

 1. Session: Ontological Engineering
State of the Art

1.1. Paper: Essentials In Ontology Engineering:
Methodologies, Languages, And Tools

Mari Carmen Suárez-Figueroa, PhD, mcsuarez@fi.upm.es

Raúl García-Castro, PhD, rgarcia@fi.upm.es

Boris Villazón Terrazas, PhD, bvillazon@fi.upm.es

Asunción Gómez-Pérez, PhD, asun@fi.upm.es

Ontology Engineering Group, Universidad Politécnica Madrid

Abstract

In the beginning of the 90s, ontology development was similar to an art: ontology developers did not

have clear guidelines on how to build ontologies but only some design criteria to be followed. Work on

principles, methods and methodologies, together with supporting technologies and languages, made

ontology development become an engineering discipline, the so-called Ontology Engineering.

Ontology Engineering refers to the set of activities that concern the ontology development process

and the ontology life cycle, the methods and methodologies for building ontologies, and the tool

suites and languages that support them. Thanks to the work done in the Ontology Engineering field,

the development of ontologies within and between teams has increased and improved, as well as the

possibility of reusing ontologies in other developments and in final applications. Currently, ontologies

are widely used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b)

applications related to knowledge management, natural language processing, e-commerce, intelligent

information integration, information retrieval, database design and integration, bio-informatics,

education, and (c) the Semantic Web, the Semantic Grid, and the Linked Data initiative. In this paper,

we provide an overview of Ontology Engineering, mentioning the most outstanding and used

methodologies, languages, and tools for building ontologies. In addition, we include some words on

how all these elements can be used in the Linked Data initiative.

Keywords: Ontology engineering, ontology development methodologies, ontology languages,

ontology tools.

1.1.1. Introduction

Ontologies play an important role for many knowledge-intensive applications, since they provide

formal models of domain knowledge that can be exploited in different ways. Currently, ontologies are

 9

mailto:mcsuarez@fi.upm.es
mailto:rgarcia@fi.upm.es
mailto:bvillazon@fi.upm.es
mailto:asun@fi.upm.es

used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b) applications

related to knowledge management, natural language processing, e-commerce, intelligent information

integration, information retrieval, database design and integration, bio-informatics, education, and (c)

the Semantic Web, the Semantic Grid, and the Linked Data initiative.

During the last two decades, increasing attention has been focused on ontologies and their

development. Indeed, ontology development has become an engineering discipline, Ontology

Engineering, which refers to the set of activities that concern the ontology development process and

the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites

and languages that support them.

When ontologies are going to be built, several basic questions arise related to the methodologies,

languages, and tools to be used in their development processes:

 Which methods and methodologies can be used for building ontologies? Which activities are

performed when building ontologies with a particular methodology? Does any methodology

support building ontologies cooperatively? Which is the life cycle of an ontology that is

developed with a specific methodology?

 Which language(s) should be used to implement an ontology? What expressiveness has an

ontology language? What are the inference mechanisms attached to an ontology language? Is

the language chosen appropriate for exchanging information between different applications?

Does the language ease the integration of the ontology in an application?

 Which tool(s) give/s support to the ontology development process? Does the tool have an

inference engine? How can applications interoperate with ontology servers and/or use the

ontologies that we have developed?

Along this paper, we present the basics about ontologies, and show what methodologies, languages,

and tools are available to give support to different activities of the ontology development process.

The content of this paper can help practitioners and researchers in this field to obtain answers to the

some of the previous questions. In addition, we include some words on how these elements

(methodologies, languages, and tools) can be used in the Linked Data initiative. First, in Section 2,

we define the world ‘ontology’ and briefly describe its main components. After that, in Section 3, we

enumerate methodologies commonly used for building ontologies. In Section 4, we summarize the

most used ontology languages and in Section 5, we present some tools used in the ontology

development process. In Section 6, we provide some guidelines on how to publish linked data. Finally,

we present some conclusions.

1.1.2. Ontology definition and its main components

The word ontology was taken from Philosophy, where it means a systematic explanation of being.

There are many definitions about what an ontology is and such definitions have changed and evolved

over the years. However, Studer and colleagues (Studer et al., 1998) provide one of the most well

known definitions: “An ontology is a formal, explicit specification of a shared conceptualization.

