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A particle driven by an external force in a molecular crowding environment—a quiescent bath of other

particles, makes their spatial distribution inhomogeneous: the bath particles accumulate in front of the

biased particle (BP) and are depleted behind. In fact, a BP travels together with the inhomogeneity it

creates. A natural question is what will happen with two BPs when they appear sufficiently close to each

other such that the inhomogeneities around each of them start to interfere? In quest for the answer we

examine here, via Monte Carlo simulations, the dynamics of two BPs in a lattice gas of bath particles.

We observe that for a sufficiently dense medium, surprisingly, both BPs spend most of the time together

which signifies that the interference of the microstructural inhomogeneities results in effectively

attractive interactions between them. Such statistical pairing of BPs minimizes the size of the

inhomogeneity and hence reduces the frictional drag force exerted on the BPs by the medium. As

a result, in some configurations the center-of-mass of a pair of BPs propagates faster than a single

isolated BP. These jamming-induced forces are very different from fundamental physical interactions,

exist only in presence of an external force, and require the presence of a quiescent bath to mediate the

interactions between the driven particles.
1. Introduction

A biased particle (BP) travelling in a bath of particles, which

move randomly without any preferential direction, drives their

spatial distribution out of equilibrium. The bath particles accu-

mulate, creating a ‘‘traffic jam’’ in front of the BP and are

depleted behind it. This BP can be, e.g., a charge carrier subject

to an electric field or a colloid moved with an optical tweezer. The

bath particle may be, e.g., colloids dispersed in a solvent or

adatoms performing activated hopping motion among the

adsorption sites on a solid surface.

Such microstructural changes, which substantially enhance the

drag force exerted on the BP, have been observed experimentally;

in particular, in microrheological measurements of the drag force

on a single colloid driven through a l-DNA solution1 or for

a biased motion of an intruder dragged into a monolayer of

vibrated grains.2 Formation of an inhomogeneous nonequilib-

rium distribution has also been revealed by Brownian Dynamics

simulations of a driven colloid in a l-DNA solution1,3 and in

a colloidal crystal.4 In the latter case, it was shown that a large

enough BP generates a sufficient stress to produce defects, which

remain localized near the BP and affect the frictional drag force.
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Microstructural changes of a quiescent medium caused by

a biased probe were extensively studied analytically5–11 for hard-

core lattice gases with simple exclusion dynamics, in which all

particles except one have symmetric hopping probabilities, while

one of them—the BP—has a preferential direction of motion.

In one-dimensional systems the size of the jammed region in

front of a BP (as well as the size of the depleted region in the

wake) grows in proportion to the travelled distance. Thus the

jamming-induced contribution to the frictional drag force g

exerted on the BP by the bath particles exhibits an unbounded

growth, g z t1/2, (t being time), so that the BP velocity V(1)
t

vanishes,5,6 V(1)
t z t�1/2 as t / N. This insures the validity of the

Einstein relation for anomalous diffusion in one-dimensional

hard-core lattice gases.6,7

In higher dimensions, the BP velocity attains a drift value

V(1) ¼ V(1)
t¼N and the bath particle distribution reaches a non-

equilibrium stationary form.8–11 The density profiles are strongly

anisotropic with a traffic-jam like region in front of the BP and

a depleted region in its wake. Strikingly, behind the BP the bath

particle density approaches the mean value r as a power-law of

the distance x: 1/x3/2and ln(x)/x2 in 2D and 3D, respectively,8–11

which signifies that the medium ‘‘remembers’’ the passage of the

BP on large temporal and spatial scales. The drift velocity V(1)

and the jamming-induced drag force g have been determined for

the lattice gas model7–11 and also for a driven probe in a colloidal

mixture.1,12,13

The next step in the understanding of the jamming-induced

forces has been done in Ref. 14–16, Dzubiella et al.14 studied the

effective interactions between two fixed colloids in a quiescent

viscous solvent exposed to a flowing bath of small Brownian

particles, while Kr€uger and Rauscher15 and Khair and Brady16

considered the case of two colloids translating along their lines of

centres with fixed velocities and a fixed distance apart from each
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Fig. 1 A lattice with randomly moving hard-core particles. Bath (blue)

particles have symmetric hopping probabilities. BPs (red) are subject to

a constant force and have asymmetric hopping probabilities.
other in an otherwise quiescent dispersion of noninteracting

colloids. It was realized that, remarkably, microstructural

changes induce effective forces between two colloids, which may

be either repulsive or attractive, depending on their mutual

orientation.

