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A relatively high-accuracy analytical solution for the current and potential profile along a passive bare 
electrodynamic tether is provided using perturbation theory. An ad hoc nondimensional formulation of the 
governing local bias and orbital motion limited current collection equations allows one to approach the problem with 
a perturbation technique in which a parameter, epsilon, quantifies the influence of ohmic effects on the final solution. 
For the case of small ohmic effects an approximate solution is obtained with a third-order expansion. Conversely, the 
case of dominant ohmic effects is treated based on an extension of the exact analytical solution available for the 
particular case of zero load and negligible potential drop at the cathodic end of the tether. After computing the 
analytical current and potential profile the maximum and average current, the Lorentz force and torque, as well as 
the optimum load impedance for maximum power generation are obtained. When compared with the exact, 
numerically-computed solution an accuracy of better than 5% is achieved for the computation of the average current 
across the full parameter space. The error with respect to the generated power becomes negligible when the load 
impedance is set to the optimum value, while it can grow to a maximum of about 30% for the less relevant case in 
which the load impedance of the power generation system is badly mismatched. The results, which are valid for a 
general rectilinear passive electrodynamic tether with constant cross section satisfying orbital motion limited theory 
and irrespective of the particular orbit configuration, will be of aid in the design and analysis of space missions 
involving bare electrodynamic tethers. 
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Nomencla ture 

tether cross sectional area 
magnetic field intensity 
surface magnetic field intensity at equator 
motional electric field for a circular equatorial orbit 
motional electric field component along the tether 
line 
Lorentz force 
maximum tether current 
anodic and cathodic segment current, respectively 
maximum zero-ohmic-effect current 

modified beyond orbital motion limited characteristic 
current 
nondimensional current 
nondimensional current (traditional formulation) 
nondimensional average current 
nondimensional anodic and cathodic current 
nondimensional short-circuit current 
tether length 
tether characteristic length (traditional formulation) 
electron mass, 9.10938188 x 1CT31 kg 
ion mass 
electron plasma density 
tether cross-section perimeter 
electron charge, 1.60217646 x 10-19C 
equivalent radius of electrodynamic tether cross 
section 
orbit radius 
planet radius 
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local plasma ion and electron temperature 
magnetic field unit vector 
tether line unit vector 
plasma potential 
tether potential 
nondimensional potential drop at the cathodic 
contactor 

generated power (dimensional) 
nondimensional generated power 
tether abscissa 
zero-bias abscissa 
tether-plasma contact impedance 
load impedance 
tether ohmic impedance 
tether local bias relative to the plasma 
potential drop at the cathodic contactor 
tether relative velocity with respect to the plasma 
ratio between tether ohmic and contact impedance 
plasma Debye length 
ion mass ratio 
planet gravitational parameter 
nondimensional abscissa 

nondimensional abscissa at which the short-circuit 
current is reached 
nondimensional abscissa (traditional formulation) 
nondimensional anodic segment length 
nondimensional Lorentz force lever arm measured 
from the anodic end 
tether material density 
tether material conductivity 
nondimensional bias 
nondimensional bias (traditional formulation) 
nondimensional anodic and cathodic bias 
nondimensional load impedance 
angular velocity of planet-corotating plasmasphere 

I. Introduct ion 
1 HE bare electrodynamic tether (EDT) concept was first 
introduced in 1991 by Sanmartín et al. [1] to tackle the problem 



of limited electron collection in high-power EDTs. In essence, 
having the uninsulated tether working as electron-collecting anode 
allowed to get rid of both space charge limits and magnetic guiding 
effects affecting big conductive spheres previously used as anodic 
contactors. The improvement in performance with respect to pre­
vious design solutions raised the interest of the space community 
across abroad spectrum of applications. An exhaustive description of 
the concept with its main applications can be found in [2] together 
with a large selection of references. 

When working in passive mode a bare EDT system requires not 
more than an uninsulated conductive wire kept straight mainly by 
gravity gradient (hanging tether) or by centrifugal forces (spinning 
tethers) and collecting electrons from the surrounding plasmasphere, 
as well as one (or more) cathodic plasma contactor conveniently 
placed at the tether end(s) to expel electrons back to the plasma. For 
sufficiently long tethers a relatively high current can be obtained with 
no need for active onboard power supplies. Power can instead be 
generated on board by having a useful load (a battery, a measurement 
instrument, a transmitter, etc.) interposed between the tether and the 
cathodic plasma contactor. Proper matching of the load impedance 
with the EDT current and voltage characteristics allows to maximize 
such power. 

