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Resumen 

El objetivo final es el desarrollo de un sistema di visión multiespectral que permita asignar manzanas 
cortadas a clases de distinto nivel de pardeamiento. Se ha analizado un total de 240 imágenes IRRB y RGB, 
correspondientes a 240 gajos de manzanas de la variedad ‘Granny Smith’ (120 gajos = Set 1; 120 gajos = Set 2). 
Se analizaron 24 gajos por día: a tiempo cero y después de 1, 3, 7 y 9 días de almacenamiento a 7,5ºC. A las 
imágenes virtuales obtenidas como combinación del canal rojo y azul (B/R, R-B y (R-B)/(R+B)) se aplicó un 
procedimiento de clasificación no supervisada que, en todo los casos, generó tres clases de referencia. A la 
segunda serie de muestras (Set 2), sometidas los mismos tratamientos, se aplicó una validación externa, 
obteniendo un alto porcentaje de muestras correctamente clasificadas. La clasificación de las cámaras IRRB y 
RGB se evaluó de acuerdo a parámetros colorimétricos y sensoriales y las imágenes virtuales (R-B)/(R+B) y B/R 
mostraron la mejor sensibilidad para reflejar el cambio de color asociado con el pardeamiento. 

 
Abstract 

The main objective of this study was to develop a vision system able to classify fresh-cut apple slices 
according to the development of enzymatic browning. The experiment was carried out on ‘Granny Smith’ apple 
slices stored at 7.5°C (Set 1 = 120 n). Twenty-four samples were analyzed per day: at zero time and after storage 
for 1, 3, 7 and 9 days. Digital images were acquired by employing an IRRB camera and by employing a cheaper 
vision system, consisting in a RGB digital camera. A classification procedure was applied to the histograms of 
the following virtual images, acquired by the IRRB and by the RGB camera: (R-B)/(R+B), R–B and B/R. In all 
cases, a non-supervised classification procedure was able to generate three image-based browning reference 
classes. An internal and an external validation (Set 2 = 120 n) were carried out, with a high percentage of 
corrected classified samples. The camera classification was evaluated according to reference parameters 
(colorimetric and sensorial measurements) and the best results were obtained with the (R-B)/(R+B) and B/R 
virtual images.  
 

Keywords (Palabras Clave): Fresh-cut apples; enzymatic browning; RGB image, IRRB image; multispectral 
images (Manzanas recién cortadas; pardeamiento enzimático; imagen RGB; imagen IRRB; imagen 
multiespectral).   
 

1. INTRODUCTION  
The act of cutting fresh produce invariably enhances a range of degradative changes, which 
present additional challenges to the fresh-cut industry to maintain quality for an acceptable 
marketing period. An important factor causing loss of quality in much produce is the 
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development of browning on cut surfaces. Browning has a significant impact on the quality of 
apples and their products, because it results in changes in the appearance and organoleptic 
properties of the food, which can affect market value and, in some cases, result in exclusion 
of the food product from certain markets (Pristijono et al. 2006). The control of cut-surface 
browning is critical to maintaining the quality and safety of fresh-cut produce.  
Traditionally, enzymatic browning has been quantified using browning indicators through a 
biochemical index, e.g., polyphenol oxidase activity or physical indicators, such as surface 
color. In the case of physical indicators based on color, CIE L*a*b* coordinates have been 
the most extensively used color space. Based on CIE L*a*b* or CIE XYZ coordinates, 
browning indicators in fruits have been developed (Lu et al. 2007). Browning index (BI), 
defined as brown color purity, is one of the most common indicators of browning in sugar 
containing food products (Buera et al. 1986). In order to carry out a detailed characterization 
of the color of a food item, and thus to more precisely evaluate its quality, it is necessary to 
know the color value of each point of its surface (León et al. 2006). However, the available 
commercial colorimeters do not allow a global analysis over entire surface, and their 
measurements are not representative in heterogeneous materials like food products (Papadakis 
et al. 2000; Mendoza et al. 2004). On the contrary, computer vision systems (CVS) let to 
acquire digital images of entire samples that can be analyzed pixel by pixel, allowing an 
accurate measurement of color coordinates in each point of the surface. Recently, Leon et al. 
(2006)  demonstrated a computer vision system (CVS) for measuring color in L*a*b* 
coordinates computed from RGB space. Some studies have been undertaken to apply that 
approximation to food (Pedreschi et al. 2007; Quevedo et al. 2008). During the description of 
browning kinetics using color information, L* mean value is generally assumed. That is, an 
average of the L* values is calculated using a CVS for an analyzed area. However, in apple 
slices, the development of non-uniform color patterns during browning (specifically L*) was 
observed. Yoruk et a. (2004) (Yoruk et al. 2004) adopted a sub-color space derived from the 
RGB space, in which each color axis (red, green, blue) was divided by eight so that the colors 
were regrouped in 8 x 8 x 8 = 512 ranges. 
The aim of this work was to classify fresh-cut apple slices on the basis of their browning state 
by employing a vision system endowed with three band-pass filters centered at 800 nm 
(infrared, IR), 680 nm (red, R), and 450 nm (blue, B) (IRRB images). The main objective was 
to identify proper virtual images as a combination of monochromatic ones in order to detect 
changes in color related to the browning process. A second goal was to evaluate the feasibility 
of assessing browning in apples by employing a cheaper and an easier vision system, 
consisting in an RGB digital camera.  
 

