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Abstract 
 

In the beginning of the 90s, ontology development was similar to an art: ontology developers did not 

have clear guidelines on how to build ontologies but only some design criteria to be followed. Work on 

principles, methods and methodologies, together with supporting technologies and languages, made 

ontology development become an engineering discipline, the so-called Ontology Engineering. 

Ontology Engineering refers to the set of activities that concern the ontology development process 

and the ontology life cycle, the methods and methodologies for building ontologies, and the tool 

suites and languages that support them. Thanks to the work done in the Ontology Engineering field, 

the development of ontologies within and between teams has increased and improved, as well as the 

possibility of reusing ontologies in other developments and in final applications. Currently, ontologies 

are widely used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b) 

applications related to knowledge management, natural language processing, e-commerce, intelligent 

information integration, information retrieval, database design and integration, bio-informatics, 

education, and (c) the Semantic Web, the Semantic Grid, and the Linked Data initiative. In this paper, 

we provide an overview of Ontology Engineering, mentioning the most outstanding and used 

methodologies, languages, and tools for building ontologies. In addition, we include some words on 

how all these elements can be used in the Linked Data initiative. 

 

Keywords: Ontology engineering, ontology development methodologies, ontology languages, 

ontology tools. 

 

1.1.1. Introduction 
 
Ontologies play an important role for many knowledge-intensive applications, since they provide 

formal models of domain knowledge that can be exploited in different ways. Currently, ontologies are 
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used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b) applications 

related to knowledge management, natural language processing, e-commerce, intelligent information 

integration, information retrieval, database design and integration, bio-informatics, education, and (c) 

the Semantic Web, the Semantic Grid, and the Linked Data initiative. 

During the last two decades, increasing attention has been focused on ontologies and their 

development. Indeed, ontology development has become an engineering discipline, Ontology 

Engineering, which refers to the set of activities that concern the ontology development process and 

the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites 

and languages that support them.   

When ontologies are going to be built, several basic questions arise related to the methodologies, 

languages, and tools to be used in their development processes: 

 Which methods and methodologies can be used for building ontologies? Which activities are 

performed when building ontologies with a particular methodology? Does any methodology 

support building ontologies cooperatively? Which is the life cycle of an ontology that is 

developed with a specific methodology? 

 Which language(s) should be used to implement an ontology? What expressiveness has an 

ontology language? What are the inference mechanisms attached to an ontology language? Is 

the language chosen appropriate for exchanging information between different applications? 

Does the language ease the integration of the ontology in an application?  

 Which tool(s) give/s support to the ontology development process? Does the tool have an 

inference engine? How can applications interoperate with ontology servers and/or use the 

ontologies that we have developed? 

Along this paper, we present the basics about ontologies, and show what methodologies, languages, 

and tools are available to give support to different activities of the ontology development process. 

The content of this paper can help practitioners and researchers in this field to obtain answers to the 

some of the previous questions. In addition, we include some words on how these elements 

(methodologies, languages, and tools) can be used in the Linked Data initiative. First, in Section 2, 

we define the world ‘ontology’ and briefly describe its main components. After that, in Section 3, we 

enumerate methodologies commonly used for building ontologies. In Section 4, we summarize the 

most used ontology languages and in Section 5, we present some tools used in the ontology 

development process. In Section 6, we provide some guidelines on how to publish linked data. Finally, 

we present some conclusions.  

 

1.1.2. Ontology definition and its main components 
 

The word ontology was taken from Philosophy, where it means a systematic explanation of being. 

There are many definitions about what an ontology is and such definitions have changed and evolved 

over the years. However, Studer and colleagues (Studer et al., 1998) provide one of the most well 

known definitions: “An ontology is a formal, explicit specification of a shared conceptualization. 

Conceptualization refers to an abstract model of some phenomenon in the world by having identified 

the relevant concepts of that phenomenon. Explicit means that the type of concepts used, and the 
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constraints on their use are explicitly defined. Formal refers to the fact that the ontology should be 

machine-readable. Shared reflects the notion that an ontology captures consensual knowledge, that is, 

it is not private of some individual, but accepted by a group”. 

Ontologies can be modelled with different knowledge modelling techniques and they can be 

implemented in various kinds of languages based on different knowledge representation formalisms. 