As it emerges from the literature, the main aspects of bare 
electrodynamic tether design and optimization both in the generator 
and thruster mode were already addressed and solved since the 
publication of the first two articles on the subject [1,3]. Among the 
important conclusions of this early work emerges that the best use of 
the tether mass for satellite deorbiting and power generation is 
achieved by increasing tether length while decreasing cross section. 
For deorbiting applications in Earth orbit this corresponds to EDTs in 
which the potential drop due to ohmic losses along the tether has a 
dominant role (dominant ohmic effects regime). Conversely the 
generation of power at the expense of orbital energy is maximum in 
the small-ohmic-effect regime. Subsequent work was devoted to a 
more detailed analysis of the concept and its possible applications 
including a comparison with alternative propulsion and power 
generation methods [4]. It was shown that, depending on orbital and 
environmental conditions, EDTs can offer a considerably higher 
performance than chemical and electric propulsion not only for 
deorbiting operations (in which the absence of onboard power 
supplies makes the EDT system lighter) but also, although to a lesser 
extent, for orbit raising and drag compensation. 

In addition to determining a preliminary design of a bare EDT for a 
specific space mission or space application, the mission analyst is 
generally interested in monitoring the behavior of the tether and its 
performance for the entire duration of the mission. Accurate knowl­
edge of tether orbital and attitude dynamics evolution, instantaneous 
generated power, tether bowing, local temperature, etc., can be 
fundamental for the refinement of the EDT mission design and 
optimization as well as for the analysis of postmission data. These 
quantities can be estimated only if the current and bias profiles along 
the tether are known with sufficient accuracy. 

The process of local bias and current profile estimation, i.e., the 
computation of the bias between the tether and the surrounding 
plasma at a specific point along the tether and the current flowing 
through it, is in general performed numerically and may be computa­
tionally expensive. Essentially, the estimation can be divided in two 
steps. First it is necessary to know the motional electric field 
projection along the tether line (Et) as well as the plasma density (Ne) 
at a specific location. For earth-orbiting EDTs the computation of the 
plasma density is usually the heaviest numerical burden as it involves 
repeated access to a terrestrial ionosphere model such as the 
international reference ionosphere. Once these environmental quan­
tities are known, the bias and current profile are determined by 
solving a two-point boundary-value problem consisting of two 
coupled differential equations, the local bias and current collection 
equations, the latter of which is nonlinear. Although a first integral for 
the system is available [3], the complete solution of the problem, with 
the exception of the limiting cases of zero ohmic effects and 
dominant ohmic effects with small load, is not available in simple 
analytical form and is usually handled numerically or by resorting to 

semi-analytical methods [5]. Clearly, in the context of EDT flight 
dynamics simulators, approximate analytical solutions would dra­
matically reduce the computation time needed and are therefore 
highly desirable. In addition, as the ionospheric density cannot be 
modeled with high-accuracy (primarily due to the influence of solar 
activity), errors in the bias and current profile by a few percent are 
totally acceptable. 

In the present article, the computation of such a solution is dealt 
with by exploiting perturbation theory. The differential equations for 
the local bias and the current collection are written in nondimensional 
form in a manner which differs from the one utilized in the literature. 
With the present nondimensionalization, a parameter e gauging the 
influence of ohmic effects appears directly in the equations so that the 
solution for small ohmic effects can be derived as an asymptotic 
expansion. When ohmic effects become large a different approach is 
used based on an extension of the exact analytical solution obtained 
for the case of zero load at the cathodic end. 

The outline of the article is the following. First the bare EDT model 
used in this article is described and the main governing equations are 
introduced. The same equations are subsequently written in non-
dimensional form. Next, the case of zero ohmic effects is treated and 
an exact analytical solution is derived providing a physical inter­
pretation of the parameter e. The case of small but not negligible 
ohmic effects is then solved with a perturbation method [6] including 
terms up to e3. The case of large ohmic effects is dealt with in the 
following section for the case of zero load at the cathodic end, which 
admits an exact analytical solution, and for the general case, for 
which an approximate solution can be derived. Once an accurate and 
complete analytical solution is derived for the current and potential 
profile one can compute relevant quantities for the design and 
analysis of electrodynamic tether mission, i.e., resulting Lorentz 
force and torque, power generated and optimum load impedance for 
power generation. These quantities are then used as evaluation 
metrics to establish the accuracy of the analytical solution when 
compared with the exact numerically derived one and to establish the 
boundary between small and large ohmic effects. A comparison in 
terms of computational speed between the proposed analytical 
solution and the numerically-computed one is also performed. 

