-strain curves obtained from the numerical simulations are plotted to-
gether with the experimental measurements in Fig. 4.12. The numerical simulations
of the mechanical behavior of the laminate under transverse tension predicted a brit-
tle fracture behavior, in accordance with the experimental observations. The stress-
strain curve showed an initial linear elastic loading of the laminate until its sudden
failure. An elastic modulus of 11.7GPa was obtained from the slope of the loading
branch. The maximum load attained in the simulations provided a value of 64.3MPa
for the strength of the laminate.

The elastic modulus predicted by the numerical simulation was in good agreement
with the experimental measurements of the transverse compression and tension tests.
However, the strength of the laminate predicted by the numerical model overesti-
mated by 30% the experimentally obtained value (50MPa). The mismatch between
the experiments and numerical predictions could be a consequence of the presence
of defects which triggered the early failure of the material or inaccuracies in the
determination of the strengths of the matrix and fiber-matrix interfaces.

4.3.2 Simulation of the three-point bending test

The experimental results presented in previous sections have demonstrated that
the fracture behavior of the E-glass/MTM 57 unidirectional laminate is rather com-
plex due to the interaction of different deformation and damage micromechanics.
Numerical simulations that take into account the details of the microstructure are
therefore critical to understand the role played by the different mechanisms.

The embedded cell approach, previously used to simulate the transverse tension
test, is employed here to study the transverse fracture behavior of the E-glass/MTM
57 unidirectional laminate by means of the simulation of the three-point bending test.
These simulations are important to study in detail the processes of deformations and
fracture and to understand which factors control the failure of the laminate. In par-
ticular, these simulations will allow to ascertain the influence of the microstructural
parameters on the quantitative values of the fracture toughness of the composite.
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a

b

Figure 4.11: (a) Detail of the damage at the fiber-matrix interfaces. (b) Contour
plot of the stresses in the load direction.
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Figure 4.12: Experimental and numerical stress vs. strain curves obtained from
the transverse tension tests of E-glass/MTM 57 laminate.
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The simulations were focused on capturing the area under the load-displacement
curve attained in the fracture test during the crack propagation along the specimen.
The geometric model to simulate the fracture behavior of the composite beam was
divided into two zones, according to the strategy of the embedded cell approach.
An area of the specimen in front of the notch was represented by a random and
homogeneous dispersion of circular fibers embedded in an epoxy matrix. The fiber
volume fraction within the microstructured region of the embedded cell was 54%, the
same as in the real material. The remaining beam was assumed to be a homogeneous
solid (Fig. 4.13).

The area in which the microstructure is explicitly accounted corresponds to the
region were the fracture process will be localized, as it has been observed in the
experiments. In this region, the main damage mechanisms experimentally observed,
namely fracture of the matrix and the fiber-matrix interface, were included in the
numerical models.

The fibers and the matrix were discretized with 6-node isoparametric modified
triangles in plane strain condition (CPE6M in Abaqus (2010)) with integration at
three Gauss points. The fiber-matrix decohesion was included in the simulations
using interface elements, which were inserted between both constituents (COH2D4
in Abaqus, Camanho and Dávila (2002)). The final model had approximately 350000
nodes and 180000 elements.

Fibers were modeled as linear, elastic and isotropic solids, their elastic constants
were taken from the manufacturer’s data sheet and they are given in Table 4.1.
The epoxy matrix was represented by an isotropic, elasto-plastic solid, following the
damage-plasticity model for quasi-brittle material. The elastic material properties
were the same already employed to simulate the transverse tension test in the previous
section and they are also shown in Table 4.1. The plastic and damage behavior of
the matrix were controlled by the parameters experimentally obtained, a pressure
sensitivity of α = 0.13 and material strengths of σyt = 75MPa and σyc = 105MPa.
The normal and shear strength employed to simulated the fiber decohesion were not
modified form the previous section (N=50 and S=75 MPa).

Three different values of the fracture energy of the matrix and the interfaces (10,
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Figure 4.13: Schematic of the three-point bending embedded cell model used in
the numerical simulations.
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Figure 4.14: Detail of the micromechanism of damage obtained in the simulations
of the three-point bending tests in notched specimens.

100 and 200 J/m2) were employed to assess the influence of the microconstituents
toughness in the overall fracture behavior of the composite.

The fracture mechanisms simulated in the numerical model showed that they
were not modified by the fracture energy of the constituents. In agreement with the
experimental observations of the fracture evolution in the three-point bending test,
a lone crack appeared at the notch root. This crack evolved by the initial opening
of the fiber-matrix interfaces and the subsequent fracture of the matrix ligaments
between debonded fibers (Fig. 4.14). Thus, the numerical simulations confirmed that
the fracture mechanisms are only dependent on the strength of its components, but
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not on their fracture energy. However, the toughness of the microconstituents had a
relevant influence on the overall fracture energy of the composite. Fig. 4.15 shows the
load-CMOD curves obtained from the simulation of the three-point bending test for
the studied values of the fracture energy of the matrix and the fiber-matrix interfaces.
These results show that the combination of the fracture energy of the interface and
the matrix controlled the peak of load and the total fracture energy dissipated by
the composite. The fracture energy of the interface played the most important role,
as far as the crack is initially nucleated at the fiber-matrix boundary. Once the
interfaces have been broken, the crack advance was stopped by the matrix ligaments
between the debonded fibers outdistanced by the crack tip. At this point, the load can
increase or keep almost constant, depending on the matrix fracture energy. Finally,
a real crack grew a given distance through the composite when the matrix ligaments
failed, resulting in a sudden drop in the load. The repetition of this process during
the crack propagation through the composite section produced a stepped shape of
the unloading branch of the load-CMOD curve, which could be also observed in the
experimental curves. It is important to note that since the microstructured region did
not fill the whole section of the beam, the fracture process could not totally break
the specimen in two halves. For this reason, simulations were stopped before the
complete crack propagation across the embedded cell.

Finally, the results of the parametric study to assess the influence of the fracture
energies of the microconstituents were also employed to select values for these param-
eters which could approximately reproduce the load-CMOD curves and the overall
composite behavior experimentally obtained. Thus, an additional simulation of the
three-point bending test was performed using fracture energies Ginterface

f = 150J/m2

and Gmatrix
f = 100J/m2 for the interfaces and the matrix, respectively. The load-

CMOD curve obtained in this simulation is plotted in Fig. 4.16 together with the
envelope of the experimental data. The overall agreement between the numerical and
experimental results was very good and the predictions of the initial stiffness and the
maximum load were close to the experimental values. It should be noted that the
simulations underestimated the peak of the maximum load by ≈ 5%, although this
difference can be considered negligible in the overall fracture energy and attributed to
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Figure 4.15: Load-CMOD curves obtained in the simulations of the three-point
bending fracture tests for different values of the fracture energy of the interfaces
and matrix.
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Figure 4.16: Load-CMOD curve obtained from the simulation of the three-point
bending fracture tests with Ginterface

f = 150J/m2 and Gmatrix
f = 100J/m2.

many factors as small inaccuracies in the selection of the strength and the toughness
of the microconstituents or to the simplifications in the geometry of the numerical
model. Moreover, the most important information extracted from the three-point
bending test is the fracture energy of the material, which is related with the area
under the load-CMOD curve, and here the result of the simulation showed a perfect
match with the experiments. Beyond the maximum load the behavior predicted by
the simulation was equivalent to those reported experimentally. Once the crack was
nucleated at the notch root, it stably propagated across the specimen in successive
stages, which provided a stepped profile in the load-CMOD curve, in accordance to
the experimental evidences. The numerically obtained load-CMOD curve falls inside
the envelope of the experimental results.

The sequence of the fracture obtained through the numerical simulations of the
three-point bending test is shown together with the in situ SEM micrographs of the
crack evolution in Fig. 4.17. The simulation showed that the first indication of
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damage appeared from a very early stage at the interfaces of the fibers close to the
top of the notch (Fig. 4.17a), without any detectable effect in the load-CMOD curve.
This nucleation of damage by the interface decohesion of the first fiber could not be
observed in the SEM inspections because the acquired micrographs have not enough
resolution. Thus, experimental evidence of crack nucleattion and propagation could
only be observed when the applied displacement reached ≈40µm. For this stage of
load, the simulations showed a crack with approximately the same length (Fig. 4.17c).
From this point on, the simulations showed that the crack is propagated across the
specimen at approximately the same rate as was experimentally observed (Fig. 4.17d
and e).

4.4 Concluding Remarks

The fracture behavior in the transverse direction of E-glass/MTM 57 unidirec-
tional laminate was both experimentally and numerically studied.

Tensile tests provided the strength of the laminate in the direction perpendicular
to the fibers. The toughness of the material was obtained through three-point bending
test of notched specimens.