It is important to mention here that there are connections and implications between the knowledge 

modelling components (concepts, roles, etc.) used to build an ontology, the knowledge representation 

paradigms (frames, description logics, logic) used to represent formally such components, and the 

languages used to implement the ontologies under a given knowledge representation paradigm. 

However, they share the following minimal set of components:   

 Classes represent concepts, which are taken in a broad sense. For instance, in the domain of 

Energy Efficiency at Buildings, concepts are Building, Door, Window, Device, Sensor, etc. Classes 

in the ontology are usually organized in taxonomies through which inheritance mechanisms can 

be applied. We can represent a taxonomy of sensors (Scanning Sensor, Optical Sensor, Touch 

Trigger Sensor, etc.) or different types of doors in buildings (Inner Door, Outer Door, Sliding Door, 

Rotating Door, or Strongroom Door).  

 Relations represent a type of association between concepts of the domain. They are formally 

defined as any subset of a product of n sets, that is: R ⊂ C1 x C2 x ... x Cn. Ontologies usually 

contain binary relations. The first argument is known as the domain of the relation, and the 

second argument is the range. For instance, the binary relation locatedIn has the concept 

Building as its domain and the concept Location as its range; in addition, this relation can have 

the concept Device as domain. Binary relations are sometimes used to express concept attributes 

(aka slots). Attributes are usually distinguished from relations because their range is a datatype, 

such as string, number, etc., while the range of relations is a concept.  

 Formal axioms, according to (Gruber, 1993), serve to model sentences that are always true. 

They are normally used to represent knowledge that cannot be formally defined by the other 

components. In addition, formal axioms are used to verify the consistency of the ontology itself or 

the consistency of the knowledge stored in a knowledgebase. Formal axioms are very useful to 

infer new knowledge. An axiom in the Energy Efficiency at Buildings domain could be that it is not 

possible to build a public building without a fire door (based on legal issues). 

 Instances are used to represent elements or individuals in an ontology.  

 

1.1.3. Foremost methodologies for building ontologies 
 

METHONTOLOGY, On-To-Knowledge, and DILIGENT were up to 2009 the most referred 

methodologies for building ontologies. These methodologies mainly include guidelines for single 

ontology construction ranging from ontology specification to ontology implementation and they are 

mainly targeted to ontology researchers. In contrast to the aforementioned approaches, a new 

methodology, called the NeOn Methodology, suggests pathways and activities for a variety of 

scenarios, instead of prescribing a rigid workflow. 
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In this section, we summarize the four abovementioned methodologies, describing in more detailed 

the current trend in ontology building presented in the NeOn Methodology. 

 The NeOn Methodology (Suárez-Figueroa, 2010) for building ontology networks is a scenario-

based methodology that supports a knowledge reuse approach, as well as collaborative aspects of 

ontology development and dynamic evolution of ontology networks in distributed environments. 

The key assets of the NeOn Methodology are: 

o A set of nine scenarios for building ontologies and ontology networks, emphasizing the 

reuse of ontological and non-ontological resources, the reengineering and merging, and 

taking into account collaboration and dynamism. 

o The NeOn Glossary of Processes and Activities, which identifies and defines the processes 

and activities carried out when ontology networks are collaboratively built by teams. 

o Methodological guidelines for different processes and activities of the ontology network 

development process, such as the reuse and reengineering of ontological and non-

ontological resources, the ontology requirements specification, the ontology localization, 

the scheduling, etc. All processes and activities are described with (a) a filling card, (b) a 

workflow, and (c) examples. 

The set of nine scenarios for building ontologies and ontology networks can be summarized as 

follows: 

o Scenario 1: From specification to implementation. The ontology network is developed 

from scratch (without reusing existing resources). Developers should specify ontology 

requirements (Suárez-Figueroa et al., 2009). After that, it is advisory to carry out a 

search for potential resources to be reused. Then, the scheduling activity (Suárez-

Figueroa et al., 2010) must be performed, and developers should follow the plan to 

develop the ontology network. 

o Scenario 2: Reusing and re-engineering non-ontological resources (NORs). Developers 

should carry out the NOR reuse process for deciding, according to the ontology 

requirements, which NORs can be reused to build the ontology network. Then, the 

selected NORs should be re-engineered into ontologies (Villazón-Terrazas et al., 2010). 