II. Tether Model and Governing Equations 
The model considered here consists of a bare EDT of length L 

having uniform cross section of area A and perimeter p and made up 
with conductive material of density p and conductivity a. A plasma 
contactor (e.g. a hollow cathode) is inserted at the cathodic end§ of 
the tether together with a load of impedance Zt placed just before the 
plasma contactor for power generation purposes (Fig. 1). The tether 
interacts with the ambient plasma characterized by electron density 
Ne measured far enough from the tether line and local magnetic field 
intensity B, and moves with relative velocity Au with respect to the 
plasma. The quantities Ne, B and Au are assumed constant along the 
tether. When electrical contact with the plasma is established 
electrons are collected along the (upper, in Fig. 1) positively biased 
segment resulting in a nonuniform current I(x) flowing along the 
tether towards the cathodic contactor. In the general case in which the 
potential drop of the plasma contactor A VHC and/or the impedance 
Z( of the applied load is not zero the lower (in Fig. 1) portion of the 
tether will be negatively biased with respect to the plasma and will, 
unless insulated, collect ions. The current collection is here assumed 
to take place in the orbital motion limited (OML) regime [2,3]. A 
discussion on the limits of OML theory and the general case of EDT 
working beyond the OML regime will be presented in a later section. 

A. Main Equations 
Once the physical characteristics of the tether and the surrounding 

plasma environment are known the current and potential profile can 
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Fig. 1 Schematic of passive bare EDT with potential and current 
profiles. In this particular example we set %B = 0.5, e = 1.5 and 
¡i = 1/43. 

x A y 

'EZ' i* 

where the characteristic current Ich is here taken as the maximum 
current which can be obtained along the tether in absence of ohmic 
losses and with both the load impedance and the potential drop at the 
cathode set to zero. This quantity will be computed later. The 
nondimensional form of Eqs. (1), (3), and (4) yields 

dcp 

d? 
= d - 1 

áia 3 

(8) 

(9) 

be completely determined by the local bias equation and the current 
collection equation with appropriate boundary conditions. The first 
describes the potential difference AV = Vt — Vp between the tether 
and the surrounding plasma along the tether line (0 < x < L) and 
yields 

d(AV) _ I(x) 

dx oA 
~Et (1) 

where Et is the magnitude of the motional electric field projected on 
the tether line. The boundary condition needed to solve Eq. (1) can be 
enforced using the identity 

AV(xB) = Q 

with xB indicating the zero-bias abscissa. 
The OML current collection equations [3] yield 

(2) 

d/, 
H ^NJ^AV 
dx Jt V mP 

(3) 

dic 

with boundary conditions 

-O-o/X, 

¡(0) = 0 

where the parameters e, a0 and [i are defined as 
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(15) 

dx 
-qeNe 

2qe 
AV, (4) 

where Ne is the electron plasma density, p is the tether cross-section 
perimeter, qe and me are the electron charge and mass while m¿ can be 
taken as the mass of the most abundant ion species. Note that 
secondary-electron emission in the cathodic part is here assumed 
negligible. Here, and from now on, the subscripts a and c will refer to 
the anodic (0 < x < xB) and cathodic (xB < x < 1) section of the 
tether. Note that in case the cathodic segment is insulated the right 
member of Eq. (4) becomes zero. 

The boundary conditions for the current collection equations yield 

4(0) = o (5) 

Ia(xB) = Ic(xB) (6) 

Finally, we write the circuit equation at the cathodic end (x = L) as 

AV(L) = -AVnc-Z¿I(L) (7) 

where A VHC is the potential difference between the hollow cathode 
and the surrounding plasma.^ Equation (7) will be used to relate the 
load impedance Z¿ to the zero-bias length xB. 

B. Dimensionless Equations 

We will now introduce the nondimensional abscissa, bias and 
current as follows: 

^As we are considering a completely passive system this potential 
difference is obtained at the expense of the electric-field-induced bias and 
must appear in the circuit equation. 

¡1-- (16) 

with the latter known as ion mass ratio. 
The parameter 0 < %B < 1 corresponds to the nondimensional 

length of the anodic segment, here defined as the segment whose 
potential difference with respect to the surrounding plasma is positive 
or zero, and will be treated as an independent variable for current 
control and optimization purposes. Once the value of the bias and the 
current at the cathode are known as well as the potential drop at the 
cathodic contactor the load impedance corresponding to a given 
value of %B can be determined through the dimensionless version of 
Eq. (7) which yields 

<Pc(\) = - % c - i 'c( l)^ (17) 

where 

Q=-
EtL % c = 

AVHC 

EtL 

are the nondimensional load impedance and the nondimensional 
potential drop at the cathodic plasma contactor, respectively. 

III. Case of Zero Ohmic Effects 
In this section we will address the idealized case in which ohmic 

effects are zero so that the achievable current in the tether is entirely 
determined by the collection impedance of the latter with respect to 
the plasma. This may also be called collection-limited regime. In this 
case an exact solution of the bias and current profile is possible, 
which allows one to introduce the fundamental parameters required 
for the solution of the general case. 