Conceptualization refers to an abstract model of some phenomenon in the world by having identified

the relevant concepts of that phenomenon. Explicit means that the type of concepts used, and the

 10

constraints on their use are explicitly defined. Formal refers to the fact that the ontology should be

machine-readable. Shared reflects the notion that an ontology captures consensual knowledge, that is,

it is not private of some individual, but accepted by a group”.

Ontologies can be modelled with different knowledge modelling techniques and they can be

implemented in various kinds of languages based on different knowledge representation formalisms.

It is important to mention here that there are connections and implications between the knowledge

modelling components (concepts, roles, etc.) used to build an ontology, the knowledge representation

paradigms (frames, description logics, logic) used to represent formally such components, and the

languages used to implement the ontologies under a given knowledge representation paradigm.

However, they share the following minimal set of components:

 Classes represent concepts, which are taken in a broad sense. For instance, in the domain of

Energy Efficiency at Buildings, concepts are Building, Door, Window, Device, Sensor, etc. Classes

in the ontology are usually organized in taxonomies through which inheritance mechanisms can

be applied. We can represent a taxonomy of sensors (Scanning Sensor, Optical Sensor, Touch

Trigger Sensor, etc.) or different types of doors in buildings (Inner Door, Outer Door, Sliding Door,

Rotating Door, or Strongroom Door).

 Relations represent a type of association between concepts of the domain. They are formally

defined as any subset of a product of n sets, that is: R ⊂ C1 x C2 x ... x Cn. Ontologies usually

contain binary relations. The first argument is known as the domain of the relation, and the

second argument is the range. For instance, the binary relation locatedIn has the concept

Building as its domain and the concept Location as its range; in addition, this relation can have

the concept Device as domain. Binary relations are sometimes used to express concept attributes

(aka slots). Attributes are usually distinguished from relations because their range is a datatype,

such as string, number, etc., while the range of relations is a concept.

 Formal axioms, according to (Gruber, 1993), serve to model sentences that are always true.

They are normally used to represent knowledge that cannot be formally defined by the other

components. In addition, formal axioms are used to verify the consistency of the ontology itself or

the consistency of the knowledge stored in a knowledgebase. Formal axioms are very useful to

infer new knowledge. An axiom in the Energy Efficiency at Buildings domain could be that it is not

possible to build a public building without a fire door (based on legal issues).

 Instances are used to represent elements or individuals in an ontology.

1.1.3. Foremost methodologies for building ontologies

METHONTOLOGY, On-To-Knowledge, and DILIGENT were up to 2009 the most referred

methodologies for building ontologies. These methodologies mainly include guidelines for single

ontology construction ranging from ontology specification to ontology implementation and they are

mainly targeted to ontology researchers. In contrast to the aforementioned approaches, a new

methodology, called the NeOn Methodology, suggests pathways and activities for a variety of

scenarios, instead of prescribing a rigid workflow.

 11

In this section, we summarize the four abovementioned methodologies, describing in more detailed

the current trend in ontology building presented in the NeOn Methodology.

 The NeOn Methodology (Suárez-Figueroa, 2010) for building ontology networks is a scenario-

based methodology that supports a knowledge reuse approach, as well as collaborative aspects of

ontology development and dynamic evolution of ontology networks in distributed environments.

The key assets of the NeOn Methodology are:

o A set of nine scenarios for building ontologies and ontology networks, emphasizing the

reuse of ontological and non-ontological resources, the reengineering and merging, and

taking into account collaboration and dynamism.

o The NeOn Glossary of Processes and Activities, which identifies and defines the processes

and activities carried out when ontology networks are collaboratively built by teams.

o Methodological guidelines for different processes and activities of the ontology network

development process, such as the reuse and reengineering of ontological and non-

ontological resources, the ontology requirements specification, the ontology localization,

the scheduling, etc. All processes and activities are described with (a) a filling card, (b) a

workflow, and (c) examples.