In this paper we pose a very natural question within the

context of microfluidics/microrheology or biased dynamics

under molecular crowding conditions: what will happen with two

BPs in a quiescent medium of mutually interacting particles when

both move, not with a prescribed velocity along some fixed lines,

but rather perform a biased random motion subject to some

external force? In contrast to the situations studied in Ref. 3, 14

and 16, here the BPs can change their relative position in space

and hence, by monitoring their trajectories we can understand

the overall effect of microstructural changes of the medium on

the interactions between them.

In order to be as transparent as possible, here we resort to

a minimal model of a hard-core lattice gas of particles whose

dynamics obeys the so-called simple exclusion process (SEP).17,18

We note parenthetically that this model of dynamics is quite

realistic and applies to many physical systems, such as, e.g.,

dynamics of adatoms on solid surfaces (see Ref. 8–11, 17 and 18

for more details and other systems). We note, as well, that it

allows us to single out the effect of microstructural changes, i.e.,

bath-mediated interactions, and to exclude possible effects of

solvent (if present) and solvent-mediated interactions19 between

the BPs.

In this model the lattice gas particles—the bath particles—

have symmetric hopping probabilities while two particles—the

BPs—are subject to an external force and have asymmetric

hopping probabilities. Tracking the BPs’ trajectories in Monte

Carlo simulations, we observe a phenomenon of statistical

pairing of biased particles. We realize that for sufficiently dense

systems the fraction of time which the second BP spends at

a given point in space has an apparent maximum in the vicinity of

the first BP. Hence, the interference of non-equilibrium density

profiles of the bath particles formed around each of the BPs

results in an effective attractive interaction between them. Apart

from this, we also analyze the properties of the jamming-induced

frictional forces and determine the velocities of the BPs appear-

ing in different configurations.

The paper is outlined as follows: in Section 2 we define the

model. In Section 3 we focus on dynamics of a single biased

particle in a quiescent bath, describe the density profiles of the

bath particles around the BP and determine the force-velocity

relation. In Section 4 we consider dynamics of two BPs. Here we

define the most probable paths that the BPs follow and describe

the density profiles of the bath particles forming around a pair of

BPs appearing in different configurations. Apart from this, we

also define the frictional force exerted by the medium on the BPs

and determine the velocity of a pair of BPs. We conclude in

Section 5 with a brief recapitulation of our results and an outlook

of future work.
2. The model

Consider a square lattice of S ^ Lx � Ly sites, of spacing s and

with periodic boundary conditions. The lattice is populated with

two different types of particles: N � M bath particles and
994 | Soft Matter, 2011, 7, 993–1000
M (M ¼ 1,2) BPs (see Fig. 1). All particles experience hard-core

interactions, such that each site can be either empty or occupied

by at most one particle. The state of each site (X,Y) is described

by a time-dependent occupation variable h(X,Y); h(X,Y) ¼ 1 if

the site (X,Y) is occupied and h(X,Y) ¼ 0, otherwise.

Particle dynamics is defined by the so-called SEP—simple

exclusion process.17,18 Each particle bears an exponential clock;

in general, the mean jump-time of the bath particles and that of

the BPs may be different; say, it is s* for the bath particles, while

for the BPs it is s. We will focus in what follows on the simplest

case s* ¼ s ¼ 1 and will only briefly mention the effects of

different jump times on the friction coefficient.

When the clock rings, a particle attempts to jump from the site

(X,Y) it occupies to one of the four nearest-neighboring sites

(X0,Y0) according to the normalized set of probabilities

p(X,Y|X0,Y0). Once a jump direction is chosen, and if the desti-

nation site is empty, the particle moves to it, otherwise it remains

on the site it occupies. This stochastic exclusion dynamics is

a Markov process on a state space

M ¼ f0; 1gLx 5f0; 1gLy

We stipulate next that the dynamics of the bath particles obey

a symmetric SEP (all hopping probabilities ¼ 1/4), while the BPs

are driven by an external field ~F ¼�FêX and evolve according to

an asymmetric SEP:

p(r,r � sêX) ¼ Z�1eHbsF/2, p(r,r � sêY) ¼ Z�1, (1)

where êX ¼ (1,0) and êY ¼ (0,1) are unit shift vectors, r ¼ (X,Y),

Z ¼ 2(1 + cosh(bsF/2)) and b is the inverse temperature.