A. Analytical Solution 

When e = 0 an exact solution is easily found by first solving 
Eq. (8) with boundary condition [Eq. (11)] and, in cascade, by 
solving Eqs. (9) and (10) with boundary condition [Eqs. (12) and 
(13)] to obtain 

**©= &-£ 

i0a(l) = MlT-(lB-l)3/2] 

ioAI) = M!l/2-K!-!B)3/2} 

(18) 

(19) 

(20) 

In dimensional form the peak value of the tether current, IB reads 

3it 
-N. 1eL SB (21) 

Once the control parameter tjB is set the corresponding dimension-
less load impedance (for zero ohmic effects) can be determined after 
substituting Eqs. (18) and (20) into Eq. (17) obtaining 

n = l . i - & "HC 

«0 ^ - ^ ( 1 - ^ ) 3 / 2 
(22) 

When the load impedance is set to zero and in the ideal case in 
which the potential drop at the cathode is also zero tjB = 1 and Ig 
reaches its maximum value providing the characteristic current: 

2p 

3JT' 
N, 2Et ,3 ,3 

'-¿L* (23) 

By substituting Eq. (23) into Eq. (15) the constant a0 becomes 
unity and the bias and current profile simplify to 

Í0a(l) = fB
,2-(lB-l)3/2 

ÍOÁD = IT-KI-IB)3/2 

(24) 

(25) 

(26) 

An interesting limit case occurs when the dimensionless load 
impedance is set to infinity, which is equivalentto having zero current 
at the cathodic end or, in other words, a system working without a 
cathodic plasma contactor. This is what is called floating EDT (see 
[7]). From Eq. (22) one can derive the corresponding zero-bias 
length**: 

a 
ii-

2/3 

¿X2'3 + 1 
;/x-2/3 

Note that if the cathodic segment is uninsulated Q becomes the 
lower bound, in place of zero, for the free parameter | 5 . 

B. Parameter e 

The expression of e given by Eq. (14) can also be simplified 
through Eq. (23) to yield 

6 = ^JV ^ l2L£-z< 
3JT \oA) y meEt Z 

(27) 

where 

"Note that secondary electron emission in the cathodic part is neglected 
here. 

L 

"oA 

and 

' Ipjl Ne 

(28) 

(29) 

are, respectively, the ohmic impedance of the conducting tether and 
the equivalent plasma contact impedance of the tether defined as 

'rh 

(30) 

The parameter e depends on the tether geometry (p, L, A), tether 
conductivity (a) local plasma density Ne and on the projected 
motional electric field Et. The material of choice for current EDT 
application is aluminum, which thanks to its low density ( p « 
2600 kg/m 3 ) and high conductivity (a « 3.5 x 107 ohm - 1 • n r 1 ) , 
offers high performance in terms of thrust- and power-to-mass ratio. 
In addition, as aluminum has high malleability, a very thin tapelike 
cross section can be employed to further increase performance. 
Ultimately we can consider a thin (say 0.05 mm) aluminum tape 
tether as our baseline design and examine the variability of the 
parameter e due to tether length and orbit environment character­
istics. 

In Earth orbit the electron density Ne undergoes both spatial and 
temporal variations. In the F-region of the ionosphere (160 to 
1000 km altitude), the electron density reaches a maximum of 1011 to 
1013 m~3 (depending on solar activity and taking into account the 
day-night cycle), mostly due to the contribution of atomic oxygen 
(/x ~ 1/171) and decreases exponentially by almost two orders of 
magnitude up to 600-700 km altitude where the lighter hydrogen 
ions (/x ~ 1/43) become the dominant species. The projected 
motional electric field E, is in general a function of the tether position 
and velocity along the orbit as well as its attitude. On the other hand, 
if we consider circular equatorial orbits with the tether stabilized 
along the local vertical and we neglect the small magnetic field 
variations along the orbit due to tilt, offset and higher harmonics, E, 
becomes solely a function of the orbit radius r so that, for a prograde 
(—) and retrograde ( + ) orbit, we have 

±copr 
Bsrl 

(31) 

where fj. op and Bs are, respectively, the planet gravitational 
constant, the planet radius, the angular velocity of the planet-
corotating plasmasphere and the planet surface magnetic field mea­
sured at the magnetic equator. 

Figure 2 illustrates the variability of e [Eq. (27)] considering Earth 
prograde circular equatorial orbits of different altitude and aluminum 
tape tethers with fixed (10 km) length and (0.05 mm) thickness. Note 
that for the general case of inclined orbits the motional electric field 
varies along the orbit in a complex manner where higher magnetic 
field harmonics may play an important role. An analysis of the range 
of variation of epsilon in such case, which clearly cannot be sum­
marized with a simple plot, is beyond the scope of this article. 

In Jupiter orbits, which are characterized by considerably lower 
electron density and higher electric field, the parameter e is much 
smaller. Figure 3 plots the variability of e for the same tether 
considered above and placed in equatorial prograde Jupiter orbits. A 
Divine-Garrett ionosphere model [8] has been employed. Ohmic 
effects are small around Jupiter but can be important in the vicinity of 
the Io torus or very close to Jupiter when relatively long tethers 
(say > 20 km) are considered. 