The set of nine scenarios for building ontologies and ontology networks can be summarized as

follows:

o Scenario 1: From specification to implementation. The ontology network is developed

from scratch (without reusing existing resources). Developers should specify ontology

requirements (Suárez-Figueroa et al., 2009). After that, it is advisory to carry out a

search for potential resources to be reused. Then, the scheduling activity (Suárez-

Figueroa et al., 2010) must be performed, and developers should follow the plan to

develop the ontology network.

o Scenario 2: Reusing and re-engineering non-ontological resources (NORs). Developers

should carry out the NOR reuse process for deciding, according to the ontology

requirements, which NORs can be reused to build the ontology network. Then, the

selected NORs should be re-engineered into ontologies (Villazón-Terrazas et al., 2010).

o Scenario 3: Reusing ontological resources. Developers use ontological resources

(ontologies as a whole, ontology modules, and/or ontology statements) to build ontology

networks.

o Scenario 4: Reusing and re-engineering ontological resources. Ontology developers reuse

and re-engineer ontological resources.

o Scenario 5: Reusing and merging ontological resources. This scenario arises when several

ontological resources in the same domain are selected for reuse, and developers wish to

create a new ontological resource with the selected resources.

o Scenario 6: Reusing, merging and re-engineering ontological resources. Ontology

developers reuse, merge, and re-engineer ontological resources. This scenario is similar

to Scenario 5, but here developers decide to re-engineer the set of merged resources.

o Scenario 7: Reusing ontology design patterns (ODPs). Ontology developers access

repositories (e.g., http://ontologydesignpatterns.org/) to reuse ODPs.

 12

o Scenario 8: Restructuring ontological resources. Ontology developers restructure (e.g.,

modularize, prune, extend, and/or specialize) ontological resources to be integrated in the

ontology network.

o Scenario 9: Localizing ontological resources. Ontology developers adapt an ontology to

other languages and culture communities, thus obtaining a multilingual ontology

(Espinoza et al., 2009).

 METHONTOLOGY (Gómez-Pérez et al., 2003) enables the construction of ontologies at the

knowledge level. It includes (a) the identification of the ontology development process (which

tasks should be performed when building ontologies); (b) a life cycle based on evolving

prototypes; and (c) some techniques to carry out management, development-oriented, and

support activities. In addition, METHONTOLOGY includes a list of activities to be carried out during

ontology reuse and re-engineering processes, but it does not provide detailed guidelines for such

activities, nor does it consider different levels of granularity during the reuse of ontological

resources (e.g., modules or statements). Moreover, METHONTOLOGY considers neither the reuse

and re-engineering of non-ontological resources nor the reuse of ODPs.

 The On-To-Knowledge methodology (Staab et al., 2001) proposes to build ontologies taking

into account how these are going to be used in knowledge management applications. The

processes proposed by this methodology are the following: feasibility study, kickoff, where

ontology requirements are identified, refinement, where a mature and application-oriented

ontology is produced, evaluation, and maintenance. With respect to the reuse of knowledge

resources, in the kickoff process it is mentioned that developers should look for potentially

reusable ontologies. However, this methodology does not provide detailed guidelines for

identifying such ontologies nor for reusing them. Besides, the methodology does not explicitly

mention guidelines for the reuse and re-engineering of non-ontological resources, nor for the

reuse of ontology design patterns.

 The DILIGENT methodology (Pinto et al., 2004) is intended to support domain experts in a

distributed setting in order to engineer and evolve ontologies. This methodology is focused on

collaborative and distributed ontology engineering. Its ontology development process includes the

following five activities: building, local adaptation, analysis, revision, and local update. With

regard to the reuse of knowledge resources, the methodology does not include guidelines for the

reuse and re-engineering of existing knowledge resources.

1.1.4. Major ontology languages

Different ontology languages have different expressiveness and inference mechanisms, since the

knowledge representation paradigms underlying all these languages are diverse. Therefore, one of

the key decisions to take in the ontology development process is to select the language (or set of

languages) in which the ontology will be implemented.

Next, we present an overview of the current specifications for ontology languages developed in the

scope of the W3C Semantic Web Activity (http://www.w3.org/2001/sw/).

 13

http://www.w3.org/2001/sw/).

 RDF. RDF (Klyne and Carroll, 2004) stands for Resource Description Framework. It was

developed by the W3C to create metadata for describing web resources and its data model is

equivalent to the semantic networks formalism, consisting of three object types: resources,

properties and statements.

 RDF Schema. The RDF data model does not have mechanisms for defining the relationships

between properties and resources. This is the role of the RDF Vocabulary Description language

(Brickley and Guha, 2004), also known as RDF Schema. RDF(S) is the term commonly used to

refer to the combination of RDF and RDFS. Thus, RDF(S) combines semantic networks with

frames but it does not provide all the primitives that are usually found in frame-based knowledge

representation systems.