3. One biased particle

To set up the scene, we focus first on the case of a single BP on

a lattice with N � 1 bath particles. As we have already remarked,

a single BP produces microstructural changes in the medium it

travels in, driving the spatial distribution of the bath particles out

of equilibrium. To quantify the microstructural changes of the

medium, we consider the following realization-dependent

‘‘inhomogeneity’’ measure:
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g0ðr; tÞ ¼ 1

t

ðt

0

ds

 
1

r

XN

i¼2

dðriðsÞ � R1ðsÞ � rÞ
!
; (2)

where d($) is the Kronecker-delta, which equals 1 when its

argument is 0 and is zero otherwise, r ¼ (N � 1)/(S � 1) is the

mean density of bath particles, while R1(s) and ri(s) denote the

positions of the BP and of the i-th bath particle at time s,

respectively, for a given set of realizations of their trajectories.

An average of g0(r;t) over different realizations of particles’

trajectories defines the time-averaged van Hove function.20

The realization-dependent functional g0(r;t) in eqn (2) defines

the fraction of time the site r ¼ (x,y), in the frame of reference

moving with the BP, is occupied by bath particles during a time t

for a given realization of trajectories of the bath particles and the

BP.† If the spatial distribution of the bath particles converges to

a stationary form, i.e., if limt/Ng0(r;t) ¼ g0(r) exists, then rg0(r)

can also be thought of as the bath particle’s density profile as seen

from a stationary moving BP. Clearly, g0(0) ¼ 0 due to the hard-

core exclusion and g0(r)/1 when |r|/N. We have conveniently

normalized g0(r;t) to r, so that any deviation g0 s 1 indicates

a non zero dynamical correlation between the BP and the

medium.

In Fig. 2 we depict the bath particles density g0(r) using

a colour map. The density profiles around a stationary moving

BP are characterized by a jammed, high-density region in front of

the BP and a pronounced region depleted by the bath particles

past the BP. This agrees quite well with the theoretical prediction

of Ref. 7–10. We verify, as well, the theoretical prediction that

the density past the BP approaches the average value r not

exponentially with the distance x, but as a slow power-law x�3/2.

Moreover, in Fig. 2 we superimpose the average velocity field,

which shows that the BP induces a regular global motion of the

bath particles predominantly towards the regions with lower
Fig. 2 Microstructural changes of the medium produced by a single BP.

The profile g0(x,y) in eqn (2) is shown for a lattice comprising 61 � 21

sites at density r ¼ 1/2 and bsF ¼ 5. The vector field shows the average

velocity field of the bath particles defined in the reference frame of the BP

(a black square). Velocity vectors with magnitude less than 0.0005 are not

plotted.

† Here and henceforth, small characters x and y will denote a coordinate
system moving with the BP, while X and Y will denote the laboratory
frame of reference.
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density. Note that similar motion patterns have been observed

experimentally for biased motion in granular media.2

Next, in Fig. 3 we depict the dependence of the BP’s drift

velocity V(1) on the applied force F, i.e. the force-velocity relation,

for r ¼ 1/2 The notable feature of the observed force-velocity

curve is that in the limit of sufficiently small forcing (sufficiently

high temperatures) the drift velocity shows a Stokesian, linear

dependence on the applied force, V(1) ¼ F/x, which signifies that

in this limit the frictional force exerted by the bath particles on

the BP is viscous.

According to Ref. 7–10 (see also Section 4 in Ref. 21), in this

linear regime the friction coefficient x can be expressed as a sum

of two contributions,

x ¼ xmf + xcoop, (3)

where the first term,

xmf ¼
4s

bs2ð1� rÞ; (4)

is essentially a mean-field result corresponding to a perfectly

stirred monolayer; one may interpret (1 � r)/s just as the

frequency of the BPs ‘‘successful’’ jump events. The second term

is a ‘‘jamming-induced’’ contribution:

xcoop ¼
4s*

bs2ð1� rÞ
ðp� 2Þr

1þ ð1� rÞs*=s
(5)

stemming out of a cooperative behavior in the monolayer—

a non-linear interplay between the BP dynamics and the

formation of non-equilibrium density profiles around it.