IV. Solut ion for Smal l O h m i c Effects 

In this section we will address the case in which the ohmic 
impedance of the conductive tether is small when compared with the 
equivalent plasma contact impedance of the bare tether. This case 
allows to address the solution of the bias and current collection 
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Fig. 2 Variation of the parameter e with orbit altitude for an aluminum 
tape EDT in equatorial prograde circular orbit around the Earth. Tape 
length and thickness are set to 10 km and 0.05 mm, respectively. 
Nfx (Nfn) refers to the electron density computed at daylight (night­
time) during maximum (minimum) solar activity across the 11-year solar 
cycle. The plot scales with tether length and thickness as L3/2 and hr1, 
respectively. 

Fig. 4 Representation of the dominant-ohmic-effect (gray area) and 
small-ohmic-effect region in the («, %B) parameter space for a passive 
EDT. The boundary between the two regions is well represented by the 
function %B = (8/5«)2/3 (dark solid line). The dark dash-line represents 
optimum power generation conditions for the case of \i = 0 (insulated 
cathodic segment). Finally the gray solid line represents the floating 
condition (%B Pa /¿2/3) for a fully bare tether considering \i = 1/43 
(dominant hydrogen ions) and neglecting secondary emissions. Note that 
for a passive noninsulated EDT %B cannot go below the floating-condition 
value. 
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Fig. 3 Variation of e with orbital radius for an aluminum tape EDT in 
equatorial prograde circular orbit around Jupiter. Tape and thickness ¿j 
are set to 10 km and 0.05 mm, respectively. The parameter e scales with —— 
tether length and thickness as L3/2 and h'1, respectively. Note that ? 
epsilon goes to infinity at ~2.2 r¡ where the electric field is zero (Jove-
synchronous altitude) and approaches its maximum value close to the + e 
orbit of Io due to the high plasma density of the Io torus. 

3 , , (Aiu 3 <plc 

2 V d | 4 ^/=(p^ 

r̂  
<Plc V tf« 

dt 4 ^ V = ^ 16"(-^) 3 / 2 - o(e2) = 0 (38) 

equations with the aid of an asymptotic expansion. It will be seen 
later that the solution obtained with this method provides a relative 
error smaller than 5% on the average current as long as the parameter 
epsilon obeys e < 8/(5£B ) while beyond such limit a different 
approach will provide better accuracy (see Fig. 4 ) . We will therefore 
refer to the small ohmic effects regime when 

0 < 6 < 
3/2 si: 

and to the dominant ohmic effects regime when 

(32) 

Note that the local bias equation has been expanded to one 
additional order to gain better accuracy as it will be proved by 
comparison with the numerical solution. Conversely, higher order 
components for the current profile do not help in gaining better 
accuracy and may deteriorate the convergence as e increases. 

The zeroth order solution (e = 0), corresponding to the zero ohmic 
effects case, is given by Eqs. (24-26). By substituting the latter into 
Eq. (36) the first-order differential equations for the potential read 

¿Pig •ir-(iB-D3/2 (39) 

5£ 3/2 (33) 

If condition Eq. (32) is verified the current and potential functions 
can be conveniently replaced with the expansion 

<ps(¡;B, I, e) = <p0(i;, i;B) + e ^ f é , IB) + e2<p2(i;, i-B) + e3<p3(i-, i-B) 

(34) 

which solved with boundary condition <pl (tjB) = 0 yield 

f2 
i>iflfe,.9 = &,-£) :(lB-l)3/2-fJ2 

(40) 

(41) 

is(lB, I, e) = ¿„& lB) + « i (£ , lB) + ^2(1, lB) (35) 

After substituting the previous equations into Eqs. (8-10) and 
expanding in Taylor series and collecting coefficients of like power 
of e we obtain 

i-ufe,. 9 = (£-&) ^(t-^)3 / 2 + t; .3/2 (42) 

After substituting Eqs. (25), (26), (41), and (42) into Eqs. (37) and 
(38) the first-order differential equations for the current read 



df=To^-^-¡^B-^ (43) 

^ = " Y O ^ ~ S*)2 +l^l/2(t- lB)l/2 (44) 

which solved with boundary conditions ¿ia(0) = 0 and ¿2Cfe) = 
¡2a fe) yield 

ha(lB, I) = ~\?B +\Ú2(¡ÍB - I)''2 " ^ f e - If (45) 

¿ufe,, 9 = -h3
B +^l'2(I-IB)3'2-^-^)3 (46) 

x2 

The procedure can be repeated for the second-order case obtaining 

fefe,t) = fe-t) 

fefe,9 = ( t - ^ ) 

and 

^ l -^ f fe -9 3 / 2 +¿fe-9 3 

(47) 