o Scenario 3: Reusing ontological resources. Developers use ontological resources 

(ontologies as a whole, ontology modules, and/or ontology statements) to build ontology 

networks. 

o Scenario 4: Reusing and re-engineering ontological resources. Ontology developers reuse 

and re-engineer ontological resources. 

o Scenario 5: Reusing and merging ontological resources. This scenario arises when several 

ontological resources in the same domain are selected for reuse, and developers wish to 

create a new ontological resource with the selected resources. 

o Scenario 6: Reusing, merging and re-engineering ontological resources. Ontology 

developers reuse, merge, and re-engineer ontological resources. This scenario is similar 

to Scenario 5, but here developers decide to re-engineer the set of merged resources. 

o Scenario 7: Reusing ontology design patterns (ODPs). Ontology developers access 

repositories (e.g., http://ontologydesignpatterns.org/) to reuse ODPs. 

 12 



 

o Scenario 8: Restructuring ontological resources. Ontology developers restructure (e.g., 

modularize, prune, extend, and/or specialize) ontological resources to be integrated in the 

ontology network. 

o Scenario 9: Localizing ontological resources. Ontology developers adapt an ontology to 

other languages and culture communities, thus obtaining a multilingual ontology 

(Espinoza et al., 2009). 

 METHONTOLOGY (Gómez-Pérez et al., 2003) enables the construction of ontologies at the 

knowledge level. It includes (a) the identification of the ontology development process (which 

tasks should be performed when building ontologies); (b) a life cycle based on evolving 

prototypes; and (c) some techniques to carry out management, development-oriented, and 

support activities. In addition, METHONTOLOGY includes a list of activities to be carried out during 

ontology reuse and re-engineering processes, but it does not provide detailed guidelines for such 

activities, nor does it consider different levels of granularity during the reuse of ontological 

resources (e.g., modules or statements). Moreover, METHONTOLOGY considers neither the reuse 

and re-engineering of non-ontological resources nor the reuse of ODPs. 

 The On-To-Knowledge methodology (Staab et al., 2001) proposes to build ontologies taking 

into account how these are going to be used in knowledge management applications. The 

processes proposed by this methodology are the following: feasibility study, kickoff, where 

ontology requirements are identified, refinement, where a mature and application-oriented 

ontology is produced, evaluation, and maintenance. With respect to the reuse of knowledge 

resources, in the kickoff process it is mentioned that developers should look for potentially 

reusable ontologies. However, this methodology does not provide detailed guidelines for 

identifying such ontologies nor for reusing them. Besides, the methodology does not explicitly 

mention guidelines for the reuse and re-engineering of non-ontological resources, nor for the 

reuse of ontology design patterns. 

 The DILIGENT methodology (Pinto et al., 2004) is intended to support domain experts in a 

distributed setting in order to engineer and evolve ontologies. This methodology is focused on 

collaborative and distributed ontology engineering. Its ontology development process includes the 

following five activities: building, local adaptation, analysis, revision, and local update. With 

regard to the reuse of knowledge resources, the methodology does not include guidelines for the 

reuse and re-engineering of existing knowledge resources. 

 
1.1.4. Major ontology languages 
 

Different ontology languages have different expressiveness and inference mechanisms, since the 

knowledge representation paradigms underlying all these languages are diverse. Therefore, one of 

the key decisions to take in the ontology development process is to select the language (or set of 

languages) in which the ontology will be implemented. 

Next, we present an overview of the current specifications for ontology languages developed in the 

scope of the W3C Semantic Web Activity (http://www.w3.org/2001/sw/). 
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 RDF. RDF (Klyne and Carroll, 2004) stands for Resource Description Framework. It was 

developed by the W3C to create metadata for describing web resources and its data model is 

equivalent to the semantic networks formalism, consisting of three object types: resources, 

properties and statements.  

 RDF Schema. The RDF data model does not have mechanisms for defining the relationships 

between properties and resources. This is the role of the RDF Vocabulary Description language 

(Brickley and Guha, 2004), also known as RDF Schema. RDF(S) is the term commonly used to 

refer to the combination of RDF and RDFS. Thus, RDF(S) combines semantic networks with 

frames but it does not provide all the primitives that are usually found in frame-based knowledge 

representation systems.  