 OWL. OWL (Dean and Schreiber, 2004) is the result of the work of the W3C Web Ontology

Working Group. This language derived from DAML+OIL (van Harmelen et al., 2001) and, as the

previous languages, is intended for publishing and sharing ontologies in the Web. OWL is built

upon RDF(S), has a layered structure and is divided into three sublanguages: OWL Lite, OWL DL

and OWL Full. OWL is grounded on Description Logics (Baader et al., 2002) and its semantics is

described in two different ways: as an extension of the RDF(S) model theory and as a direct

model-theoretic semantics of OWL. Both of them have the same semantic consequences on OWL

ontologies.

 OWL 2. OWL 2 (Motik et al., 2009) is an extension and revision of OWL that adds new

functionality with respect to OWL; some of the new features are syntactic sugar (e.g., disjoint

union of classes) while others offer new expressivity. OWL 2 includes three different profiles (i.e.,

sublanguages) that offer important advantages in particular application scenarios, each trading

off different aspects of OWL's expressive power in return for different computational and/or

implementational benefits. These profiles are:

o OWL 2 EL that is particularly suitable for applications where very large ontologies are

needed, and where expressive power can be traded for performance guarantees.

o OWL 2 QL that is particularly suitable for applications where relatively lightweight

ontologies are used to organize large numbers of individuals and where it is useful or

necessary to access the data directly via relational queries (e.g., SQL).

o OWL 2 RL that is particularly suitable for applications where relatively lightweight

ontologies are used to organize large numbers of individuals and where it is useful or

necessary to operate directly on data in the form of RDF triples.

OWL 2 provides two alternative ways of assigning meaning to OWL 2 ontologies: the Direct Semantics

that assigns meaning directly to ontology structures and the RDF-Based Semantics that assigns

meaning directly to RDF graphs.

 SPARQL. Even if it is not an ontology language, we mention SPARQL (Prud’hommeaux and

Seaborne, 2008) here because it supports querying the previous languages. SPARQL allows

performing queries over RDF data and, since both RDF-S and OWL are based in RDF, also over

RDF-S and OWL ontologies. SPARQL can be used to express queries across diverse data sources

and its syntax is similar to SQL to facilitate its adoption.

 14

1.1.5. Leading ontology tools

The landscape of tools that manage and exploit ontologies is broad and covers from the creation of

these ontologies to their storage or visualization.

Next, we describe the different dimensions in which semantic technologies can be classified according

to their functionalities (see Figure 1); these dimensions are based in the Semantic Web Framework

(García-Castro et al., 2008). Each dimension description contains the names of some relevant tools.

Ontology
learner

Alignment
repository

Ontology
evaluator

Ontology
editor

Ontology
browser

ONTOLOGY
ENGINEERING

ONTOLOGY
PROCESSING

Manual
annotation

Ontology
populator

Ontology
reasoner

Instance
editor

INSTANCE
GENERATION

QUERYING
AND

REASONING

Ontology
localization
and profiling

Ontology
matcher

Semantic
search

Ontology
discovery and

ranking

Ontology
repository

Ontology
management

APIs

Automatic
annotation

Ontology
metadata

registry

ONTOLOGY
MANAGEMENT

Ontology
versioner

Instance
matcher

Figure 1: Semantic technology dimensions (adapted from García-Castro et al., 2008)

• Ontology management. This dimension includes components that manage ontology-related

information.

o The Ontology repository stores and accesses ontologies and ontology instances (e.g.,

3Store, AllegroGraph, Corese, Hawk, Jena, Kowari, OWLIM, Sesame, Virtuoso Universal

Server, 4store).

o The Alignment repository stores and accesses alignments (e.g., Alignment Server,

COMA++).

o The Ontology metadata registry stores and accesses ontology metadata information (e.g.,

Oyster, SchemaWeb). This metadata information can be described using OMV

(http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/downloads/75-omv), the Ontology

Metadata Vocabulary.

o The Ontology management programming interfaces provide programming interfaces for

managing ontologies and ontology instances (e.g., OWL API, RDF2Go, SemWeb.NET,

Pubby, Elda).

• Querying and reasoning. This dimension includes components that generate and process

queries.