• l t l + ^ f ( t - t , ) 3 / 2 - ^ g - t , ) 3 x2 

40 ' 

(48) 

¿2afe, 9 = 4ñ[29fJ2 - 30fJfe - Q3/2 + fe - t)9'2] (49) 

¿2,fe, 9 = 4 O Q [ 2 9 ^ / 2 - 30/xÉiG - ^ ) 3 / 2 + M
3(t - ^) 9 / 2 ] 

(50) 

The third-order solution is computed only for the potential and yields 

fefe, 9 = ^ [ - 3 1 9 t f + 132g&, - I)3'2 - 2fe - &/>] 

(51) 

fefe, 9 = ^ i ^ T - 132^i(t -1,)3/2 

9/21 + 2/x3e-^/2 ] 

Finally, our second- and third-order approximation for the 
potential and current profile can be written as 

& , 9 = fe-9i+f {' ; fe -9 3 / 2 - t f 

+ e¿ ^ l -^ f fe -9 3 / 2 +¿fe-9 3 

+ 4Í001-319^2 + 1 3 2 ^ ^ " Q3/2 " 2 ^ " Q9/2l} (53) 

isÁIB,l)=lT -IÁI-IB)3'2 

+ ¿ [-411 + 5/xg/2(t - ^)3/2 - lAl ~ IB)3] 

+ ¿ [ 2 9 ^ / 2 " 3 0 ^ " ^)3/2 + ̂  ~ ̂ )9/2] (56) 

At this point one can compute the value of the interposed load 
impedance necessary to obtain a given value of tjB. This can be done 
by solving Eq. (17) for Q: 

Q- -<PScO-) ~ % c 

¿f(l) 
(57) 

and inserting the expressions of <p% (1) and if (1) given in Eqs. (54) 
and (56). 

For the case in which the value of the interposed load impedance is 
used as an independent variable (in place of tjB), the algebraic 
Eq. (57) has to be solved numerically. Spurious solutions can, 
however, appear in this case and the reader should carefully check the 
physical validity of the results obtained. The particular case in which 
Q = 0 and uHC ^ 0 has high relevance in EDT applications and is 
dealt with in a following section. 

V. Solution for Large Ohmic Effects 
In this section we will derive an analytical solution when the 

parameters e and tjB satisfy the inequality Eq. (33) meaning the EDT 
works in the dominant ohmic effects regime. In such case, the 
solution given by Eqs. (53-56) provides unacceptably poor accuracy 
and quickly diverges for high enough values of e and tjB. 

From a physical point of view, as e grows due to increasing ohmic 
effects the maximum current along the tether approaches the critical 
value: 

1A (58) 

called short-circuit current, which brings to zero the derivative of the 
potential profile [Eq. (8)]. Later on we will show that, as it is known 
from the literature [9], when no load is applied at the cathodic end, 
and in the ideal case in which the potential drop at the cathode is zero, 
such critical value is reached for e = 4 at the very end of the tether 
line. Under the same assumptions, if e is further increased ¿sc is 
reached before the end of the tether so that the last tether segment will 
not collect electrons neither ions. Conversely, for the general case in 
which a nonzero load is inserted at the cathodic end, ¿sc can only be 
reached if the load impedance does not exceed a critical value. In the 
first case an exact analytical solution will be found, which will then 
be used as the basis of an accurate approximate solution for the 
general case. 

A. Case of Zero Load (Z, = 0) 
Let us first consider the case in which no load is applied at the end 

of the tether and the plasma contactor potential drop uHC is negligible. 
Under these assumptions, let us then suppose that, once a value of e is 
fixed, there exists a point £ along the tether such that 

<PSA!B,!) = (!-!B) - i + e {• ^(l-^)3 / 2 + l: 3/2 

+ e¿ -2
5I

3B+'^3B,2(I-IB)3'2-'^ (I-IB)3 

+ ¿ b o [ 3 1 9 ^ 2 " 132^l(t" IB)3'2
 + V ( t " ^ ) 9 / 2 ] } (54) 

¿2fe. 9 = IT - fe -1)3'2 + ¿ M i l + 5g/2fe -1)3'2 

- fe - I)3] + ¿ P 9 t f - 30gfe - |)3/2 + (lB - ^ \ (55) 

m •• 

From Eq. (8) this implies 

d<p 

d | 
( 9 = 0 

(59) 

(60) 

We will now show that if we enforce boundary condition Eq. (17), 
which in this case reduces to <p(l) = 0, both the potential and its 
derivative must necessarily be zero along the tether branch extending 
from | = | to the end of the tether: 

cp(l<l<l) = 0 (61) 



d<p 
(!<!<i) = o (62) 

This can be easily demonstrated by extracting the second 
derivative of the bias profile from Eqs. (8-10): 

d2(P 3 r-
df 2 

d2(p _ 3/i <p<0 

(63) 

(64) 

If it was <p(tj) > 0 the bias curve would remain convex in the 
interval [| 1] with first derivative increasing from zero to a positive 
value so that the bias <p(l) ends up positive hence violating the 
cathode boundary condition <p(l) = 0. Likewise it cannot be <p(tj) < 
0 because in this case the bias curve would remain concave 
throughout the whole interval [0 1 ] hence ending up negative at the 
cathodic end. This means that <p must be zero at £ = £ and, because 
<p(lj) and d<p/dlj are continuous functions, also at any point between £ 
and 1 eventually leading to conditions Eqs. (61) and (62). 