The fracture micromechanisms developed in this material were experimentally
studied by carrying out additional three-point bending tests inside the scanning elec-
tron microscope, in which fracture occurred by a single crack propagated from the
notch tip. The microscopic observation of the crack evolution showed that fiber-
matrix decohesion followed by the fracture of the matrix ligaments between debonded
fibers were the two active failure mechanisms.

Tensile and three-point bending tests were simulated through multiscale models
based on the embedded cell approach. The specimens representation included two
regions: one was endowed with full details of the composite microstructure (including
the matrix, fibers and interfaces) and another surrounding this region, where the com-
posite was represented by a linear, elastic and homogeneous solid. The experimen-
tally observed damage micromechanisms were included in the simulations through
the adequate constitutive models. The mechanical response of the composite was

100



4.4 Concluding Remarks

a a

b b

400mm c c

101



Chapter 4. Fracture behavior of FRPs

d d

400mm e e

Figure 4.17: Scanning electron micrographs and simulations showing the sequence
of the crack propagation during the three-point bending test. The displacement of
the load application point corresponds to (a) 20µm (with detail of the fiber-matrix
decohesion), (b) 30µm (with detail of the fiber-matrix decohesion), (c) 40µm, (d)
50µm and (e) 60µm.
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computed through the finite element method, and it was found that the multiscale
computational model reproduced the main deformation and damage mechanisms.

Finally, the simulations of the three-point bending test were also employed to es-
timate the value of the fracture energies of the matrix and the fiber-matrix interfaces,
whose experimental determination is extremely difficult to achieve.
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Chapter5
In situ SEM compression test

Mechanical properties of FRPs are dictated by phenomena which take place at
the micron scale, which is the size of the reinforcement. This is the case, for instance,
of deformation (matrix-reinforcement load transfer) and fracture mechanisms (fiber-
matrix decohesion). Our knowledge of the role played by the microstructure in the
mechanical performance of materials has benefited greatly from the information pro-
vided by different kinds of microscopy (optical, scanning and transmission electron,
atomic force) and particularly from the ability to carry out in situ mechanical tests
inside the microscope. This latter technique allows for recording of the sequence of
the deformation and fracture events, leading to a clear and qualitative understanding
of the interaction among the relevant microstructural features on the performance.

More precise quantitative information about the deformation and fracture pro-
cesses at the micron scale can be obtained through the application of optical full-field
measurement methods, e.g. digital image correlation (DIC) in combination with in
situ testing inside a scanning electron microsocope (SEM).

In this chapter, the most important deformation and damage mechanisms devel-
oped in the transverse section of FRPs are studied by means of in situ SEM testing of
specimens of E glass/MTM 57 laminate. To this end, compression tests were carried
out inside the SEM. This technique allowed the observation of the microstructure evo-
lution, and it influence in the deformation and fracture of the composite. In addition,
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the secondary electron images obtained during the compression test were processed
with DIC to extract the displacements and strain fields at the microstructural level.

5.1 Experimental techniques

Prismatic specimens of 3.2 (length) x 2.8 (width) x 2.0 (thickness) mm3 (Fig. 5.1)
were machined from the unidirectional panels using a diamond wire cutting machine.
This method ensures an almost perfect parallelism between the faces of the prismatic
specimens, a critical condition to obtain an homogeneous stress distribution in the
compression test. The specimens were subjected to uniaxial compression perpendic-
ular to the fibers in the laminate within a scanning electron microscope (Zeiss EVO
MA-15). The compression axis was parallel to the longest dimension of the speci-
men and load was applied using two parallel steel compression plates mounted on
a micro-electro-mechanical testing machine (Kammrath-Weiss Tensile/Compression
Stage). The specimen-plate friction was minimized by coating the upper and lower
specimen surfaces with vacuum wax. Compression tests were carried out at a cross-
head speed of 1µm/min. The load and cross-head displacement were continuously
recorded during the test using the load cell and displacement transducer of the me-
chanical testing machine. Secondary electron micrographs with 768 x 1024-pixel
resolution were taken of the central area of the specimen at different magnifications
in the range 70x to 6000x in the undeformed configuration as a reference. The central
area of the specimen is the region around the center of the sample, where the solid
rigid displacements are supposed to be minimum. Once the test began, it was inter-
rupted periodically and held at a fixed displacement until full stress relaxation of the
specimen was attained. The relaxation produced small reduction of the applied load,
always below 5%, and took place in a few minutes. Secondary electron micrographs
were then taken of the central area of the specimen with the same resolution and
magnification. They were used as input for full-field measurements using the Vic2D
digital image correlation software (Vic, Correlated Solutions, Inc.).

The surface preparation of the specimens was crucial to obtain good results using
DIC. The microstructure of the material was first revealed by polishing a section
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Figure 5.1: Schematic of the compressive specimen. Fibers have been enlarged
to show their orientation within the specimen.

perpendicular to the fibers using SiC paper to a 1000 grit finish followed by a diamond
slurry up to 1 µm grain size. A speckle pattern was created on this surface by
depositing submicron alumina particles from a suspension containing 1% wt. of
Al2O3 in propanol. The submicron powders tended to agglomerate leading to particle
clusters whose size was similar to the fiber diameter but this effect was eliminated
by adding iodine to the suspension as a dispersant. A typical pattern is found in
the scanning electron micrograph of Fig. 5.2, showing an homogeneous dispersion
of submicron alumina particles on the specimen surface. The maximum greyscale
level in the image was generated by the alumina particles, and the average intensity
was 130 (within the range 0-255). Meanwhile, the background microstructure showed
an average intensity of 63 with a minimum greyscale level of 36. Thus, the contrast
provided by this speckle pattern was good enough to correlate the displacement fields.
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Figure 5.2: Scanning electron micrograph of the specimen surface showing the
homogeneous dispersion of submicron alumina particles.

5.2 DIC in heterogeneous materials

DIC is nowadays a mature technique, widely used in the field of experimental
mechanics to obtain the full displacement field (sometimes including the out-of-plane
displacements) from optical images taken at different stages of deformation (Bornert
et al., 2009). Its popularity among the optical methods comes from the availabil-
ity of commercial packages, the low cost of high-resolution digital cameras and the
general simplicity of sample preparation and optical setup. Accordingly, DIC has
been applied in recent years to revealing the deformation and fracture mechanisms
of Ti alloys (Lagattu et al., 2006), dual-phase steels (Kang et al., 2007; Ghadbeigi
et al., 2010), and Al foams (Amsterdam et al., 2006) by analyzing secondary electron
images obtained during in situ testing. Displacement correlation in DIC is based on
the presence of a random speckle pattern on the specimen surface whose movement is
tracked and compared with the initial, reference pattern. In the case of visible light,
this pattern is provided by the surface texture of the material or can easily be created
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by paint spraying. In the case of secondary electron images, the pattern was created
by the deposition of particles 100 nm in size all over the specimen surface (Lagattu
et al., 2006) or by scratching lines (Kang et al., 2007) or it was naturally produced by
the differences in contrast of the microstructural features (Amsterdam et al., 2006;
Ghadbeigi et al., 2010). Obviously, the accuracy and resolution of the measurements
are very dependent on the nature of the reference pattern. For practical reasons, a
random deposition of nanometric particles seems to be a suitable option because it
would be independent of the material and fine enough to measure local displacements
at the scale of the microstructural features. The foundation of the DIC technique is
very simple: the displacement field is computed by tracking the distribution of gray
intensity on the specimen surface in images acquired at different stages upon loading
(Peters and Ranson, 1982).

The position of an arbitrary pixel i of the image in the undeformed specimen
can be expressed in terms of its coordinates Xi in the reference configuration. This
pixel will be displaced to a new position given by the coordinates xi in the deformed
configuration. Obviously, both coordinates are related by

xi = Xi + Ui (5.1)

where Ui is the displacement vector. Let G(Xi) and g(xi) be the intensity of the
gray level in each pixel of the images corresponding to the undeformed and deformed
configurations, respectively. If it is assumed that the intensity pattern deforms but
it does not change its local value during deformation (i.e., g(xi)=G(Xi + Ui), it is
possible to track the displacement of every point of the specimen surface by identifying
the displacement field which minimizes a residual function C (T. C. Chu and Peters,
1985) over the whole region of interest, where C is expressed as

C(Xi,xi) = 1−
∑
G(Xi)g(xi)√∑
G(Xi)2

∑
g(xi)2

(5.2)

This minimization problem is, however, too complex to be solved in a general
case and it has to be simplified by introducing two main approximations. Firstly,
the displacement of an arbitrary point is obtained from the evaluation of the gray
intensity in its neighborhood. This set of pixels around the central one is called the
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subset. Secondly, the deformations are constant within this subset. Under these
assumptions, the coordinates Xi and xi of a point of the subset in the reference and
deformed configurations can be related with the coordinates of the central point of
the subset (Xc and xc) by

xi = Xc + Uc +∇(U)(Xi −Xc) (5.3)

where ∇(U) stands for the constant displacement gradient within the subset. There-
fore, the subset is limited to capture homogeneous deformations. Both Uc and ∇(U)
are obtained from the iterative minimization of the correlation function C (equation
5.2) within the subset. Once the displacement of the central pixel has been obtained,
the subset is shifted along x- and y-directions to calculate the next point. The shift
of the subset is determined by the step size, which defines how many pixels the subset
was moved. Finally, the strains are computed according to the Lagrangian approach
by taking the numerical derivative of the displacement field with a spacing defined by
the strain window (Smits and Hemelrijck, 2005). A detailed overview of displacement
and deformation measurements through digital image correlation, and its application
to practical cases can be found in (Sutton et al., 2009).