Analogous results for x have been obtained for three-dimen-

sional11 and one-dimensional5,6 systems; in the latter case

x diverges as t / N.

Dividing xmf by xcoop, we have

xmf

xcoop

� 1� r

r
þ 1

r

s
s*
: (6)
Fig. 3 Force-velocity relation. Drift velocity V(1) of a single BP vs.

F (solid squares). The dashed line is the theoretical prediction V(1)¼ F/x in

which the friction coefficient x is given by eqn (3). Open circles denote the

results of the Monte Carlo simulations for the drift velocity of a pair of

BPs in the (2,0) configuration (see the explanations in Section 4.2).
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One notices that the jamming-induced contribution to the

friction coefficient dominates when s* [ s and the bath particles

mean density is not too small. Conversely, the mean-field

contribution is clearly the dominant one when r� 1 or s* � s.

For moderate densities, xmf and xcoop are comparable.

Finally, in Fig. 4 we compare the result in eqn (3) against

Monte Carlo simulation results for the slope of the force-velocity

relation in the limit of small forcing, at different densities r and

s ¼ s* ¼ 1. One observes a very good agreement between

a theoretical prediction and numerical data.
4. Two biased particles

We turn now to the case of primary interest—two BPs. We

suppose that initially the BPs are placed at sites (X,Y) and

(X0,Y0), and that X < X0; following the terminology of Khair and

Brady,16 we then refer to the particle initially at (X,Y) as the

‘‘leading’’ BP, and the one at (X0,Y0)—the ‘‘trailing’’ BP (see

Fig. 1). We recall that the coordinate system defined in the

reference frame of the leading BP is denoted by (x,y).
4.1. Mutual orientation of the BPs

We concentrate first on the analysis of the most probable paths

of the trailing BP in the reference frame of the leading BP. For

this purpose, we study numerically the behaviour of a realiza-

tion-dependent functional

gðr; tÞ ¼ 1

t� t0

ðt

t0

dsdðR2ðsÞ � R1ðsÞ � rÞ; (7)

where R1(s) and R2(s) stand for the instantaneous positions of

the leading and trailing particles, respectively, for a given reali-

zation of their trajectories. Similarly to the functional defined in

eqn (2), g(r;t) defines, for a given realization of the leading and

trailing BPs trajectories, the fraction of time during the time

interval t � t0 that the site r, (in the frame of reference moving

with the leading BP), has been occupied by the trailing BP.

In simulations the leading BP is initially placed at the origin,

the trailing one is placed at position R2(0), while the bath

particles are placed at random, with mean density r, on the rest
Fig. 4 Friction coefficient x versus density. The dashed line is the theo-

retical prediction in eqn (3), while the symbols define the numerical

simulations results for s ¼ b ¼ 1 and s ¼ s* ¼ 1.
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of the lattice. We let the system evolve (the bath particles follow

a standard symmetric SEP while the BPs’ dynamics obeys an

asymmetric SEP) for 108 time steps, until the density profile of

the bath particles around two BPs attains a stationary form.

After this transient period, we define the moment t0 when the

trailing BP re-appears again at site R2(0). Then, during the next

t� t0¼ 106 time steps we evaluate g(r;t) by recording the number

of times each site r in the frame of reference of the leading BP has

been visited by the trailing BP within this realization of the

process.

In Fig. 5 we plot the average local occupation times hg(r;t)i‡
for bsF ¼ 5 and R2(0) ¼ (3,4). Our results show that when the

inhomogeneities around each BP do not overlap, both BPs travel

almost independently. In this case, the profile of the average

occupation times around the initial position of the trailing BP is

almost symmetric (see Fig. 5(a)) with a small second maximum

just after the leading BP. The overlap becomes significant for

either sufficiently high density r, larger driving force bsF or

naturally, when the leading and the trailing BPs are close enough.