 15

o The Ontology reasoner takes care of reasoning over ontologies and ontology instances

(e.g., CEL, Cerebra Engine, FaCT ++, fuzzyDL, HermiT, KAON2, MSPASS, Pellet, QuOnto,

RacerPro, SHER, SoftFacts, TrOWL).

o The Semantic search component takes care of the user interface for editing queries and of

their corresponding processing (e.g., ARQ, Ginseng, K-Search, NLP-Reduce, Ontogator,

PowerAqua, SemSearch).

o The Ontology discovery and ranking component finds appropriate views, versions or

subsets of ontologies, and then ranks them according to some criterion (e.g., Swoogle,

Watson, Sindice).

• Ontology engineering. This dimension includes components that provide functionalities to

develop and manage ontologies.

o The Ontology editor allows creating and modifying ontologies, ontology elements, and

ontology documentation. These functionalities include a single element edition or a more

advanced edition such as ontology pruning, extension or specialization (e.g., DODDLE,

graphl, GrOWL, ICOM, IsaViz, NeOn Toolkit, Ontotrack, Powl, Protégé, SemanticWorks,

SemTalk, SWOOP, TopBraid Composer).

o The Ontology browser allows to visually browse an ontology (e.g., Brownsauce,

BrowseRDF, Disco, /facet, Fenfire, Jambalaya, Longwell, mSpace, OINK, Ontosphere 3D,

Ontoviz, OWLViz, RDF Gravity, Tabulator, TGVizTab, Welkin).

o The Ontology learner acquires knowledge and generates ontologies of a given domain

through some kind of (semi) automatic process (e.g., KEA, OntoGen, OntoLearn,

Text2Onto, TERMINAE).

o The Ontology versioner maintains, stores and manages different versions of an ontology

(e.g., SemVersion).

• Ontology processing. This dimension includes components that process ontologies.

o The Ontology matcher matches two ontologies and outputs some alignments. We can

distinguish two types of such systems: those that generate alignments and those that use

alignments for other tasks, such as merging or mediating (e.g., AgreeMaker, AMW,

AROMA, ASMOV, AUTOMS, CMS, CODI, COMA, Ef2Match, Falcon-AO, Gerome, HMatch,

Lily, MapOnto, Mapso, OLA, OntoBuilder, PROMPT, RiMOM, S-Match, SAMBO).

o The Ontology localization and profiling component adapts an ontology according to some

language, context or user profile (e.g., LabelTranslator, lemon editor).

o The Ontology evaluator evaluates ontologies, either their formal model or their content, in

the different phases of their life cycle (e.g., CleOn, ConsVISor, Eyeball, VRP).

• Instance generation. This dimension includes components that generate ontology instances.

o The Instance editor allows manually creating and modifying instances of concepts and of

relations between them in existing ontologies (e.g., GATE, OCAT).

o The Manual annotation component is in charge of manual and semi-automatic annotation

of digital content documents (e.g. web pages) with concepts in the ontology. This

annotation process may be assisted or guided by a machine (semi-automatic annotation)

(e.g., GATE, OCAT, OntoMat, Magpie, M-OntoMat, PhotoStuff).

 16

o The Automatic annotation component automatically annotates digital content (e.g. web

pages) with concepts in the ontology (e.g., KIM, GATE-ML).

o The Ontology populator automatically generates new instances in a given ontology from a

data source (e.g., CLIE, NOR2O, R2O & ODEMapster, geometry2rdf).

o The Instance matcher automatically is in charge of manual and semi-automatic matching

of instances from different ontologies (e.g., SILK, LIMES).

Regarding the ontology engineering dimension, of special relevance are those software platforms that

cover more that one of the aforementioned components and that support most of the activities in the

ontology development process. In this paper, we focus on the new generation of ontology engineering

environments, particularly, on NeOn Toolkit, Protégé, and TopBraid Composer. They have extensible,

component-based architectures, where new modules can easily be added to provide more

functionality to the environment.

 The NeOn Toolkit (http://neon-toolkit.org/) is an ontology engineering environment that

supports the complete life cycle of large-scale ontology networks. In order to support such a

broad ontology modelling functionality, it has an open and modular architecture, which the NeOn

Toolkit inherits from its underlying platform, Eclipse. Eclipse is a very rich development

environment, which is widely adopted in the programming world and which perfectly fits to the

modelling paradigm for ontologies. It provides developers with a framework to easily create,

publish and integrate new features into the NeOn Toolkit. A substantial number of so-called plug-

ins has been developed within and outside the NeOn consortium and are available at NeOn Toolkit

homepage.