 OWL. OWL (Dean and Schreiber, 2004) is the result of the work of the W3C Web Ontology 

Working Group. This language derived from DAML+OIL (van Harmelen et al., 2001) and, as the 

previous languages, is intended for publishing and sharing ontologies in the Web. OWL is built 

upon RDF(S), has a layered structure and is divided into three sublanguages: OWL Lite, OWL DL 

and OWL Full.  OWL is grounded on Description Logics (Baader et al., 2002) and its semantics is 

described in two different ways: as an extension of the RDF(S) model theory and as a direct 

model-theoretic semantics of OWL. Both of them have the same semantic consequences on OWL 

ontologies. 

 OWL 2. OWL 2 (Motik et al., 2009) is an extension and revision of OWL that adds new 

functionality with respect to OWL; some of the new features are syntactic sugar (e.g., disjoint 

union of classes) while others offer new expressivity. OWL 2 includes three different profiles (i.e., 

sublanguages) that offer important advantages in particular application scenarios, each trading 

off different aspects of OWL's expressive power in return for different computational and/or 

implementational benefits. These profiles are:  

o OWL 2 EL that is particularly suitable for applications where very large ontologies are 

needed, and where expressive power can be traded for performance guarantees. 

o OWL 2 QL that is particularly suitable for applications where relatively lightweight 

ontologies are used to organize large numbers of individuals and where it is useful or 

necessary to access the data directly via relational queries (e.g., SQL). 

o OWL 2 RL that is particularly suitable for applications where relatively lightweight 

ontologies are used to organize large numbers of individuals and where it is useful or 

necessary to operate directly on data in the form of RDF triples. 

OWL 2 provides two alternative ways of assigning meaning to OWL 2 ontologies: the Direct Semantics 

that assigns meaning directly to ontology structures and the RDF-Based Semantics that assigns 

meaning directly to RDF graphs. 

 SPARQL. Even if it is not an ontology language, we mention SPARQL (Prud’hommeaux and 

Seaborne, 2008) here because it supports querying the previous languages. SPARQL allows 

performing queries over RDF data and, since both RDF-S and OWL are based in RDF, also over 

RDF-S and OWL ontologies. SPARQL can be used to express queries across diverse data sources 

and its syntax is similar to SQL to facilitate its adoption. 
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1.1.5. Leading ontology tools 
 

The landscape of tools that manage and exploit ontologies is broad and covers from the creation of 

these ontologies to their storage or visualization. 

Next, we describe the different dimensions in which semantic technologies can be classified according 

to their functionalities (see Figure 1); these dimensions are based in the Semantic Web Framework 

(García-Castro et al., 2008). Each dimension description contains the names of some relevant tools. 
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Figure 1: Semantic technology dimensions (adapted from García-Castro et al., 2008) 

 

• Ontology management. This dimension includes components that manage ontology-related 

information. 

o The Ontology repository stores and accesses ontologies and ontology instances (e.g., 

3Store, AllegroGraph, Corese, Hawk, Jena, Kowari, OWLIM, Sesame, Virtuoso Universal 

Server, 4store). 

o The Alignment repository stores and accesses alignments (e.g., Alignment Server, 

COMA++). 

o The Ontology metadata registry stores and accesses ontology metadata information (e.g., 

Oyster, SchemaWeb). This metadata information can be described using OMV 

(http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/downloads/75-omv), the Ontology 

Metadata Vocabulary. 

o The Ontology management programming interfaces provide programming interfaces for 

managing ontologies and ontology instances (e.g., OWL API, RDF2Go, SemWeb.NET, 

Pubby, Elda). 

• Querying and reasoning. This dimension includes components that generate and process 

queries. 
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o The Ontology reasoner takes care of reasoning over ontologies and ontology instances 

(e.g., CEL, Cerebra Engine, FaCT ++, fuzzyDL, HermiT, KAON2, MSPASS, Pellet, QuOnto, 

RacerPro, SHER, SoftFacts, TrOWL). 

o The Semantic search component takes care of the user interface for editing queries and of 

their corresponding processing (e.g., ARQ, Ginseng, K-Search, NLP-Reduce, Ontogator, 

PowerAqua, SemSearch). 

o The Ontology discovery and ranking component finds appropriate views, versions or 

subsets of ontologies, and then ranks them according to some criterion (e.g., Swoogle, 

Watson, Sindice). 