The application of DIC to microscopic images obtained in electron or atomic force
microscopes does not present any particular difficulty insofar as the image contains
a suitable speckle pattern (Doumalin and Bornert, 2000; Yongqi et al., 1996; Ven-
droux and Knauss, 1998; Lagattu et al., 2006; Amsterdam et al., 2006; Ghadbeigi
et al., 2010). However, DIC is a fuzzy measuring technique since it averages the
displacement over the subset window (Wang and Cuitiño, 2002) and the strains are
computed as the derivative of the displacements on another window. This is not a
problem for capturing non-uniform full-field deformations in homogeneous materials,
but limits the accuracy of the technique in the case of heterogeneous materials with
strong contrast in the elastic properties of the phases if the resolution of the full-field
measurements is of the order of the heterogeneity size. This limitation is due to
the presence of strong deformation gradients at the interface between phases, whose
evaluation may be compromised by the necessity of averaging displacements and
deformations over a certain window. Thus, although DIC is a well-established tech-
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Table 5.1: Elastic properties of MTM57 epoxy matrix and E-glass fibers

E (GPa) ν

E-glass fibers 74 0.20
MTM57 epoxy matrix 3.35 0.35

nique for obtaining the strain fields at the macroscopic scale in composites (Anzelotti
et al., 2008; Totry et al., 2009, 2010) and fabrics (Lomov et al., 2008a,b; Ridruejo
et al., 2011), this approach has never been used at the scale of the fibers due to the
differences in stiffness between matrix and fibers.

The rigorous extension of DIC to non-homogeneous materials is not straightfor-
ward. Recent attempts were focused on the application of an interpolation technique
based on the X-FEM method to account for the discontinuities in the strain field
caused by microcracks (Réthoré et al., 2008). The methodology is not fully estab-
lished, however, and neither is it able to deal with discontinuities due to phases with
different elastic properties. So, we have preferred to assess the potential of standard
DIC techniques and algorithms to capture the displacement and strain fields at the
micron level in a standard fiber-reinforced composite material. In order to optimize
the DIC parameters and to assess the limitations, a benchmark problem has been
studied in which the exact elastic response can be computed. The problem deals
with the uniaxial deformation of a representative volume element (RVE) of a model
composite microstructure containing circular elastic inclusions embedded in a con-
tinuous matrix. Fiber and matrix elastic properties were those provided by the E
glass/MTM 57 laminate supplier (Table 5.1) and the spatial distribution of the fibers
in the RVE is shown in Fig. 5.3a. Uniaxial tension of the RVE was simulated applying
a horizontal displacement on the right hand side while the left hand side of the RVE
was fixed. The bottom and top boundaries of the RVE were stress-free. The exact
solution to the problem was obtained using the finite element (FE) method with a
very fine mesh, and the displacement and strain fields derived from the simulation
were used as a reference to check the accuracy of DIC.

Images obtained from the FE simulations in the initial and deformed configura-
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(a)

(b)

Figure 5.3: (a) RVE (with the corresponding finite element mesh superposed)
used in the benchmark problem. (b) Pattern used for DIC measurements, based
on nodal points.
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tions were used as input for DIC. A step size of 5 pixels was maintained constant
during the correlations, and the search for the optimum DIC parameters was focused
in the subset and strain window size. The pattern used consisted of black dots, cor-
responding to each nodal point, over a grey background (Fig. 5.3b). The contrast
of the computer-generated images was better than the one provided by the scanning
electron micrographs. However, the size and the distribution of the black dots were
comparable to the alumina particles on the specimen surface. Thus, we could use
subset and strain window sizes similar to those used later for the SEM images. The
contour plot of the displacements in the loading (horizontal) direction obtained from
the FE analysis and from DIC with different subset sizes are plotted in Fig. 5.4.
They show very good agreement, and the selection of the subset size did not signifi-
cantly influence the results although transient high frequency oscillations began to be
noticeable for very small subset sizes (Fig. 5.4b). Thus, these results show that the
presence of heterogeneities does not impair the ability of DIC to accurately capture
the displacement fields.

The contour plots for the horizontal strain field provided by the FE simulations
and DIC are plotted in Fig. 5.5. The results of DIC in the figure were obtained using a
subset size of 0.182D and strain windows of 0.0179D and 0.182D, where D is the fiber
diameter (0.5 the length of the RVE). At first glance, the strain fields obtained by DIC
are in good agreement with the exact solution given by the FE analysis in matrix and
fiber regions far away from the interface. However, the fuzzy nature of DIC makes
it impossible to capture the sharp strain gradients at the fiber-matrix interface and
it is necessary to optimize the parameters of DIC (namely the subset size and strain
window) to enhance the accuracy of the approximation. To this end, the horizontal
strains computed by FE and DIC were plotted in Fig. 5.6 along a diagonal path from
the upper left to the lower right corner of the RVE. DIC results in Fig. 5.6a show
the influence of the subset size at a constant value of the strain window (equal to
0.0536D), while the curves in Fig. 5.6b present the influence of the strain window for
a constant subset size of 0.182D. The FE solution shows zones in the strain path in
which the strain is very low and constant, which correspond to the stiff fibers. Matrix
regions between fibers present much higher strains with very sharp gradients close to
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(a) (b)

(c)

Figure 5.4: Contour plots of the horizontal displacement field in the benchmark
problem (a) Reference solution provided by FE simulations. (b) DIC field with
a subset size of 0.104D (29 pixels), the subset window is displayed in the image.
(c) DIC field with a subset size of 0.361D (103 pixels). The displacements are
normalized by the length of the unit cell.
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(a) (b)

(c)

Figure 5.5: Contour plots of the horizontal strain field in the benchmark problem
(a) Reference solution provided by FE simulations. (b) DIC field obtained with a
subset size of 0.182D (51 pixels) and a strain window of 0.0179D (5 pixels), the
subset (black) and the strain (red) windows are shown in the images. (c) DIC field
obtained with a subset size of 0.182D and a strain window of 0.182D.
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the fiber interface. DIC was able to accurately compute the strain in the center of
the fibers as well as in the matrix regions far away from the fiber interface. However,
significant differences appeared near to the interface between both materials because
of the discontinuity in the strain field. DIC obtains strains by taking the derivate of
the displacements over a small strain window without considering the phase in which
the pixels are located and the discontinuity at the interface is smoothed out.

The curves in Fig. 5.6a show that subset size did not substantially modify the
strain profiles along the path and this was expected because this parameter only influ-
ences the magnitude of the displacement field, which was very accurate in the whole
range of subset sizes (0.104D to 0.361D) used in this investigation. However, the
strain window did modify the strain values along the path. The smaller the window,
the higher the strain gradients, and thus DIC was able to capture the variations in
strain near the interfaces in greater detail. Nevertheless, if the strain window was too
small, high frequency oscillations appeared in the solution, leading to unrealistic os-
cillations of the strains within each phase. For this reason, the optimum window size
should be a compromise between a small one that provides a more accurate "local"
field value, and a large one that gives a smoother solution. In the case of the RVE
model for composite materials, the optimum window size was around 0.05D which
corresponds to the minimum strain window which provides logical and realistic strain
fields with the minimum noise. With this window size, DIC was able to accurately
reproduce the average strains in each phase and only failed to capture the strain in
matrix ligaments between very close fibers.