2. MATERIALS and METHODS 
The experiment was carried out on two sets (Set 1, the calibration set, and Set 2, the validation 
set) of fifteen ‘Granny Smith’ apples stored at 7.5 °C for 9 days. Apples were peeled and cut 
into eight equal slices, resulting in a total of 240 slices (Set 1 = 120 n, Set 2 = 120 n). Twenty-
four samples of each set were analyzed per day: at zero time and after storage for 1, 3, 7 and 9 
days, which corresponds to treatments t0, t1, t3, t7 and t9 respectively (Figure 1).  
 

     
t0 t1 t3 t7 t9 

A fresh-cut apple slice at zero time (t0) and after 1 (t1), 3 (t3), 7 (t7) and 9 (t9) days of storage (T = 7.5 ºC). 



Digital images were acquired from the samples by employing a 3-CCD camera centered at the 
infrared (IR, 800±20 nm), red (R, 680±20 nm) and blue (B, 450±20 nm) wavelengths (IRRB 
images) and by employing a RGB camera centered at 625 nm (red, R), 540 nm (green, G), 
and 475 nm (blue, B) (RGB images).  In the case of the IRRB vision system, a light source 
was provided by six 100 W/220 V halogen lamps, and the object distance between the lens 
system and the sample was 60 cm. The angle between the camera lens axis and the lighting 
source axis was 45° because the diffuse reflection responsible for the color occurs at 45° from 
the incident light (Francis et al. 1975; Marcus et al. 1998). The images were acquired using a 
black background. A black canvas was put around the vision test station to create a uniform 
light field around the object. In the case of the RGB camera, a hemispheric cap endowed with 
white reflecting walls was constructed to eliminate any effect of environmental light. The 
light source consisted in four 150 W incandescent lamps, attached at equidistant points on the 
inside of cap. The camera was adjusted to a vertical position, and the lens was 61 cm above 
the object of interest. The images were acquired using a black background. RGB images were 
also transformed into L*a*b* images (where L* is the luminance component, while a* and b* 
are color coordinates related respectively with the red/green and yellow/blue spectral ranges) 
by applying in-core Matlab functions.  
For each kind of digital image, apple slice samples (the region of interest, ROI) were 
distinguished from the background through the Otsu method (Otsu 1979), a segmentation 
technique very commonly used in the bibliography. This technique computes threshold level 
on the basis of the image histogram distribution. In both cases, the segmentation process was 
performed on the R images, since they presented the greatest difference between the gray 
levels corresponding to samples (the region of interest) and to background. This operation 
results in a binary image which could be considered as an “image mask”, in which only the 
pixels of ROI were white, while the pixels corresponding to the background were black. This 
image mask was multiplied for the different type of images performed in this research. 
Further analysis were based on the relative histograms of the described virtual images, 
computed as relative frequency of pixels over the intensity range of the image.  
In order to obtain reference values, apple slices were evaluated visually, according to a visual 
color scale of 1-5 (where 1 corresponds to fresh samples without any browning and 5 to 
samples with severe discoloration), obtaining a sensory evaluation index (ISE) for each 
sample. Finally, Visible (VIS) relative reflectance spectra (360-740 nm), CIE L*a*b* color 
coordinates and a Browning Index (BI), calculated as reported in equation (1), where x is the 
chromaticity coordinate calculated from the XYZ values, one of the most common indicators 
of browning, were obtained from the samples through a Minolta CM-50I portable 
spectrophotometer. 
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In order to identify the most related wavelengths to enzymatic browning evolution, 
unsupervised pattern recognition analysis of VIS reflectance spectra was performed by 
principal components analysis (PCA) on the autoscaled data. On the basis of the PCA results, 
opportune combinations of monochromatic images (virtual images) were computed.  
A non-supervised classification according to Ward’s method was thus applied to the 
histograms of the virtual images in order to define browning reference classes (BRC) based 
on Set 1 histograms. All the intensity levels of the histograms were considered as the 
dimensions of a multidimensional space, where a single histogram was represented as a single 
point. The matrix of Euclidean distances between each pair of individuals (histograms) was 
computed in order to group the closest ones and to hierarchically merge individuals whose 