• Ontology engineering. This dimension includes components that provide functionalities to 

develop and manage ontologies. 

o The Ontology editor allows creating and modifying ontologies, ontology elements, and 

ontology documentation. These functionalities include a single element edition or a more 

advanced edition such as ontology pruning, extension or specialization (e.g., DODDLE, 

graphl, GrOWL, ICOM, IsaViz, NeOn Toolkit, Ontotrack, Powl, Protégé, SemanticWorks, 

SemTalk, SWOOP, TopBraid Composer). 

o The Ontology browser allows to visually browse an ontology (e.g., Brownsauce, 

BrowseRDF, Disco, /facet, Fenfire, Jambalaya, Longwell, mSpace, OINK, Ontosphere 3D, 

Ontoviz, OWLViz, RDF Gravity, Tabulator, TGVizTab, Welkin). 

o The Ontology learner acquires knowledge and generates ontologies of a given domain 

through some kind of (semi) automatic process (e.g., KEA, OntoGen, OntoLearn, 

Text2Onto, TERMINAE). 

o The Ontology versioner maintains, stores and manages different versions of an ontology 

(e.g., SemVersion). 

• Ontology processing. This dimension includes components that process ontologies. 

o The Ontology matcher matches two ontologies and outputs some alignments. We can 

distinguish two types of such systems: those that generate alignments and those that use 

alignments for other tasks, such as merging or mediating (e.g., AgreeMaker, AMW, 

AROMA, ASMOV, AUTOMS, CMS, CODI, COMA, Ef2Match, Falcon-AO, Gerome, HMatch, 

Lily, MapOnto, Mapso, OLA, OntoBuilder, PROMPT, RiMOM, S-Match, SAMBO). 

o The Ontology localization and profiling component adapts an ontology according to some 

language, context or user profile (e.g., LabelTranslator, lemon editor). 

o The Ontology evaluator evaluates ontologies, either their formal model or their content, in 

the different phases of their life cycle (e.g., CleOn, ConsVISor, Eyeball, VRP). 

• Instance generation. This dimension includes components that generate ontology instances. 

o The Instance editor allows manually creating and modifying instances of concepts and of 

relations between them in existing ontologies (e.g., GATE, OCAT). 

o The Manual annotation component is in charge of manual and semi-automatic annotation 

of digital content documents (e.g. web pages) with concepts in the ontology. This 

annotation process may be assisted or guided by a machine (semi-automatic annotation) 

(e.g., GATE, OCAT, OntoMat, Magpie, M-OntoMat, PhotoStuff). 
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o The Automatic annotation component automatically annotates digital content (e.g. web 

pages) with concepts in the ontology (e.g., KIM, GATE-ML). 

o The Ontology populator automatically generates new instances in a given ontology from a 

data source (e.g., CLIE, NOR2O, R2O & ODEMapster, geometry2rdf). 

o The Instance matcher automatically is in charge of manual and semi-automatic matching 

of instances from different ontologies (e.g., SILK, LIMES). 

 

Regarding the ontology engineering dimension, of special relevance are those software platforms that 

cover more that one of the aforementioned components and that support most of the activities in the 

ontology development process. In this paper, we focus on the new generation of ontology engineering 

environments, particularly, on NeOn Toolkit, Protégé, and TopBraid Composer. They have extensible, 

component-based architectures, where new modules can easily be added to provide more 

functionality to the environment. 

 The NeOn Toolkit (http://neon-toolkit.org/) is an ontology engineering environment that 

supports the complete life cycle of large-scale ontology networks. In order to support such a 

broad ontology modelling functionality, it has an open and modular architecture, which the NeOn 

Toolkit inherits from its underlying platform, Eclipse. Eclipse is a very rich development 

environment, which is widely adopted in the programming world and which perfectly fits to the 

modelling paradigm for ontologies. It provides developers with a framework to easily create, 

publish and integrate new features into the NeOn Toolkit. A substantial number of so-called plug-

ins has been developed within and outside the NeOn consortium and are available at NeOn Toolkit 

homepage. 