5.3 Experimental Results

Transverse compression tests were performed using the micro-electro-mechanical
testing machine inside the scanning electron microscope as indicated in the previ-
ous sections. In the first instance, the specimens were elastically strained up to
ε̄2 = −1.8%. Second, in order to study the damage by interface decohesion, the
compressive strain was continuously increased until the debonding of the fibers was
spread over the specimen surface. Micrographs with 768 x 1024 pixels resolution of
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Figure 5.6: Horizontal strains along a diagonal path from the upper-left to the
bottom-right corner of the RVE. (a) Influence of the subset size on DIC results.
The strain window was 0.0536D. (b) Influence of the strain window on DIC results.
The subset size was 0.182D.
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a region of interest (ROI) at the center of the specimen were obtained at different
magnifications and used as input for DIC analyses.

5.3.1 Elastic loading

Low magnification (250x)

The alumina nanoparticles could not be resolved on the specimen surface at this
magnification and the contour of the glass fibers acted as speckle pattern for DIC. The
evaluation of the displacements and strains was carried out with a subset size of 50
pixels and a strain window of 15 pixels. This subset size corresponds to approximately
50 µm (2.5D), while the window strain stands for 0.75D. These large sizes for the
subset and window strain limited the resolution of DIC, but it did not make sense to
reduce their size because of the lack of an appropriate speckle pattern to detect the
strain gradients between fibers.

The displacement field along the vertical (loading) direction obtained from a mi-
crograph of the ROI at 250x is shown in Fig. 5.7a. Despite local fluctuations, the
iso-displacement lines were almost perpendicular to the loading axis, corresponding
to an homogeneous stress state characteristic of uniaxial compression. These results
corroborate the adequacy of the experimental set-up to carry out uniaxial compres-
sion tests.

The contour plot of the compressive strain along the loading axis is plotted in
Fig. 5.7b on top of the fiber distribution in the composite lamina. The large subset
size as compared to the fiber diameter and the fact that the fiber contours acted as
the speckle pattern at this magnification completely smoothed out the strain jumps
associated with the fiber/matrix interface. However, the plot shows noticeable fluc-
tuations in the strain throughout the ROI, this fluctuation corresponds to local non-
homogeneities in fiber volume fraction. The local reinforcement volume fraction of
three representative regions of the microstructure was computed within square win-
dows of 100 x 100 µm2 (Fig. 5.7b). The calculated values of the volume fraction at
V1, V2 and V3 were 0.47, 0.52 and 0.63, respectively. Strain was localized in matrix-
rich regions while it was minimum in zones containing clusters of highly packed fibers,
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100mm

V3
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V1

Figure 5.7: (a) Vertical displacement field obtained using DIC in a micrograph
at 250x. (b) Compressive strain in the vertical (loading) direction obtained from
(a). The fiber contours were artificially highlighted during post-processing of the
images.
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Figure 5.8: Probability density plots of the strain in the loading direction for
fiber regions, matrix regions and the composite obtained from micrographs at 250x
analyzed using DIC.

and only the non-homogeneities associated with fiber clusters were detected. This
effect is illustrated by splitting the strain distribution into fiber and matrix areas
and computing the probability density plots individually (Fig. 5.8). The different
curves were not distinguishable from the overall one, indicating that the short range
elastic interactions between individual fibers were not captured and were averaged
over the subset size. The presence of matrix-rich and fiber-rich regions in the ROI
influences in the width of the bell curve for the probability density plot which is also
controlled by the contrast between elastic moduli of fibers and matrix (of the order
of 22 for a typical glass/epoxy composite). The larger the contrast, the higher the
difference in the elastic properties between the clustered regions and the resin-rich
regions and the greater the width of the bell curve of the probability density plot. It
should finally be noted that the average strain value of the composite (as obtained
from the probability density plot) was ε̄ = -1.786 %.
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High magnification (2000x and 6000x)

The DIC analysis of the micrographs obtained at higher magnification was carried
out with a subset size of 50 pixels and a strain window of 15 pixels. The subset size of
50 pixels corresponds to approximately 6.5µm (0.325D) and 2.2 µm (0.11D) for the
magnification factors of 2000 and 6000, respectively, while the strain window of 15
pixels stands for 0.0975D and 0.033D. According to the analysis in section 3, these
sizes were chosen to optimize the results provided by DIC at the highest magnification
(6000x) while they were expected to provide reasonable results for the average strain
in the composite at 2000x.

The vertical displacement fields obtained with DIC on micrographs obtained at
2000x and 6000x are plotted in Figs. 5.9a and 5.9b, respectively. Now, the hetero-
geneities in the displacement fields induced by the presence of matrix and fibers are
resolved to the scale of the fibers at both magnifications. The corresponding vertical
strain fields obtained by taking the derivative of the displacement fields are plotted
in Figs. 5.10a and 5.10b for 2000x and 6000x, respectively. At first glance, it is ob-
vious that the strain fields obtained with DIC qualitatively reproduced the expected
pattern: strains in the fibers were much smaller than those found in the matrix and
maximum strain concentrations were found in the matrix between fibers aligned in
the (vertical) loading direction, the applied strain being mainly accommodated by
the matrix ligaments between the fibers. Small longitudinal tensile strains, of abso-
lute value very close to the resolution of DIC, appeared in fiber pairs very close to
each other in the direction perpendicular to the loading axis. They were generated
probably as a result of the development of large contact stresses between individual
fibers upon deformation.

DIC was thus able to discriminate between fiber and matrix strains at these
magnifications and this is quantitatively demonstrated in Fig. 5.11, which shows the
probability density plots for the matrix and fibers regions as well as for the overall
composite from the micrographs at 6000x magnification. The shape and intensity of
the probability density functions for each phase were different from the corresponding
plots obtained at 250x (Fig. 5.8). Fibers were characterized by a narrow peak which
stands for an homogeneous strain field within the phase, while the matrix showed a
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Figure 5.9: (a) Vertical displacement field obtained using DIC in a micrograph
at 2000x for a compressive strain applied of ε̄2 = 1.8%. (b) Vertical displacement
field obtained using DIC in a micrograph at 6000x for a compressive strain applied
of ε̄2 = 1.8%. Loading axis is vertical.
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Figure 5.10: (a) Vertical strain field obtained using DIC in a micrograph at 2000x
for a compressive strain applied of ε̄2 = 1.8%. (b)Vertical strain field obtained
using DIC in a micrograph at 6000x for a compressive strain applied of ε̄2 = 1.8%.
Loading axis is vertical.
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Table 5.2: Average strains in the loading direction obtained by DIC.

ε̄ ε̄f ε̄m

DIC (2000x) -0.0169 -0.0094 -0.0237
DIC (6000x) -0.0148 -0.0089 -0.0237

wide distribution indicative of a very non-homogeneous strain distribution within the
phase.

The average composite strain (ε̄) as well as the average strains in each phase (ε̄f
and ε̄m) were obtained from the probability density plots and are shown in Table 5.2.
The average composite strain at 2000x was very close to that obtained at 250x while
the result obtained at 6000x was slightly lower. This difference was not attributed,
however, to the inaccuracy of DIC but to the actual fluctuations in the local rein-
forcement volume fraction when the number of fibers in the ROI is small. In fact,
the reinforcement volume fraction in the ROI at 6000x was 61% while the average
reinforcement volume fraction in the composite was only 54%. The average strain
values in the matrix and the fibers obtained at 2000x and 6000x were similar but the
accuracy of these values is questionable due to the limitations of DIC in the presence
of strain discontinuities created by the mismatch in the mechanical properties.

5.3.2 Inelastic loading

The SEM inspection of the specimen during its compressive straining up to ε̄2 =
−1.8% did not show any evidence of damage by fiber/matrix decohesion neither
matrix damage. However, the nucleation and evolution of failure mechanisms were
evident for further strains. The fiber/matrix decohesion produced the cracking of the
Au/Pd metallic coating which followed the deformation imposed by the composite
material during the transversal compressive loading. The material discontinity caused
by the crack opening at the fiber/matrix interface produces the local electrostatic
charging of the specimen. This process produces a noticeable brightness around the
crack mouth, which make possible the observation of the damage by decohesion from
very early stages of failure.
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Figure 5.11: Probability density plots of the strain in the loading direction for
fiber regions, matrix regions and the composite obtained from micrographs at 6000x
analyzed using DIC.

The scanning electron micrographs acquired at 500X magnification levels are pre-
sented in Figs. 5.12a to 5.12f for given applied increments of transversal compressive
strain up to ε̄2 = −3.5%. The glass fibers were not distributed homogeneously within
the polymer matrix and some areas exhibited large volume fraction of reinforcement
leading to noticeable fiber clustering. These clustered areas give rise to thin polymer
ligaments between neighbouring fibers, where the stresses will be concentrated, lead-
ing to predominant locations for fiber/matrix decohesion. At the first strain step,
Fig. 5.12b, some interface debondings were evident but clearly isolated. Further
straining increasingly produced interface decohesion events up to the final failure by
coalescence of debonded areas (Figs. 5.12e and 5.12f), which caused a clear softening
in the global stress-strain curve of the laminate (Fig. 2.3).