The NeOn Toolkit is available as an installable core version with the basic ontology functionality such

as editing, browsing, ontology and project management. Currently, the following versions are

available:

o The basic NeOn Toolkit provides the core functionality for handling OWL 2 ontologies.

o The NeOn Toolkit extended configuration includes advanced functionality for managing

rule based models and ontology mapping facilities based on commercial extensions.

 Protégé (http://protege.stanford.edu/) is an open platform for ontology modelling and

knowledge acquisition. It is an open source, standalone application with an extensible

architecture. The core of this environment is the ontology editor, and it holds a library of modules

that can be plugged, called plug-ins, to add more functions to the environment.

The main Protégé functions are to: load and save OWL and RDF ontologies; edit and visualize classes,

properties, and SWRL rules; define logical class characteristics as OWL expressions; execute

reasoners such as description logic classifiers; and edit OWL individuals for Semantic Web markup.

Protégé is available in different versions, each including different plug-ins, whose main difference is

the ontology language that they support:

o Protégé version 3 supports OWL 1.0, RDF(S) and Frames.

o Protégé version 4 supports OWL 2.0.

 TopBraid Composer (http://www.topquadrant.com/products/TB_Composer.html) is a modelling

environment for developing Semantic Web ontologies and building semantic applications. It is

 17

http://neon-toolkit.org/)
http://protege.stanford.edu/)
http://www.topquadrant.com/products/TB_Composer.html

fully compliant with W3C standards and offers support for developing, managing and testing

configurations of knowledge models and their instance knowledge bases. It is implemented as an

Eclipse plug-in.

TopBraid Composer incorporates a flexible and extensible framework with a published API for

developing semantic client/server or browser-based solutions that can integrate disparate applications

and data sources.

TopBraid Composer is available in three different versions: Free Edition, Standard Edition and Maestro

Edition.

1.1.6. Ontology Engineering in Linked Data: How to publish data

Publishing Linked Data is a process that involves a high number of steps, design decisions as well as

a wide range of technologies. Although some initial guidelines have been already provided by Linked

Data publishers, these are still far from covering all the steps that are necessary (from data source

selection to its publication) or giving enough details about all the steps. In this section, we summarize

a set of methodological guidelines for the activities involved in the Linked Data publishing process.

These guidelines consist of the following activities: (1) identification of the data sources; (2)

vocabulary modelling; (3) generation of the RDF data; (4) publication of the RDF data; and (5)

linking the RDF data with other datasets in the cloud.

1. Identification of the data sources. Within this activity, we identify and select the datasets that

we want to publish. This is normally a costly and tedious activity that may require contacting

the data owners, and government bodies. If lucky, we may have that data already available

in a public data catalogue. A representative example of these catalogues in the Spanish

context is the Aporta project (http://www.aporta.es) catalogue. Other possibility is to get an

agreement with a particular government body to publish its datasets.

In the case of GeoLinkedData (http://geo.linkeddata.es) we have followed those two paths. In one

hand, we have searched for open government information at the Spanish Statistical Institute (INE)

open catalogue (http://www.ine.es). In the other hand, we have got an agreement with the Spanish

Geographic Institute (IGN) for publishing its geospatial datasets.

2. Vocabulary modelling. After the identification and selection of the datasets we need to

determine the ontologies to be used to model the data contained in those datasets. The most

important recommendation in this context is to reuse as much as possible available ontologies

that model the information needed. If we do not find any particular ontology suitable for our

needs, we should create them, either from scratch or by reusing existing resources. This

activity is well described in ontology engineering methodologies, for example the NeOn

Methodology (Suárez-Figueroa, 2010), summarized in Section 3; and tools such as the NeOn

Toolkit (presented in Section 5) can be used.

In the case of GeoLinkedData, our chosen datasets contain information such as time, administrative

boundaries, unemployment, etc. For modelling the information contained in the datasets we have

created an ontology network (Suárez-Figueroa, 2010). The vocabulary that models the information

contained in the datasets has been developed by reusing the following available vocabularies or

 18

http://www.aporta.es/
http://geo.linkeddata.es/
http://www.ine.es/

ontologies: Statistical Core Vocabulary (SCOVO), FAO Geopolitical Ontology, hydrOntology, WSG84

Vocabulary, and Time Ontology.