The NeOn Toolkit is available as an installable core version with the basic ontology functionality such 

as editing, browsing, ontology and project management. Currently, the following versions are 

available: 

o The basic NeOn Toolkit provides the core functionality for handling OWL 2 ontologies. 

o The NeOn Toolkit extended configuration includes advanced functionality for managing 

rule based models and ontology mapping facilities based on commercial extensions. 

 Protégé (http://protege.stanford.edu/) is an open platform for ontology modelling and 

knowledge acquisition. It is an open source, standalone application with an extensible 

architecture. The core of this environment is the ontology editor, and it holds a library of modules 

that can be plugged, called plug-ins, to add more functions to the environment.  

The main Protégé functions are to: load and save OWL and RDF ontologies; edit and visualize classes, 

properties, and SWRL rules; define logical class characteristics as OWL expressions; execute 

reasoners such as description logic classifiers; and edit OWL individuals for Semantic Web markup. 

Protégé is available in different versions, each including different plug-ins, whose main difference is 

the ontology language that they support:  

o Protégé version 3 supports OWL 1.0, RDF(S) and Frames. 

o Protégé version 4 supports OWL 2.0. 

 TopBraid Composer (http://www.topquadrant.com/products/TB_Composer.html) is a modelling 

environment for developing Semantic Web ontologies and building semantic applications. It is 
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fully compliant with W3C standards and offers support for developing, managing and testing 

configurations of knowledge models and their instance knowledge bases. It is implemented as an 

Eclipse plug-in.  

TopBraid Composer incorporates a flexible and extensible framework with a published API for 

developing semantic client/server or browser-based solutions that can integrate disparate applications 

and data sources. 

TopBraid Composer is available in three different versions: Free Edition, Standard Edition and Maestro 

Edition.  

 
1.1.6. Ontology Engineering in Linked Data: How to publish data 
 

Publishing Linked Data is a process that involves a high number of steps, design decisions as well as 

a wide range of technologies. Although some initial guidelines have been already provided by Linked 

Data publishers, these are still far from covering all the steps that are necessary (from data source 

selection to its publication) or giving enough details about all the steps. In this section, we summarize 

a set of methodological guidelines for the activities involved in the Linked Data publishing process. 

These guidelines consist of the following activities: (1) identification of the data sources; (2) 

vocabulary modelling; (3) generation of the RDF data; (4) publication of the RDF data; and (5) 

linking the RDF data with other datasets in the cloud.  

1. Identification of the data sources. Within this activity, we identify and select the datasets that 

we want to publish. This is normally a costly and tedious activity that may require contacting 

the data owners, and government bodies. If lucky, we may have that data already available 

in a public data catalogue. A representative example of these catalogues in the Spanish 

context is the Aporta project (http://www.aporta.es) catalogue. Other possibility is to get an 

agreement with a particular government body to publish its datasets.  

In the case of GeoLinkedData (http://geo.linkeddata.es) we have followed those two paths. In one 

hand, we have searched for open government information at the Spanish Statistical Institute (INE) 

open catalogue (http://www.ine.es). In the other hand, we have got an agreement with the Spanish 

Geographic Institute (IGN) for publishing its geospatial datasets. 

2. Vocabulary modelling. After the identification and selection of the datasets we need to 

determine the ontologies to be used to model the data contained in those datasets. The most 

important recommendation in this context is to reuse as much as possible available ontologies 

that model the information needed. If we do not find any particular ontology suitable for our 

needs, we should create them, either from scratch or by reusing existing resources. This 

activity is well described in ontology engineering methodologies, for example the NeOn 

Methodology (Suárez-Figueroa, 2010), summarized in Section 3; and tools such as the NeOn 

Toolkit (presented in Section 5) can be used.  

In the case of GeoLinkedData, our chosen datasets contain information such as time, administrative 

boundaries, unemployment, etc. For modelling the information contained in the datasets we have 

created an ontology network (Suárez-Figueroa, 2010). The vocabulary that models the information 

contained in the datasets has been developed by reusing the following available vocabularies or 
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ontologies: Statistical Core Vocabulary (SCOVO), FAO Geopolitical Ontology, hydrOntology, WSG84 

Vocabulary, and Time Ontology. 