The evolution of the fiber/matrix decohesion damage mechanism was more ev-
ident when analyzing the SEM images obtained at high magnification level (Fig.
5.13). The fiber clustering enhances the nucleation and subsequent growth of the
interface decohesion between close fibers perpendicularly oriented to the direction
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Figure 5.12: Scanning electron micrograps acquired at 500x magnification level.
The average compressive strain applied corresponds to: (a) ε̄2 = 0, (b) ε̄2 = 2.2%,
(c)ε̄2 = 2.5%, (d)ε̄2 = 2.7%, (e)ε̄2 = 3.2% and (f)ε̄2 = 3.5%.
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of the compression. Thus, the interface crack nucleates at the interface points per-
pendicular to the applied load, where the tension stresses are maximum because of
Poisson effect and the mismatch of elastic properties between the matrix and the
reinforcement. Fig. 5.13 shows the evolution of the debonding process at the central
pair of the fibers. It also makes evident that the fiber clustering leads to large stress
concentrations which overcomes the interface strength, triggering the decohesion at
those positions of the microstructure. After the nucleation of the interface crack, it
stably growths as the compressive straining of the specimen increases. As a result,
the decohesion generates voids with a crescent-moon shape (Fig. 5.13f). The final
debonded angle was assumed to be controlled by the mechanical properties of the
interface, particularly the interface toughness, the corresponding mode-mixity ratio
and the relative position between the pair of adjacent fibers.

5.4 Numerical model

The results presented in the previous section show that the in situ SEM testing
is able to provide a clear understanding of the deformation mechanisms developed
in the composite material at the micron scale. Moreover, DIC can be applied to the
scanning electron micrographs to qualitatively capture the non-homogeneous strain
fields in the microstructure. However, it is also evident that the averaging nature of
the DIC technique leads to errors in the strain measurement near to the fiber/matrix
interface. In order to quantify the errors of the DIC measurement and study the
evolution of the damage by the decohesion of the fiber/matrix interfaces, the actual
deformations of the ROI at 2000x and 6000x were simulated by means of computa-
tional micromechanics. This technique has been successfully applied in the past to
modeling the deformation and fracture micromechanisms of composites at the micron
scale. It is based on the finite element (FE) analyses of a representative element of
the material in which the microstructural details (fibers and matrix) are explicitly
represented (Segurado and LLorca, 2005; González and LLorca, 2007a; Totry et al.,
2008c).

In this particular case, the real microstructures analized with DIC (Figs. 5.9 and
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Figure 5.13: Scanning electron micrograps acquired at 6000x magnification level.
The average compressive strain applied corresponds to: (a) ε̄2 = 0, (b) ε̄2 = 2.2%,
(c)ε̄2 = 2.5%, (d)ε̄2 = 2.7%, (e)ε̄2 = 3.2% and (f)ε̄2 = 3.5%.
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Table 5.3: Elastic properties of MTM 57 epoxy matrix and E-glass fibers

E (GPa) ν

E-glass fibers 74 0.20
MTM57 epoxy matrix 3.50 0.35

5.10) were exactly replicated in a two-dimensional finite element model. The matrix
and fibers were automatically meshed using 6-node isoparametric modified triangles
(CPE6M in Abaqus Standard) with integration at three Gauss points and hourglass
control. Special care was taken to generate a very fine and homogeneous mesh at the
ligaments between adjacent fibers to resolve the large deformation gradients which
appear in these regions upon deformation.

Glass fibers were modeled as linear, elastic and isotropic solids. Their mechanical
properties (perpendicular to the fiber axis) were provided by the material supplier or
measured by nanoindentation techniques. The matrix was represented by an isotropic
and elasto-viscoplastic solid, following the plasticity model for quasi-brittle materials
presented in Chapter 1. Its elastic constants are shown in Table 5.3, while the pa-
rameters of the pressure sensibility and the compressive strength are α = 0.13 and
σco = 105MPa, which were estimated by means of transverse compression tests of the
laminate and nanomechanical characterization of the epoxy matrix (Chapter 3). The
damage by interface fracture was included in the numerical model by interface cohe-
sive elements (COH2D4) inserted between matrix and fibers. The interface strength
of the interface under shear loading was experimentally measured by push-out test
(Chapter 3) which provided a value of S = 75Mpa. This value was also considered
an estimation for the tensile strength of the matrix σto = S. The normal strength of
the interface was approximated as N = 50MPa. The toughness values for the ma-
trix and the interfaces were respectively G = 100J/m2 and G = 150J/m2, which are
representative values of the fracture energy of the fiber/matrix interfaces and epoxy
resins (Zhou et al., 2001).

The actual displacements in the longitudinal and vertical directions measured by
DIC on the external boundary of the model were applied to the finite element model.
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Figure 5.14: (a) Vertical displacement field obtained from the numerical sim-
ulation of a micrograph at 2000x for a compressive strain applied of ε̄2 = 1.8%.
(b) Vertical strain field obtained from the numerical simulation of a micrograph at
2000x for a compressive strain applied of ε̄2 = 1.8%. Loading axis is vertical.

This ensured the displacement continuity with the composite outside of the region
analyzed and introduced the deformation patterns experimentally observed into the
model. The real problem is truly three dimensional and cannot be exactly simulated
under plane strain or plane stress conditions. However, the exact response must be in
between both cases and simulations in the two limiting conditions were carried out in
Abaqus/Standard. The differences between them were negligible for the displacement
and strain fields in the xy-plane.

5.4.1 Elastic deformation

The contour plots of the vertical displacement and of the vertical strain obtained
from the finite element simulation of the microstructure at 2000x are shown in Figs.
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5.14a and 5.14b, respectively. They can be compared with the DIC results in Figs.
5.9a and 5.10a. The displacement field provided by the numerical simulations was
qualitatively equivalent to the experimental one obtained by DIC. Both strategies
clearly showed that fibers acted as pinning points and that the iso-displacement
lines were highly curved around the fibers. A better quantitative comparison can be
obtained by plotting the magnitude of the vertical displacement field along a diagonal
line from the upper left to the lower right corner (Fig. 5.15a). The general agreement
between the experiments and simulations is fairly good, demonstrating the potential
of DIC technique to reveal the displacement patterns at the microscopic scale.

The comparison of the numerical and experimental strain fields (Figs. 5.14b
and 5.10a) follows the same trends although there were noticeable differences at
the local level in the gradients near to the interfaces and regions with high strain
concentrations. Generally speaking, agreement is good and the strain field trends
are well captured even with the relatively large subset size used in this study (50
pixels, which corresponds to ≈ 6.5 µm at 2000x and ≈ 2.2 µm at 2000x), which are
of the order of magnitude of the fiber diameter. Nevertheless, the strain fields given
by DIC within the fibers presented unrealistic gradients, while the finite element
simulations showed that the strain within the fibers was fairly constant. Obviously,
these differences come about as a result of the smoothing of the large strain gradients
at the fiber/matrix interface into the fibers due to the DIC subset size. A more
detailed quantification of this effect can be found in Fig. 5.15b, in which the vertical
strain is plotted along a diagonal line from the lower left to the upper right corner of
the ROI. This plot shows the limitation of DIC to capture the sharp strain jumps at
the fiber/matrix interface and the modification of the average strain in the fiber as a
result of the smoothing of the sharp gradients. Nevertheless, it should be noted that
the average fiber strain is generally well captured at the center of each fiber.

It is interesting to notice that the strain field given by the finite element simula-
tions showed the incipient concentration of the deformation in narrow bands oriented
at an angle of slightly higher than 45◦ with the plane perpendicular to the com-
pression direction (y-axis).This strain concentration indicated the beginning of the
yielding of the matrix in those regions of high stress, in the ligaments between ad-
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Figure 5.15: Comparison of digital image correlation measurements at 2000x and
the corresponding finite element results along a diagonal path from the upper left
to the bottom right corner of the ROI for a compressive strain applied of ε̄2 = 1.8%.
(a) Vertical displacement. (b) Vertical strain.
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jacent fibers. However, the initiation of the yielding is a very local process, and it
couldn’t be captured by the DIC analysis of the micrographs neither had any ef-
fect on the macroscopical response of the material. The evolution of the material
degradation due to matrix yielding and fiber/matrix decohesion was studied by the
simulation of the ROI deformation at higher compressive strains.