Condition Eq. (61) is in itself a boundary condition, which can be 
exploited to provide an exact analytical solution of the current and 
potential profile. 

By eliminating the independent variable £ from Eqs. (8) and (9) 
one obtains 

• ^ppdip = (si — 1) di (65) 

(i.e. a relative error of less than 3% on the maximum current) also in 
the range 1.6 < e < 4. This fact is important because it allows one to 
both extend the solution until the region of validity of the previously 
developed asymptotic solution and to find a high-accuracy solution 
for the case of dominant ohmic effects and nonzero load. 

B. General Case (Z( # 0) 

Let us now consider the case in which a load is applied at the end of 
the tether and/or the potential drop at the cathode is nonnegligible. 
First we will look for a possible exact solution of the governing 
differential equations. Following the same reasoning as in the 
previous section we see that if the short-circuit current condition is 
reached in £ then we have 

cp(l)=0 

d<p 

df (9 = 0 

(73) 

(74) 

As far as the anodic segment is concerned the (exact) solution must 
be the same as the zero load case since the boundary conditions have 
not changed: 

s [-(-DI 
rid) 

4f 

;0<!<! 

;0<!<! 

(75) 

(76) 

which can be integrated to provide 

1 
(p-

3/2 -(ei2-2i) 
3/2 

•<Po (66) 

By imposing boundary condition Eq. (61) at £ = £ Eq. (81) yields 

1 
<p--

(le) 2/3 (1 - e¡)4 / 3 (67) 

Finally, by substituting Eq. (67) into Eq. (9) and solving for i and <p 
we obtain the solution for the current and potential profile: 

m i-

m: 

<p®- 4f 

;0<!<! 

;£<£<! 

;0<!<! 

(68) 

(69) 

(70) 

Now, after reminding that the parameter tjB represent the non-
dimensional length of the tether segment whose potential difference 
with respect to the surrounding plasma is positive or zero, we assume 
1;B & | and look for an exact solution for the remainder of the tether 
with the following structure: 

ihViB & 9 

Ufa & 9 

i i / 6 !<£<&, 
1/(9<1A &<£<i 

{ o !<!<!B 

(77) 

(78) 
g(l)<0 & < £ < 1 

where the parameter tjB satisfies 

IB & I (79) 

By eliminating the independent variable £ from Eqs. (8) and (10) 
one obtains 

" - / t V - f t ^ c = (Sic - 1) dic (80) 

*>(£) = 0 ; £ < £ < 1 

where: 

*4V/3 

(71) 

(72) 

Equation (72) shows that the point | at which the current reaches 
the short-circuit limit isc is physically located inside the tether as long 
ase ^ 4. In particular | is located at the end ofthe tether whene = 4, 
while further increasing e shifts | inward from the cathodic end in fact 
shrinking the tether anodic segment and preventing the remainder of 
the tether from collecting any charge. 

This means that for e 5 4 the solution given by Eqs. (68-72) is, 
under the validity of the current model, exact. On the other hand, as it 
will be shown later, the same equations retain a very good accuracy 

which can be integrated to provide 

• V-(-Vc)3'2 = -7. (sic - 2) + const (81) 

After substituting Eq. (10) into Eq. (83) and imposing boundary 
condition <p(ljB) = 0 we finally obtain the exact solution: 

g(l) 
2 2 

fJL 6 

"~64~ (I-IBY 

m=-e-^(i-iBy 

(82) 

(83) 

From Eq. (17) one can derive the corresponding value of the 
nondimensional load impedance: 



n& & I) -
/ x 2 6 3 ( l - g J ) 4 - 6 4 6 u H 

6 4 - 4 / ^ ( 1 - & ) 3 (84) 

which must be positive. Disregarding the case in which £ < \ J } ^ 
(which corresponds to an unreasonably large e) the denominator in 
Eq. (86) is always positive which has to be true for the numerator as 
well. The latter condition provides an upper bound for %B whose 
range of variability, in order for the present solution to be valid, is 
finally 

% < Is < 1 
4v 1/4 

HC 

71? 
(85) 

Equation (84) can be solved numerically when a nonzero 
impedance Q is used as independent variable in place of tjB. Note that 
in such case the maximum value of Q for the present solution to be 
valid is 