For progressively higher densities of the medium particles (see

Fig. 5(b)–(d)) we observe a considerable qualitative change in the

form of the profile hg(r;t)i: it becomes considerably more asym-

metric and is characterized by an apparent ‘‘bridge’’ connecting

the leading and the trailing BPs. Hence, the probability of finding

the trailing BP in the vicinity of the leading one is getting

progressively higher.

Further on, we focus on a single (very long) trajectory of

a trailing BP (see Fig. 6). We let the system evolve for 108 time

steps to ensure that the bath particles distribution around the two

BPs reaches a stationary form. Then, we evaluate g(r;t) by

tracking the trajectory of the trailing BP in the frame of reference

of the leading one. We have checked that for sufficiently large

times (in our simulations t¼ 108), g(r;t) converges to a stationary

function g(r), which moreover, is independent of the initial state.

Fig. 6 shows the local occupation times g(r;t) of a single

trajectory together with the relative velocity field of the trailing

BP with respect to the leading one. The circulating structure of

this field indicates that the pair is statistically stable, presenting

a stable direction (x-axis) along which the trailing and the leading

BPs ‘‘pair’’, and an unstable direction (y-axis) along which the

trailing BP moves away from the leader.

This signifies that when the density profiles of the bath parti-

cles emerging around each of the BPs start to interfere, the

jamming-induced frictional force exerted on the trailing BP is no

longer parallel to the x-axis (direction of the external force F) but

is tilted by some angle pointing towards the wake of the leading

BP. As a consequence, the trailing BP experiences an effective

attraction towards the leading one such that both driven BPs

statistically ‘‘pair’’. From the microscopic dynamics viewpoint,

this interference modifies locally the statistics of successful hops

of the trailing BP, increasing the likelihood of hops towards the

wake of the leading BP.

To substantiate this claim, we have computed numerically an

instantaneous jamming-induced nonequilibrium force g~(r;t) that

we define as
‡ The angle brackets denote averaging over different realizations of the
leading and trailing BPs trajectories. We consider 103 such realizations.
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Fig. 5 Most probable paths. The profile of average local occupation times hg(r;t)i, eqn (7), for the trailing BP commencing at R2(0) ¼ (3,4) (little black

knot), bsF ¼ 5 and densities r: (a) 1/4, (b) 1/2, (c) 3/4 and (d) 0.9. High values of hg(r;t)i (yellow) indicate the most probable paths that the trailing BP

follows.

Fig. 6 Local occupation times of the trailing BP. Colour map of the

occupation time of the trailing BP given by g(r)/(S � 1), for a lattice

comprising 31 � 21 sites, r ¼ 1/2 and bsF ¼ 5. The superimposed vector

field shows the average relative velocity field of the trailing BP measured

in the reference frame of the leading BP. Velocity vectors with magnitude

less than 0.001 are not plotted.
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~gðr; tÞ ¼
X

i¼fx;yg

�
h
�
rðtÞ � êi

�
� h
�
rðtÞ þ êi

��
êi; (8)

where h(r(t)) are the local occupation variables defined in Section

2. Clearly, g~(r;t) is the force that is felt by the trailing BP being at

site r with respect to the leading BP at time moment t.

On average, g~(r) will be different from zero only if the

distribution of the bath particles is inhomogeneous. In general,

as follows from Fig. 6, g~(r) should depend on the position of the

trailing BP with respect to the leading one. In Fig. 7 we show the

time averaged y component of the force g~ that the trailing BP

experiences when it is at position (0,7) (circles) and (4,2) (squares)

with respect to the leader. In the first case, the trailing BP is far

enough from the leader so that the net force along y is numeri-

cally zero, irrespective of the strength of the field. On the

contrary, in the second case, the trailing BP is in the stable basin

of attraction and gy is negative, indicating that (in agreement

with Fig. 6), the force pushes the trailing BP towards the leading

one. For small fields gy grows linearly with bsF and saturates at

larger fields. Of course, the amplitude of the force g~(r) depends

on the density of bath particles, external force F and, naturally,

on the temperature, which controls the rate of the bath particles’

migration and thus their capability for smoothing down the

inhomogeneities created by the BPs.
Soft Matter, 2011, 7, 993–1000 | 997



Fig. 7 Force exerted on the trailing BP. Time averaged jamming-induced

force experienced by the trailing BP at position (0,7) (open circles) and

(4,2) (solid squares), in the reference frame of the leading one, as

a function of bsF. The error bars indicate the standard deviation.
4.2. The BPs velocities