3. Generation of the RDF data. The preliminary guidelines proposed in this chapter consider only 

the transformation of the whole data source content into RDF, i.e., following an Extract, 

Transform, and Load ETL-like process, by using a set of RDF-izers, i.e. ontology population 

tools. The guidelines are based on the method proposed in (Villazón-Terrazas et al., 2010) 

that provides guide for transforming the content of a given resource into RDF instances. The 

requirements of the transformation are (1) full conversion, this implies that all queries that 

are possible on the original source should also be possible on the RDF version; and (2) the 

RDF instances generated should reflect the target ontology structure as closely as possible, in 

other words, the RDF instances must conform to the already existing ontology schema. 

In GeoLinkedData, given the different formats in which the selected datasets were available, we used 

three different RDF-izers for the conversion of data into RDF. We have used NOR2O for transforming 

the spreadsheets, R2O & ODEMapster for the databases, and geometry2rdf for the geospatial 

information. 

4. Publication of the RDF data. The preliminary guidelines proposed here consider that we will 

serve RDF data from a particular ontology repository. Ideally, every RDF triple store software 

would provide a Linked Data interface. Using this interface, the administrator of the store 

would configure which part of the store’s content should be made accessible as Linked Data 

on the Web. 

In GeoLinkedData, for the publication of the RDF data we relied on Virtuoso Universal Server. On top 

of it, Pubby (http://www4.wiwiss.fu-berlin.de/pubby/) was used for the visualization and navigation 

of the raw RDF data. On top of these two systems, we have developed a web based application, 

map4rdf34, to enhance the visualization of the aggregated information. This interface combines the 

faceted browsing paradigm with map-based visualization using the Google Maps API. 

5. Linking the RDF data. Following the fourth Linked Data Principle (“Include links to other URIs, 

so that they can discover more things”), the next activity is to create links between our RDF 

data set and external datasets. This activity involves the discovery of relationships between 

data items. We can create these links manually, which is a time consuming activity, or we can 

rely on automatic or supervised tools, such as SILK (http://www4.wiwiss.fu-

berlin.de/bizer/silk/) or LIMES (http://aksw.org/Projects/LIMES). The activity consists in the 

following tasks: (a) to identify data sets that may be suitable as linking targets, (b) to 

discover relationships between data items of our data set and the items of the identified data 

sets in the previous task, and (c) to validate the relationships that have been discovered.  

In the context of GeoLinkedData, we have identified as initial data sets to link with DBpedia 

(http://dbpedia.org) and Geonames (http://geonames.org), because these data sets include similar 

topics. 
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Conclusions 
 

At the beginning of the 90’s, ontology development was similar to an art: ontology developers did not 

have guidelines on how to build ontologies. Work on principles, methods and methodologies, together 

with supporting technologies and languages, made ontology development become an engineering 

discipline, the so-called Ontology Engineering.  

In this paper, we have provided a general summary on this discipline, focusing on ontology definition 

and ontology components (classes, relations, axioms, and instances), and methodologies for building 

ontologies as well as languages and tools for ontology building.  

At this moment, ontology engineers and practitioners have at their disposal different methodologies 

for ontology development. The classical ones (METHONTOLOGY, On-To-Knowledge, and DILIGENT) 

that provides a rigid workflow for building ontologies, and the new one, the NeOn Methodology that 

conducts developers along different scenarios and activities for which prescriptive guidelines are 

provided.  

With respect to languages, the decision of which one(s) to use for implementing the ontology should 

be based on the needs in terms of expressiveness and reasoning. In this paper, we provide the list of 

the most commonly used languages with their key features. 

Finally, ontology engineers and practitioners needs tools that help them carry out different activities 

of the ontology development process (such as, implementation, evaluation, ontology search). In the 

last years, the number of ontology tools has greatly increased and they can be grouped into seven 

different dimensions (data and metadata management, querying and reasoning, ontology engineering, 

ontology customisation, ontology evolution, ontology instance generation, semantic web services). In 

this paper, we provide a brief description of three ontology development environment (the NeOn 

Toolkit, Protégé, and TopBraid Composer) that can be included in the ontology engineering dimension. 

To put together methodologies, languages, and tools and the Linked Data initiative, we have also 

presented some guidelines on how datasets should be published in the Web of Data.  
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