(1) 



combination gave the least Ward Linkage distance (that is the minimum increase within sum 
of squares of the new-formed group). As an advantage to other classification methods, Ward’s 
method takes into account all histograms of the data set at every level of the grouping, 
producing very well structured and homogeneous groups. Besides, this method allowed 
successful results in precedent works investigating fruit ripeness (Herrero A. et al. 2010; 
Lunadei et al. 2011). A MATLAB® devoted code was developed in order to generate 
automatically the groups on the basis of an input maximum Ward linkage distance, derived 
from the analysis of the cluster tree features. The average histogram was computed for each 
generated group and defined as BRC.  
External validation was carried out by assigning each anonymous individual into the 
previously generated BRC (each one defined by the average histogram of the class) to which 
it computed the minimum Euclidean distance (Ed). In order to test the robustness of the model 
based on Set 1 data, an external validation procedure was performed: the observed 
classification of Set 2 samples was compared with the predicted classification of each 
anonymous histogram through the minimum Ed to the BRC generated with the set 1 
population. The color reference parameters (BI and CIE L*a*b* coordinates) and the ISE were 
compared to the classification based on the histograms of virtual images of each index.  
 

3. RESULTS and DISCUSSION 
After performing PCA on the VIS reflectance spectra, maximum loading values 
corresponding to the B and R areas were observed (Figure 2).  
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On the left: PC1 scores plot for autoscaled and normalized reflectance data with 95% Limits. The X axis corresponds to the sample number 
and the Y axis to the sample scores for PC1. Vertical lines separate the samples based on treatment. On the right: PC1 loadings plot. The X 

axis corresponds to the wavelength (nm) and the Y axis to the loading values for PC1. 
 

On the basis of the results obtained from the analysis of VIS spectra, proper virtual images 
were calculated as a combination of red and blue images of the samples acquired by the IRRB 
and the RGB camera. Since the reflectance values corresponding to the red range increased 
from t0 to t9, whereas those corresponding to the blue region decreased, the virtual images 
were calculated to amplify these differences. Therefore, (R-B)/(R+B) (in the rest of the 
document: R-B/R+B), R–B and B/R digital images were computed. 
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R-B/R+B (a), R-B (b), and B/R (c) virtual images of an apple slice sample computed at zero time (t0) and after storage for 1, 3, 7 and 9 days 
(t1, t3, t7 and t9).  