5.4.2 Inelastic deformation

The numerical simulations of the ROI deformations also provided important in-
formation on the development of the damage mechanisms at the microscopic level.
The deformed shape of the simulated ROI and the scanning electron micrographs
of the in situ compression test are plot in Figs. 5.16 and 5.17 for 2000x and 6000x
magnification, respectively. Their overall comparison showed that the numerical pat-
terns followed closely the experimental observations. As pointed before, damage by
interface decohesion was always nucleated at the equator of the fibers, in the direc-
tion perpendicular to the compression. This nucleation points were reproduced in the
simulations, which also revealed that the debonding process is initiated for very low
strain levels (Fig. 5.17b). This effect, that could not be capture by the experimental
setting due to resolution problems, indicates that the mismatch between the prop-
erties of the constituents and the fiber clustering lead to large stress concentrations
at the interfaces, which enhance the initiation of the decohesion. Once the damage
was nucleated, the crack advanced along the fiber/matrix interface, generating the
experimentally observed decohesion pattern.

Furthermore, the numerical simulation of the ROI allowed to study the yielding
of the epoxy matrix, whose observation in the SEM was not possible. Fig. 5.18 shows
the development of the shear bands in the simulation of the transverse compression
of the FRPs specimen. The yielding of the matrix started at a very low strain level,
in the regions in contact with the fibers, approximately at the points equidistant
from the poles and the equator (latitudes ≈ 45 S and 45 N), where the shear stress
was maximum. Further deformations produced shear bands approximately oriented
at 54◦ respect to the plane perpendicular to the compressive direction (the y-axis).
For the final stages of the simulated compression test (Fig. 5.18c), the shear bands
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Figure 5.16: Scanning electron micrographs and deformed shape of the simula-
tions of the ROI at 2000x showing the evolution of the interface decohesion through
the compression test. Loading axis is vertical and the average applied strains cor-
respond to: (a) ε̄2 = 0, (b) ε̄2 = 0.018, (c) ε̄2 = 0.026 and (d) ε̄2 = 0.032
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Figure 5.17: Scanning electron micrographs and deformed shape of the simula-
tions of the ROI at 6000x showing the evolution of the interface decohesion through
the compression test. Loading axis is vertical and the average applied strains cor-
respond to: (a) ε̄2 = 0, (b) ε̄2 = 0.018, (c) ε̄2 = 0.026 and (d) ε̄2 = 0.032
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Figure 5.18: Contour plot of the effective plastic strain in the composite mi-
crostructure for the simulations of the ROI at 2000x. Loading axis is vertical and
the average applied strains correspond to: (a) ε̄2 = 0.018, (b) ε̄2 = 0.026 and (c)
ε̄2 = 0.032
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linked up the interface cracks in neighboring fibers and percolated the entire ROI. As
a conclusion, the simulations confirmed that the combination of the interface crack
and the matrix yielding produced the degradation of load-carrying capability and
lead to the final failure of the specimen.

5.5 Concluding Remarks

The application of DIC to the analysis of the micromechanisms of deformation
in fiber-reinforced composites was assessed from secondary electron micrographs ob-
tained during mechanical tests inside the scanning electron microscope. The study
was carried out using micrographs with low magnification (250x) and high magni-
fication (2000x and 6000x). At low magnification, the fibers themselves acted as
the speckle pattern and the short elastic interactions between fibers as well as the
sharp strain gradients at the fiber/matrix interfaces were completely smoothed out
from the strain maps. However, the long range fluctuations in strain within the ROI
due to the presence of matrix-rich and fiber-rich zones were captured at this mag-
nification. It should be noted that this information is important so as to assess the
degree of fiber clustering in the composite microstructure, that has been identified as
one of the dominant factors controlling the onset of damage in composites (Segurado
et al., 2003). In addition, the average composite strain measured by DIC was in good
agreement with the values expected from the applied load and the transverse elastic
modulus of the composite.

At higher magnifications, the speckle pattern was provided by a dispersion of
submicron alumina particles on the specimen surface. DIC was able to accurately
capture the displacement fields throughout the ROI and the strain fields obtained with
DIC qualitatively reproduce the expected pattern: strains in the fibers were much
smaller than those found in the matrix. In addition, maximum strain concentrations
were found in the matrix between fibers aligned in the loading direction, the applied
strain being mainly accommodated by the matrix ligaments between the fibers.

Finally, the deformation of the ROI was studied by means of computational mi-
cromechanics. The real microstructure experimentally studied through in situ SEM
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testing was replicated in a finite element model. The simulations revealed that DIC
was not able to capture the average strain within each phase. It systematically un-
derestimated the matrix strain while overestimating the fiber strain as a result of the
smoothing of the sharp strain gradients at the fiber/matrix interface. However, the
numerical model accurately reproduced the displacement fields obtained by DIC and
the decohesion patterns experimentally observed during the compression test.
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Chapter6
Computational prediction of the
failure locus

In this chapter, the failure locus of the unidirectional laminate of E-glass/MTM 57
composite under transverse normal loads and out-of-plane shear loading is computed
by a computational micromechanical model of a representative volume element of
the lamina. The deformation and failure mechanisms experimentally observed in the
microconstituents and their mechanical properties were included in the computational
model.

6.1 Introduction

Accurate and reliable failure criteria are necessary to take full advantage of the
mechanical properties of advanced composites. However, the experimental assess-
ment of the most widespread failure theories showed that many predictions differed
significantly from the experimental results (particularly under multiaxial stress states
involving matrix fracture and/or fiber compression) (Hinton et al., 2004). More pre-
cise regarding which particular theory is able to better reproduce the physical failure
mechanisms as well as the mechanical strength were limited by the scarcity of experi-
mental results for multiaxial stress states and by the experimental scatter. Evidently,
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more experimental results will help to clarify the situation, but a fully experimental
approach can be very complex to assess for multiaxial loading.

Another approach is resorting to virtual testing by means of computational mi-
cromechanics (Cox and Yang, 2006; Segurado and LLorca, 2005, 2006, 2004). This
strategy is very well suited to determine the mechanical behavior of composite lamina
until fracture, and it is based on the numerical simulation of a representative volume
element (RVE) of the composite microstructure. Recent examples include the simu-
lation of the fracture behavior perpendicular to the fiber of Ti/SiC composite panels
at room and high temperature (González and LLorca, 2006, 2007b) or the prediction
of the failure locus of a fiber-reinforced polymer lamina under transverse compression
and out-of-plane shear (Totry et al., 2008a), and transverse tension and out-of-plane
shear (Canal et al., 2009).

In this chapter, computational micromechanics is used to compute the failure locus
of a composite lamina of E-glass/MTM57 epoxy resin, which is subjected to transverse
compressive or tensile loads combined with out-of-plane shear, a biaxial stress state
with highly complex experimental access. Finally, the numerical predictions for the
failure locus are compared with the available experimental results and various failure
criteria of composites.

6.2 Computational model

The mechanical behavior until fracture of a uniaxially reinforced composite lam-
ina subjected to transverse tension (σ2) and out-of-plane shear stresses perpendicular
to the fibers (τ23) can be obtained through the numerical analysis of a representa-
tive volume element (RVE) of the lamina (see Fig. 6.1). The RVE was a square
two-dimensional section of the lamina of dimensions L0 × L0 in the x2x3 plane (per-
pendicular to the fibers) which contained a random and homogeneous dispersion of
50 circular fibers embedded in a matrix . The fiber volume fraction within the RVE
was 54%, the actual volume fraction of the experimentally studied E-glass/MTM 57
laminate. It was assumed that the lamina microstructure was given by an indefi-
nite translation of this RVE along the x2 and x3 axis and, thus, the fiber positions
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within the RVE kept this periodicity condition. This technique was pioneered by
Brockenbrough et al. (1991), who showed that fiber shape and spatial distribution
(either regular or random) modify the composite response to a large extent. Sub-
sequent investigations focused on the minimum size of the RVE to reproduce the
macroscopic behavior, which depends on the phase properties, but is usually surpris-
ingly small (Drugan and Willis, 1996; Hine et al., 2002; Segurado and LLorca, 2002;
Segurado et al., 2002; Segurado and LLorca, 2005). Nowadays it is widely accepted
that accurate predictions of the elasto-plastic behavior of particle or fiber-reinforced
composites can be obtained through the numerical analysis of RVE containing a few
dozen reinforcements (González et al., 2004; Borbély et al., 2006; Chawla et al., 2006),
particularly if periodic boundary conditions are enforced to remove the effect of free
surfaces. Moreover, previous studies with similar RVEs subjected to transverse com-
pression and shear showed that the results obtained with 30 fibers in the RVE were
equivalent to those computed with 70 fibers in terms of the stress-strain curves and
of the dominant failure micromechanisms (Totry et al., 2008a)

Numerical simulations of the RVE’s mechanical response were carried out using
the finite element method. The matrix and the fibers were automatically discretized
with 6-node isoparametric modified triangles (CPE6M in Abaqus/Standard) with
integration at three Gauss points and hourglass control. In addition, 4-node isopara-
metric interface cohesive elements (COH2D4 in Abaqus, Camanho and Dávila (2002))
were inserted along the fiber/matrix interface in each fiber to include the effect of in-
terface decohesion. Finite element discretization was fine enough throughout the RVE
to resolve the plastic shear bands in the matrix during deformation and comprised
around 26000 elements and 73000 nodes.