3. Generation of the RDF data. The preliminary guidelines proposed in this chapter consider only

the transformation of the whole data source content into RDF, i.e., following an Extract,

Transform, and Load ETL-like process, by using a set of RDF-izers, i.e. ontology population

tools. The guidelines are based on the method proposed in (Villazón-Terrazas et al., 2010)

that provides guide for transforming the content of a given resource into RDF instances. The

requirements of the transformation are (1) full conversion, this implies that all queries that

are possible on the original source should also be possible on the RDF version; and (2) the

RDF instances generated should reflect the target ontology structure as closely as possible, in

other words, the RDF instances must conform to the already existing ontology schema.

In GeoLinkedData, given the different formats in which the selected datasets were available, we used

three different RDF-izers for the conversion of data into RDF. We have used NOR2O for transforming

the spreadsheets, R2O & ODEMapster for the databases, and geometry2rdf for the geospatial

information.

4. Publication of the RDF data. The preliminary guidelines proposed here consider that we will

serve RDF data from a particular ontology repository. Ideally, every RDF triple store software

would provide a Linked Data interface. Using this interface, the administrator of the store

would configure which part of the store’s content should be made accessible as Linked Data

on the Web.

In GeoLinkedData, for the publication of the RDF data we relied on Virtuoso Universal Server. On top

of it, Pubby (http://www4.wiwiss.fu-berlin.de/pubby/) was used for the visualization and navigation

of the raw RDF data. On top of these two systems, we have developed a web based application,

map4rdf34, to enhance the visualization of the aggregated information. This interface combines the

faceted browsing paradigm with map-based visualization using the Google Maps API.

5. Linking the RDF data. Following the fourth Linked Data Principle (“Include links to other URIs,

so that they can discover more things”), the next activity is to create links between our RDF

data set and external datasets. This activity involves the discovery of relationships between

data items. We can create these links manually, which is a time consuming activity, or we can

rely on automatic or supervised tools, such as SILK (http://www4.wiwiss.fu-

berlin.de/bizer/silk/) or LIMES (http://aksw.org/Projects/LIMES). The activity consists in the

following tasks: (a) to identify data sets that may be suitable as linking targets, (b) to

discover relationships between data items of our data set and the items of the identified data

sets in the previous task, and (c) to validate the relationships that have been discovered.

In the context of GeoLinkedData, we have identified as initial data sets to link with DBpedia

(http://dbpedia.org) and Geonames (http://geonames.org), because these data sets include similar

topics.

 19

http://www4.wiwiss.fu-berlin.de/bizer/silk/
http://www4.wiwiss.fu-berlin.de/bizer/silk/
http://aksw.org/Projects/LIMES
http://dbpedia.org/
http://geonames.org/

Conclusions

At the beginning of the 90’s, ontology development was similar to an art: ontology developers did not

have guidelines on how to build ontologies. Work on principles, methods and methodologies, together

with supporting technologies and languages, made ontology development become an engineering

discipline, the so-called Ontology Engineering.

In this paper, we have provided a general summary on this discipline, focusing on ontology definition

and ontology components (classes, relations, axioms, and instances), and methodologies for building

ontologies as well as languages and tools for ontology building.

At this moment, ontology engineers and practitioners have at their disposal different methodologies

for ontology development. The classical ones (METHONTOLOGY, On-To-Knowledge, and DILIGENT)

that provides a rigid workflow for building ontologies, and the new one, the NeOn Methodology that

conducts developers along different scenarios and activities for which prescriptive guidelines are

provided.

With respect to languages, the decision of which one(s) to use for implementing the ontology should

be based on the needs in terms of expressiveness and reasoning. In this paper, we provide the list of

the most commonly used languages with their key features.

Finally, ontology engineers and practitioners needs tools that help them carry out different activities

of the ontology development process (such as, implementation, evaluation, ontology search). In the

last years, the number of ontology tools has greatly increased and they can be grouped into seven

different dimensions (data and metadata management, querying and reasoning, ontology engineering,

ontology customisation, ontology evolution, ontology instance generation, semantic web services). In

this paper, we provide a brief description of three ontology development environment (the NeOn

Toolkit, Protégé, and TopBraid Composer) that can be included in the ontology engineering dimension.

To put together methodologies, languages, and tools and the Linked Data initiative, we have also

presented some guidelines on how datasets should be published in the Web of Data.

References

[1] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (2002) “Description

Logic Handbook”. Cambridge University Press.