 

IRRB images 
Figure 3 shows an example of the virtual images calculated from the IRRB ones for one 
sample in each treatment.  In all cases, from t0 to t9 treatment, changes in color were observed 
in the samples, which corresponded to a change in pixel intensity values. In R-B/R+B and R–
B images, the pixel intensity values increased during the storage period. In the B/R images, 
the pixel intensity value decreased. These changes in color did not occur uniformly in the 
analyzed samples since the same samples presented regions whose pixels turned to higher (or 
lower) intensity values faster than others. Besides, the irregular shape of the samples in same 
case could cause problems of shadow, affecting the accuracy of the acquiring process. For 
each virtual image the average of the twenty-four ROI-histograms obtained during each one 
of the treatments t0, t1, t3, t7 and t9 was calculated, obtaining five average histograms per image 
combination (Figure 4). The average histograms of R-B/R+B and R-B images shifted to 
higher intensity values, while those of B/R images shifted to lower intensity values. After 
applying the non-supervised classification to the IRRB images, three image-based browning 
reference classes (BRC) were generated: Cluster A (corresponding to the t0 samples), Cluster 
B (t1 and t3 samples) and Cluster C (t7 and t9 samples) (Figure 4). On the basis of the internal 
and an external validations results, the best classifications were obtained with the R-B/R+B 
and B/R image histograms (internal validation: 99.2% of samples correctly classified for both 
virtual images; external validation: 84% with (R-B)/(R+B) and 81% with B/R). Besides, for 
both validation phases a*, b*, BI and ISE increased while L* values decreased with image-
based class number, thereby reflecting their browning state. Figure 4 shows 3-D plots of L*, 
BI and ISE index values of the samples categorized in their corresponding image-based cluster. 
 
RGB images 
For each virtual image calculated from the RGB ones, the trend of the change in pixel 
intensity values and of the average histograms were according to the trend observed during 
the analysis of the IRRB images. Also in this case, after applying the non-supervised 
classification procedure to the histograms of the images, three reference classes were 
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generated (Clusters A to C) (Figure 5). On the basis of the validations results, the best 
classifications were obtained with the R-B/R+B image histograms (internal validation: 75% 
of samples correctly classified; external validation: 68%). This result was a little less 
consistent than that obtained with the IRRB camera, probably due to the more proper 
illumination source (halogen lamps set at 45° with the camera lens axis) and to the more 
stable conditions (the presence of black canvas) utilized for acquiring the images. Regarding 
to the reference parameters, the trends observed with the IRRB images were confirmed, since 
for both validation phases a*, b*, BI and ISE increased while L* values decreased with image-
based class number.   
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Figures a plot the average histograms calculated for each treatment from Set 1 IRRB images based on R-B/R+B (upper panel), R-B (central 

panel) and B/R (lower panel); figures b report the relative dendrogram generated by applying Ward’s non-supervised classification 
(horizontal lines represent the maximum Ward Linkage distance within groups (pixel relative frequency = 0.30)) and figures c show 3-D 

plots of L, BI and ISE index values of the samples categorized in their corresponding image-based cluster (A, B and C). 
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Average histograms (on the left) calculated from the samples for each treatment from Set 1 RGB images based on R-B/R+B and relative 

dendrograms (on the right) generated by applying Ward’s non-supervised classification Horizontal lines in the cluster trees represent the 
maximum Ward Linkage distance within groups (pixel relative frequency = 0.30). 

 