The (mean) drift velocity V(1) of a single isolated BP is totally

determined by bsF, r and the rate of the bath particles’ migra-

tion.9,10 For two BPs, when they appear sufficiently close to each

other such that the inhomogeneities around each of them start to

interfere, their drift velocities and the velocity of their center of

mass will also depend on their mutual orientation. One may

expect that only at large mutual separations of the BPs their

velocities are equal to V(1).
Fig. 8 Microstructural changes produced by two BPs. Colour map of the m

configurations of two BPs, defined in the reference frame of the leading BP

velocity field. Velocities with magnitude less than 0.005 are not plotted.
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To clarify this issue, we have studied the velocities of the

leading and trailing BPs at a fixed force bsF ¼ 5 and at a fixed

bath-particle density r ¼ 1/2, but for different mutual orienta-

tions. Six different mutual orientations of the BPs, together with

the corresponding microstructural changes of the medium, are

presented in Fig. 8. In this figure we also depict the velocity field

of the bath particles.

Further on, in Fig. 9 we plot the instantaneous drift velocities

of the leading and trailing BPs as the function of their mutual

orientation. In the left panels, along the horizontal line, each

‘‘tick’’ corresponds to the position (x,y) of the trailing BP in the

reference frame of the leading one. Between each pair of vertical

dotted lines, we place nine points with fixed y and x varying from

1 to 9, i.e., (1,y), (2,y) to (9,y). From the left lower panel one

indeed concludes that at large separations the velocities of the

BPs are nearly the same, and coincide with the velocity V(1) (blue

dashed line) of a single isolated BP. Conversely, when the BPs are

close enough, their velocities may be very different from each

other, as well as from V(1).

At a fixed y, the velocity of the trailing BP is always a non-

monotonic function of its x-coordinate: it is always minimal for

x ¼ 0, grows abruptly with the x-coordinate and then decays

towards V(1). The leading BP velocity, at a fixed y-coordinate of

the trailing BP, is a growing function of the x-coordinate of the

latter. Despite the fact that the configuration (1,0) is the most

probable (see Fig. 6), the velocity of the center of mass (solid blue

line in Fig. 9) of such a pair is not the largest one, which is a bit

counter intuitive. As a matter of fact, this is the consequence of

the hard-core interaction between the leading and trailing BPs
ean local occupation times of the bath particles g0(x,y), for six different

(black square), with r ¼ 1/2 and bsF ¼ 5. The arrows define the vector

This journal is ª The Royal Society of Chemistry 2011



Fig. 9 Drift velocities of the BPs in different configuration Left lower panel: magnitude of the x-component of the velocity of the leading (open squares)

and trailing (solid circles) BPs for different mutual orientations, bsF¼ 5 and r¼ 1/2. The blue dashed line defines the velocity V(1) of a single isolated BP,

while the solid blue line defines the center-of-mass velocity of a pair of BPs. The arrows indicate some of the configurations depicted in Fig. 8. Left upper

panel: the ratio of ‘‘effective’’ inhomogeneities created by two BPs and a single BP (see the text for the explanations). Right panel: drift velocity of the

transversal configurations as a function of the separation y. The inset shows that the drift velocity converges to V(1) exponentially.
that hinder the motion of the latter reducing the average velocity

of the pair. The blocking effect is no longer present in the next

configuration (2,0) for which (together with the configuration

(3,0)), the velocity of the center-of-mass is the largest. This

signifies that such a pair of the BPs creates the smallest micro-

structural changes, and in response, encounters the least

jamming-induced frictional force, hence the least possible dissi-

pation.

Curiously enough, the velocity of the center-of-mass of such

a pair is always higher than the velocity of a single isolated BP.