Periodic boundary conditions were applied to the edges of the RVE to ensure conti-
nuity between neighboring RVEs. Simulations were carried out with Abaqus/Standard
(Abaqus, 2010) under plane strain conditions and within the framework of the small
deformations theory with the initial unstressed state as reference.

Glass fibers were modeled as linear, elastic and isotropic solids, their elastic con-
stants were provided by the material supplier and they are compiled in Table 6.1. The
epoxy matrix was represented by an isotropic, elasto-plastic solid. Its Young’s mod-
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Figure 6.1: Schematic of the representative volume element of the lamina mi-
crostructure subjected to a biaxial stress state due to transverse tension and out-
of-plane shear.
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Table 6.1: Mechanical properties of the epoxy matrix and glass fibers employed
in the numerical model.

Em (GPa) νm Ef (GPa) νf

3.5 0.35 74 0.2

ulus was experimentally determined by nanoindentation techniques and the Poisson
ratio was provided by the material supplier. The elastic constants of the epoxy ma-
trix employed in the simulations are also shown in Table 6.1. The plastic and damage
of the matrix was represented by the model for quasi-brittle materials presented in
Chapter 1,using a pressure sensitivity parameter of α = 0.13 and material strengths
of σyt = 75MPa and σyc = 105MPa as parameters in this model. The normal and
shear strength employed to simulated the fiber decohesion were the same used in
previous sections (N=50 and S=75 MPa). Finally, the values of the fracture energy
for the matrix and the interfaces were those selected in Chapter 4 to reproduce the
experimental load-CMOD curves (Ginterface

f = 150J/m2 and Gmatrix
f = 100J/m2).

6.3 Results

Uniaxial simulations

Three different fiber distributions were generated using the strategy described in
the previous section. Their results were homogeneous, random and isotropic distri-
butions of fibers in the RVE, which were statistically equivalent although the precise
location of the fibers was different in each one. The stress-strain curves under uni-
axial compression and pure shear are plotted together with the experimental results
for the transverse compression in Fig. 6.2. The calculations were stopped after the
maximum load was attained. The results for the different realizations of fibers within
the RVE presented in this figure show very little scatter up to the yielding, indicating
that the size of the RVE was large enough to compute the lamina strength.

The uniaxial compression of the RVEs showed an initial linear behavior which
ended at compressive strains in the range of -1% to -2%. The plastic response contin-
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Figure 6.2: Stress-strain curves under uniaxial compression and out-of-plane
shear for the RVEs. The absolute values of the stress and strain are used to
plot the curves in compression.
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ued with very little hardening as the localization of the plastic strain in the matrix led
to the formation of numerous shear bands spread over the RVE. Further compressive
deformation concentrated the plastic strain in a single shear band which percolated
the RVE by the linking up of interface cracks in adjacent fibers. The RVEs loaded
in uniaxial compression attained the maximum load for a compressive stress around
150MPa. The transverse compressive strength obtained through the numerical sim-
ulations was slightly lower than the experimentally obtained value (see Fig. 6.2),
this mismatch could be probably caused by small inaccuracies in the experimental
determination of the compressive strength of the matrix and the interface strength.
The contour plot of the plastic strains in the matrix (Fig. 6.3) showed that failure
took place by the propagation of a shear band in the matrix. The shear band cannot
propagate though the fibers and surrounded them by breaking the interfaces, leading
to slight variations in the orientation. The average orientation of the shear bands was
50◦ ± 4◦, very close to the experimental measurements of the fracture plane in com-
pressive specimens (54◦ ± 2◦, Chapter 2). It should be noted that the predictions of
these numerical simulations for transverse compression were in excellent agreement
with the experimental observations in terms of elastic behavior, ductility and the
dominant failure mechanisms (Soden et al., 1998; Aragonés, 2007), and only small
differences (≈ 5%) were found in the compressive strength.

The stress-strain curve in shear are also represented in Fig. 6.2. These curves
presented a wide plateau and the maximum was attained for shear strains in the
range 4-6%. The analysis of the contour plot of the accumulated plastic strain in the
matrix showed that failure also took place by the propagation of a dominant plastic
shear band in the matrix in which most of the plastic strain was localized (Fig. 6.3).

Initially, the stress-strain curves in tension corresponding to three different RVEs
are plotted in Fig. 6.4 together with the experimental results and the predictions of
the embedded cell simulations performed in Chapter 4. Non-linearity appeared in the
stress-strain curves for stress levels of the order of the interface normal strength (50
MPa) and the maximum stress was attained for strains in the range 2-3% providing
a value of the strength ≈ 67 MPa.

Fig. 6.5 shows the deformed shape of the RVE under transverse tension load-
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Figure 6.3: Contour plot of the accumulated plastic strain in the composite
subjected to (a) uniaxial compression in the horizontal direction, (b) pure out of
plane shear. The applied compressive and shear strains were 5%.
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Figure 6.4: Stress-strain curves under uniaxial tension.

ing. Failure was initiated by the nucleation of interface cracks, responsible for the
non-linear behavior at small strains, which grew along the interfaces. The stress con-
centrations at the interface crack tip promoted the failure of the matrix ligaments
between debonded fibers. The damage progressed by cutting the RVE by the link-up
of the interface cracks along a direction approximately perpendicular to the maximum
principal stress.

It is important to notice that the behavior predicted by the RVEs was very ductile
in comparison with the result of the embedded cell and the experimental measure-
ments. This effect is caused by the periodic boundary conditions employed in the
simulations. RVEs usually provide accurate predictions of the elastic-plastic behavior
of the composite (Eckschlager et al., 2002; González et al., 2004). However, they fail
to simulate the brittle failure of the material. Thus, a crack cutting the RVE cannot
produce the sudden failure of the material when periodic boundaries are applied.
Since the real material microstructure is supposed to be obtained by the infinite
repetition of the RVE, a crack which crosses the unit cell from side to side will not
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Figure 6.5: Deformed shape of the RVE subjected to uniaxial tension along the
horizontal direction. The damaged interfaces have been colored in red to make
evident the damage concentration. The applied tensile strain was 5%.

completely cut the real material unless the crack orientation were perfectly perpen-
dicular to the loading direction. Therefore, when the initial point of the crack in one
of the sides of the RVE does not match exactly the final point of the crack in the
other side of the RVE, the periodic boundary conditions will allow the stress transfer,
resulting in a ductile behavior. In spite of this, it should be noted that the maximum
stress achieved in the simulations of the RVEs was equal to the stress predicted by
the embedded cell approach. This fact showed that the numerical simulations with a
RVE of the lamina microstructure can still be applied to obtain the strength of the
material.

Multiaxial simulations

The mechanical response of the composite lamina under biaxial deformation (ten-
sion or compression perpendicular to the fibers and shear) is plotted in Fig. 6.6
in the σ2 − τ23 stress space for different pseudo-radial loading paths characterized
by the parameter δs/δn, where δs and δn stand for the imposed shear and normal
displacements, respectively. The curves were initially linear indicating a fixed ratio
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Figure 6.6: Mechanical response of the composite lamina interface under biaxial
loading (transverse tension or compression stress and shear) plotted in the σ2− τ23

stress space.

between the shear and normal loading, at a given point the curves presented a sudden
change in their slope, which marks the onset of the failure. The failure micromecha-
nisms closely resemble those plotted in Figs. 6.3 and 6.5, they were controlled by the
nucleation of interface cracks and the subsequent failure of the matrix ligaments.

The numerical simulations can be used to obtain the failure locus of the composite
lamina under transverse tension and shear by linking the failure points, which are
those where a sharp change of slope occurs in the σ2 − τ23 curves in Fig. 6.6. It
is interesting to compare these results with those provided by two classical failure
models for composites developed by Hashin (1980) and Puck and Schürmann (2002).
Hashin distinguished between fiber- and matrix-dominated fracture, and each one was
further subdivided into tensile and compressive modes. Furthermore, he assumed that
failure was due to the normal and tangential stresses acting on the fracture plane,
which is parallel to the fibers in the case of matrix-dominated failure in tension.
Taking into account that the composite lamina is isotropic in the 2-3 plane, Hashin
(1980) proposed a failure criteria which can be expressed as
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[ σ2

YT

]2
+
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= 1 for σ2 ≥ 0 (6.1)
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+
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]2
+ τ 2

23
S2
T

= 1 for σ2 < 0 (6.2)

in the particular case of normal stresses perpendicular to the fibers (σ2) combined
with out of plane shears (τ23) acting out of the lamina plane. In this equation,
YT , YC and ST stand for the lamina strength under transverse tension, compression
and out-of-plane shear, respectively. Such strengths were obtained by means of the
computational micromechanics models described above.