Lab images 
Figure 6 reports an example of L*, a* and b* images obtained from L*a*b* images of a Set 1 
sample for each treatment. In a* and b* images changes in color were observed from t0 to t9, 
corresponded to a change in pixel intensity values, while the gray level of the L* images did 
not seem to exhibit any consistent variation. These results were confirmed after analyzing the 
image histograms (Figure 7): in the case of a* and b* images, the average histograms shifted 
to higher intensity values, while those of L* images presented a different trend: they did not 
shift to higher or lower intensity values, but from t0 to t9 the shape of the histograms changed, 
since the peaks get down and the profile of the histograms widened, due to a wider range of 
intensities comprising the object image. The trend of a* and b* histograms was according to 
the colorimetric measurements, since from t0 to t9 histograms moved to higher intensity 
values, as well as the a* and b* color coordinates increased with the storage time. On the 
contrary, the trend of L* histograms was not so consistent compared to that of the L* color 
parameter (that decrease from t0 to t9) and it could be due to the illumination conditions 
utilized for acquiring RGB images (utilized for calculating the L*a*b* ones). In fact, since L* 
is the lightness component, it could be more sensitive than the a* and b* color coordinates 
(related to the red/green and blue/yellow colors) to the variations of the light field around the 
object.  
After applying the classification process, no reference classes were generated, indicating that 
the analysis of this kind of images were not the most appropriate for the proposed 
classification.  
 

50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

  

Gray level

F
re

q
u
e
n
c
y

 

 
t0
t1
t3
t7
t9

28181627152925202122 11023 219 5 9 3 614 41724 7 81211302613

0.1

0.2

0.3

0.4

0.5

0.6

Individuals

E
uc

lid
ea

n 
di

st
an

ce
(p

ix
el

s 
re

la
tiv

e 
fre

qu
en

cy
)



 
 

8 
 

 
 t0 t1 t3 t7 t9 
 
 
L 

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

 100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

 100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

 
100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

 100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

 
 
 
a 

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

 100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

 100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

 100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

 100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

 
 
 
b 

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

 100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

 
100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

 100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

 100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

 
 

L*, a* and b* images of a fresh-cut apple slice at zero time (t0) and after 1 (t1), 3 (t3), 7 (t7) and 9 (t9) days of storage (T = 7.5). 
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Average histograms of L* (on the left), a* (in the center), and b*(on the right) images of set 1 apple slice samples computed at zero time (t0) 
and after storage for 1 (t1), 3 (t3), 7 (t7) and 9 (t9) days. 

 
CONCLUSIONS 
In the present study an image algorithm was proposed to classify fresh-cut apple slices 
according to enzymatic browning evolution. Two vision systems were employed: the first one 
was based on an IRRB multispectral camera and the second one was based on an easier 
system, consisting in a RGB camera. The method utilized relative histograms of virtual 
images, i.e., R−B/R+B, R−B, and B/R, as well as combinations of red (R, 680 nm) and blue 
(B, 450 nm) images of the samples. The red and blue spectral ranges contained enough 
information for the proposed method to adequately classify sample images. On the basis of 
our internal classification results, all the indexes were sufficient to detect changes in browning 
by classifying the samples into three reference classes (A–C). In all cases, Clusters A–C 
presented decreasing lightness and increasing a*, b*, BI and ISE values. The robustness of the 
classification procedure was determined by applying an external validation to a second set of 
samples. It was possible to correctly classify a high percentage of images from fruit in the 
second testing set with the model generated with the first set. The classification based on 
R−B/R+B and B/R images exhibited the best sensitivity for reflecting the change in colors 
associated with browning.  
 
 

50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

    

Gray level

Fr
eq

ue
nc

y

 

 
day 1
day 2
day 3
day 4
day 5



 
 

9 
 

All these results confirmed the potential of the proposed method for characterizing fresh-cut 
apples according to their browning state. This method could be used as a potential criterion 
for establishing the optimal shelf-life of fresh-cut apple slices under refrigeration conditions 
with or without additional inhibitory treatments. In addition, this method allows for a more 
spatially detailed determination compared to other colorimetric techniques, which analyze a 
small portion of a sample and lead to errors and inaccurate results if the analysis is not 
repeated in different zones on the surface. By comparing the two vision systems, it was found 
that the IRRB camera gave more consistent results than those obtained with the RGB one, 
probably due to the more stable illumination conditions utilized in the first case. Since RGB 
vision systems are quite cheaper than the IRRB ones, in a future work it could be interesting 
to improve their performance by restructuring the design of the light field around the object 
and by changing the position and the kind of the light source.  
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