This can be seen in Fig. 3, in which we compare numerical force-

velocity relations for a single BP (solid squares) and a pair in the

configuration (2,0) (open circles), for different values of

the driving force. The center-of-mass velocity is also higher than

the velocity of a single isolated BP for the configurations (3,0),

(4,0) to (9,0), (2,1) to (9,1) and (4,2) to (9,2). On the contrary, the

microstructural changes of the medium induce the largest fric-

tional force on pairs (0,y), for which the BPs are in perpendicular

orientation with respect to the field direction, such as, e.g.,

configurations (c) and (d). These configurations are indicated in

Fig. 9 by vertical arrows. Due to the symmetry of the problem, in

these configurations the velocities of the leading and trailing BPs

coincide, and are smaller than the velocity of a single isolated BP.

To better understand such a behaviour we study a measure of

the size of the inhomogeneity created by the BPs. This configu-

ration-dependent measure that we call S, equals the sum of the

mean occupation times of the bath particles, over the lattice sites

on which the absolute deviation of g0(x,y) from the mean value

r exceeds a certain threshold G:

S ¼
X
dg.G
hg0ðx; yÞi; (9)

where dg¼ |hg0(x,y)i � r|. To look at the correlation between the

size of the inhomogeneity and the jamming-induced interaction

among different BPs, we denote Sn (n ¼ 1, 2), as the
This journal is ª The Royal Society of Chemistry 2011
inhomogeneity measure (eqn 9), computed for n BPs. In the left

top panel of Fig. 9 we present the ratio S2/2S1 for different

configurations of the BPs, clearly showing that the largest

(smallest) velocities of a pair of BPs occur for smallest (largest)

values of S2/2S1. In particular, for the pair configurations

whose center-of-mass velocity is larger than the single BP, we

obtain S2/2S1 < 1, indicating that the overall size of the inho-

mogeneity produced by the pair of BPs in such configurations is

smaller than the corresponding size of two isolated BPs.

Finally, in the right panel of Fig. 9 we show that at large

separations along the y-axis the velocity of the pair approaches

the velocity of a single isolated BP exponentially, as is the case of

configuration (f), corresponding to the orientation (0,15).
5. Conclusions

To recap, we have addressed here a problem of effective, non-

equilibrium interactions that emerge between two driven probes

in a medium of randomly moving hard-core (but otherwise

noninteracting) particles–a quiescent bath. We have shown that

for a sufficiently dense medium the probes experience an

attractive force towards each other, leading to their statistical

pairing. Such a pairing sets in when the non-equilibrium inho-

mogeneities in the distribution of the bath particles, created by

the probes, start to interfere. The inhomogeneities around each

driven probe decay exponentially with the distance from the

probe, except for the wake of the probe in which the decay is

algebraic. Consequently, these non-equilibrium interactions are

anisotropic and typically short-ranged, except for the situations

when the second driven probe appears in the wake of the

first one.

The formation of pairs reduces the overall size of the inho-

mogeneity, minimizing the frictional drag force the medium

exerts on each probe. As a result, in some configurations the

center-of-mass of a pair propagates faster than a single isolated
Soft Matter, 2011, 7, 993–1000 | 999



BP. The jamming-induced forces, which emerge in the situation

under study, are very different from fundamental physical

interactions, exist only in the presence of an external force, and

require the presence of a quiescent bath to mediate the interac-

tions between the driven intruders.

We note that our results have been obtained for a somewhat

simplified model of a non-interacting lattice gas with simple

exclusion dynamics, which allowed us to single out the effect of

the jamming-induced interactions. This model can be generalized

in several directions. First of all, one may consider a situation

appropriate to a colloidal solution, when some solvent is present.

The solvent itself will produce long-range hydrodynamic inter-

actions between the driven probes and correlate dynamics of the

bath particles (see Ref. 19 and references therein). One may

expect that the pairing effect will become more pronounced in

this case. Second, we have considered the case of just two driven

probes. It might be interesting to study the specific features of

pairing in the situation when there are many of them—the effect

observed here seems very much like ‘‘an elementary act’’ for the

phenomenon of lane formation in partially driven colloids.22,23

Finally, we note that we have focused here solely on the case

when the biased motion of the BPs results from the presence of

an external force acting on them. For biased motion in intra-

cellular media or under molecular crowding conditions, it might

also be interesting to consider other types of biased motion, e.g.,

the cases of self-propelled particles or swimmers. These impor-

tant situations merit further investigation.
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