An analogous expression was derived by Hashin (1980) for transverse compression
and in-plane shear, but the experimental data for this loading condition did not
always agree with the model predictions (Hinton et al., 2004). In particular, Hashin’s
model did not capture the increase in shear strength in the presence of moderate
compressive stresses. This limitation was attributed to the fact that Hashin’s model
did not determine the actual orientation of the fracture plane but assumed a quadratic
interaction between the stress invariants. Puck and Schürmann (2002) improved
this model by assuming that failure is caused by the normal (σn) and tangential
(τt) stresses acting on the failure plane, which form an angle θf with the direction
perpendicular to the tensile stresses. θf is explicitly determined for each combination
of normal (σ2) and shear (τ23) stresses acting on the lamina and the corresponding
failure criteria is expressed by

√[(
1
YT
− 2p⊥⊥(1 + p⊥⊥)

YC

)
σn(θf )

]2

+
[

2(1 + p⊥⊥)
YC

τnt(θf )
]2

+

+2p⊥⊥(1 + p⊥⊥)
YC

σn(θf ) = 1
for σn ≥ 0 (6.3)

√[
2(1 + p⊥⊥)

YC
τnt(θf )

]2

+
[

2p⊥⊥(1 + p⊥⊥)
YC

σn(θf )
]2

+

+2p⊥⊥(1 + p⊥⊥)
YC

σn(θf ) = 1
for σn < 0 (6.4)
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Table 6.2: Failure strength under uniaxial deformation for the composite with a
strong interface. Stresses are in MPa.

YC ST YT

-175 55 65

with

σn(θf ) = σ2cos2θf + 2τ23 sin θf cos θf (6.5)

τt(θf ) = −σ2 sin θf cos θf + τ23(cos2θf − sin2θf ) (6.6)

where YC stands for the failure stress of the lamina under transverse compression
and p⊥⊥ is the inclination parameter, which does not have a clear physical meaning
and can be difficult to quantify. A value of p⊥⊥ = 0.22 was selected in this study, in
the middle of the range 0.20-0.25, recommended by Puck et al. (2002) for GF/epoxy
composites . The predictions of Puck’s model have been largely consistent with the
experimental results available for failure under transverse normal stresses and in plane
shear (Hinton et al., 2004). Its validity for the particular case of normal and out of
plane shear stresses is analyzed below.

The predictions of both models are based on the results of mechanical tests,
which should provide the lamina strength under transverse tension, YT , and the
lamina strength in shear, ST , or in transverse compression, YC . In this study, these
magnitudes were obtained from the computational micromechanical simulations, and
they are presented in Table 6.2.

The predictions of the failure locus under transverse tension and out-of-plane
shear provided by the phenomenological models of Hashin and Puck are compared
with the numerical predictions in Fig. 6.7. Hashin’s predictions overestimated the
lamina strength in the regions dominated by the tension stresses, but underestimate
the failure in presence of compressive loads. In addition, these predictions were based
on the magnitude of ST , the lamina strength under out-of-plane shear, which has a
difficult experimental access, making very complicated the practical application of
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Figure 6.7: Predictions of the failure locus of the composite lamina under biaxial
loading (transverse tension or compression stress and shear) plotted in the σ2− τ23

stress space.

this model. Therefore, these results showed that Hashin’s model is not suitable to
predict accurately the failure of the lamina under transverse normal stresses and
out-of-plane shear. Regarding Puck’s model, which is only based on the strength of
the lamina under tension and compression, its predictions were in good agreement
with the numerical simulations in the whole stress space. Therefore, Puck’s failure
criterion shown very good predictive capabilities.

6.4 Concluding Remarks

The mechanical behavior of E-glass/MTM 57 composite lamina under transverse
normal stresses and out of plane shear has been studied by running numerical sim-
ulations of a RVE of the lamina microstructure. This strategy explicitly takes into
account fiber and matrix spatial distribution within the lamina as well as the ma-
trix, fiber and interfaces properties which were included in the simulations through
the corresponding constitutive models. The results showed that this computational
micromechanical strategy was able to reproduce the physical deformation and dam-
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age mechanisms experimentally observed. The dominant failure mechanism was the
interface decohesion rather than the shear yielding and the damage of the matrix.
The final fracture of the lamina occurred by the link-up of the interface cracks nu-
cleated at early stages of deformation. Finally, the failure locus under transverse
normal stresses and shear was computed by subjectiong the RVE to several biaxial
deformations with different displacement ratios. The results were compared with the
predictions of Hashin and Puck’s model of failure in composites. The results of the
simulations were accurately fitted by the predictions of the Puck’s model.
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Chapter7
Conclusions and future work

7.1 Conclusions

The following conclusions can be stablished:

• The macroscopic tensile and compressive behavior of an E-glass / MTM 57
unidirectional laminate has been studied in the direction perpendicular to the
fibers by means of mechanical testing. It was found that under tensile loading
the material showed a linear and elastic behavior until its brittle failure in a
plane perpendicularly oriented to the load direction. On the contrary, under
compression the material developed significant non-linear deformation before
the maximum load, and the fracture was localized in a plane oriented slightly
above 45◦ with respect to the through the thickness direction.

• The micromechanical properties which control the failure of the composite un-
der transverse loads −strength of the matrix and fiber-matrix interfaces− were
characterized by means of micromechanical testing techniques within the actual
composite ply.

• The micromechanisms of deformation and damage developed in the cross section
of unidirectional laminates were studied by performing compression and three-
point bending tests inside the scanning electron microscope. It was found that
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the main damage mechanisms were the yield and failure of the matrix and
the decohesion of the fiber-matrix interfaces. Moreover, a new technique to
measure the distribution of strain fields in the microstructure, based on DIC,
was developed and assessed with numerical models.

• A numerical micromechanical model based on the observed damage mecha-
nisms and the measured material properties of the constituents was developed.
The model was able to reproduce the stress-strain curves (without fitting pa-
rameters), as well as the deformation and fracture mechanisms experimentally
observed. In particular, the simulations of the compression tests reproduced
the shear yield of the matrix and the nucleation of the decohesions, while the
simulations of the tensile and three-point bending tests showed the beginning of
the damage at the interfaces and the subsequent failure of the matrix ligaments.

• The micromechanical model developed was employed to predict the failure locus
of the laminate under transverse loads and shear, and the results were compared
with the predictions of Hashin and Puck’s models. The comparisons showed
that Puck’s criterion is able to accurately predict the failure surface.

• The results presented in this work showed that computational micromechanics
framework is able to reproduce the physical deformation and fracture mech-
anisms of laminates, together with the macroscopic behavior until the final
failure. The work suggests the possibility of replacing (at least partially) me-
chanical tests by virtual ones, based on a complete characterization of the micro-
constituents. These virtual tests present several advantages over the standard
experimental approach, such as the full control of the composite microstructure
and constituents properties, the potential to reproduce very complex stress
states and the ability to carry out systematic parametric studies to optimize
the composite properties.

7.2 Future work

We can mention several research lines in order to continue the present study:
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7.2.1 Experimental work

• The micromechanical characterization of the composite constituents could be
supplemented by a better estimation of their properties under tensile stresses.
Focused ion beam could be an adequate technique to perform the experimental
characterization of these properties.

• Regarding digital image correlation and its application to in situ tests mi-
crographs, the available experimental information could be improved by the
application of new image analysis techniques (X-DIC and 3D-DIC) and the
tomographic inspection of the specimens during the tests.

• Laminates are mostly employed in multidirectional configurations which exi-
hibit additional deformation and failure mechanisms (delamination, fiber frac-
ture and buckling, etc). The extension of the experimental framework to study
these failure mechanisms and their in situ microscopic observation would be of
great interest.

7.2.2 Numerical model

• The use of X-FEM to deal with the fracture of the matrix and the material
heterogeneities, would lead to less computationally expensive, more accurate
and completely mesh-independent results.

• The current models are two-dimensional. The extension to 3D is obviously an
important step. Three-dimensional models would allow a complete study of the
deformation and failure of the laminate under any possible state of loads. How-
ever, due to the high computational cost of the micromechanical simulations,
their extension to 3D is not feasible nowadays.

• Formulation of mesoscopic models based on the results obtained with the mi-
cromechanical simulations. These models should encompass both elastic and
damage behavior.
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