[2] Brickely, D. and Guha, R.V. (eds.) (2004) “RDF Vocabulary Description Language 1.0: RDF

Schema”. W3C Recommendation 10 February 2004. http://www.w3.org/TR/rdf-schema/

[3] Dean, M. and Schreiber, G. (eds.) (2004) “OWL Web Ontology Language Reference”. W3C

Recommendation 10 February 2004. http://www.w3.org/TR/owl-ref/

[4] Espinoza, M., Montiel-Ponsoda, E., Gómez-Pérez, A. (2009) “Ontology Localization”. The Fifth

International Conference on Knowledge Capture (KCAP 2009).

[5] García-Castro, R., Muñoz-García, O., Gómez-Pérez, A., Nixon, L. (2009) “Towards a component-

based framework for developing Semantic Web applications”. 3rd Asian Semantic Web Conference

(ASWC 2008). 2-5 February, 2009. Bangkok, Thailand.

 20

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-ref/

[6] Gómez-Pérez, A., Fernández-López, M., Corcho, O. (2003) “Ontological Engineering”. Springer

Verlag. Advanced Information and Knowledge Processing series. ISBN 1-85233-551-3. November

2003.

[7] Gruber, T.R. (1993) “A translation approach to portable ontology specification”. Knowledge

Acquisition 5(2): 199-220.

[8] vanHarmelen, F., Patel-Schneider, P.F., Horrocks, I. (eds.) (2001) “Reference Description of the

DAML+OILOntologyMarkupLanguage”.http://www.daml.org/2001/03/reference.html. Technical

report.

[9] Klyne, G., and Carrol, J. (eds.) (2004) “Resource Description Framework (RDF) Concepts and

Abstract Syntax”. W3C Recommendation 10 February 2004. http://www.w3.org/TR/rdf-concepts/

[10] Motik, B., Patel-Schneider, P.F. Parsia, B. (eds.) (2009) “OWL 2 Web Ontology Language

Structural Specification and Functional-Style Syntax”. W3C Recommendation 27 October 2009.

http://www.w3.org/TR/owl2-syntax/

[11] Pinto, H. S., Tempich, C., Staab, S. (2004) “DILIGENT: Towards a fine-grained methodology

for DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies”. In Ramón López de

Mantaras and LorenzaSaitta, Proceedings of the 16th European Conference on Artificial

Intelligence (ECAI 2004), August 22nd - 27th, pp. 393--397. IOS Press, Valencia, Spain, August

2004. ISBN: 1-58603-452-9. ISSN: 0922-6389.

[12] Prud’hommeaux, E. and Seaborne, A. (eds.) (2008) “SPARQLQuery Language for RDF” W3C

Recommendation 15 January 2008. http://www.w3.org/TR/rdf-sparql-query/

[13] Staab, S., Schnurr, H.P., Studer, R., Sure, Y. (2001) “Knowledge Processes and Ontologies”.

IEEE Intelligent Systems 16(1):26–34.

[14] Studer, R., Benjamins, V. R., Fensel, D. (1998) “Knowledge Engineering: Principles and

Methods”. Data & Knowledge Engineering (25). Pages: 161-197.

[15] Suárez-Figueroa, M.C. (2010) “NeOn Methodology for Building Ontology Networks:

Specification, Scheduling and Reuse”. PhD Thesis, Spain. Universidad Politécnica de Madrid. June

2010. http://oa.upm.es/3879/

[16] Suárez-Figueroa, M.C., Gómez-Pérez, A., Muñoz, O., Vigo, M. (2010) “gOntt, a Tool for

Scheduling and Executing Ontology Development Projects”. The 22nd International Conference on

Software Engineering and Knowledge Engineering (SEKE 2010). San Francisco Bay, USA. July 1 -

July 3, 2010.

[17] Suárez-Figueroa, M.C., Gómez-Pérez, A., Villazón-Terrazas, B. (2009) “How to write and use

the Ontology Requirements Specification Document”. Proceedings of the 8th International

Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE 2009).Vilamoura,

Algarve-Portugal. 3-5 November 2009.

[18] Villazón-Terrazas, B., Suárez-Figueroa, M.C., Gómez-Pérez, A. (2010) “A Pattern-Based

Method for Re-Engineering Non-Ontological Resources into Ontologies”. International Journal on

Semantic Web and Information Systems 6 (4) 27–63.

 21

http://www.daml.org/2001/03/reference.html
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/rdf-sparql-query/
http://oa.upm.es/3879/

	EEBuilding Data Models
	OCTOBER 2011
	October 2011
	Table of content