«„ Q(IB=D-
M 2 g 3 ( 1 _ g ) 4 _ 6 4 g % c 

6 4 - 4 ¿ x V ( l - | ) 3 
(86) 

di0c (dilc 3 

2fdi2c 3 (plc 
M d| 4 ^ = % ; 

• 0(p>2) = 0 (93) 

Equations (92) and (93) can be solved in cascade to eventually 
provide a second-order approximation for the potential and current 
profile as 

<PC($B<$)) = p ? ññ 

2 2 

'^40~ 
(l-lzY + OQS) (94) 

ífe<9) : (t-^)3 

• M t - ^ ) 3 / 2 ( t - ^ ) 3 / 2 

2 
/X 6 

To" (t-^)3+0(M
2) (95) 

Note that when Q = 0 but uHC ^ 0 Eq. (84) provides the closed-
4u1/4 

form solution ijB (Í2 = 0) = 1 — 1 = . 
Finally the maximum nondimensional bias of the plasma 

contactor, in order for the present solution to be valid is obtained from 
Eq. (85) as 

uHC,r 

JJ,2 ( e 2 / 3 _ 2 4 / 3 ) 4 

256 ,2/3 (87) 

Unfortunately, the last condition is difficult to meet even with 
hollow cathodes exhibiting very small potential drop (a few tens of 
volts) especially if e is not that large, which makes the derived 
solution less interesting for real EDT applications. 

For the case in which tjB < £ the short-circuit current cannot be 
reached, which prevents us from finding an exact analytical solution. 
While for values of tjB which are close to £ Eqs. (75), (76), (82), and 
(83) could still be used with sufficient accuracy, as tjB is further 
decreased the error quickly becomes unacceptably large and the 
formulation described in the following is required. 

As far as the anodic part is concerned (0 < £ < tjB) we employ the 
profiles (in this case no longer exact) derived for the zero load case: 

iLa(lB<l) 
1 

(88) 

The value of the nondimensional load impedance Q to be applied 
in order to obtain a given value of tjB can be again determined directly 
from Eq. (17) where the expressions for <pc(l) and ic(l) are the ones 
just derived. 

VI. Influence of Plasma Contactor Potential Drop 
Although so far we have always considered tjB as a known 

independent variable (in place of the nondimensional load imped­
ance Í2), for the case in which no power generation is performed but, 
instead, maximum current is desired, the load impedance is set to 
zero and tjB becomes a function of the sole cathodic contactor 
potential drop uHC. As the latter is, in general, a given quantity, which 
depends on the particular cathodic device employed, it has to become 
the new independent variable for this particular case. In the following 
we present a method to compute tjB after setting Q = 0 and given a 
nonnegligible plasma contactor potential drop uHC. 

When ohmic effects are small tjB can be derived, for small enough 
values of e, with the help of the asymptotic expansion: 

t l = U + 4BI + ^BI + 0(e) (96) 

After substituting Eq. (96) into Eq. (57), setting Q = 0, and 
solving for each term we obtain 

&o = 1 - «HC (97) 

<PLa(lB<D- 4f 
(89) 

To derive the profiles for the cathodic part we introduce the 
following expansion based on the smallness of the parameter ¡i: 

tids < I) = <PoAI) + Wlc® + l^2ÁI) + 0(/J) (90) 

i^B < Q = i0c(l) + fiiu® + l^hcíí;) + 0(PL3) (91) 

By substituting into Eqs. (8) and (10) and expanding in Taylor 
series we obtain 

dyo, 
+ 1 - ei0c + ¡i 

, 2 / d f e _ . . _ , , . 
" ^ l " d f -ei2c)+O(jl2) = 0 (92) 

5/2 
- % c ( l - % c ) 3 / 2 + ^ M % c 

IBI = - T ^ H C ( 1 - %c) (2 - 7uHC) 

3 3 
+ 5M%c(2 - 3uH C)(l - u H C ) 1 / 2 - gM 2 «HC 

(98) 

(99) 

Conversely, when ohmic effects are large a closed-form solution 
has seen to be available for uHC not exceeding Uncmax given by 
Eq. (87), in which case 

? _ B ( % C < %C,max) — SB,1 — 1 ' 

Av 1/4 

/fie 

For higher values of uHC or for insulated tethers one has to make 
use of Eq. (17) where Q is set to zero and the cathodic end potential is 
given by Eq. (94). A fourth-degree polynomial in tjB is obtained: 

1$B + HI + ci-l + di;B + e = 0 (100) 

with 
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Equation (100), to be solved numerically, provides the sought value 

S Í B C ^ H C > l'HC.max) = Sfl,2-

After a simple numerical test one can see that the best estimate for 
ljB across the whole (% c , e) parameter space is 

'min{£g,|j;>2} 0.05 < v B C < 0.25 

££ uHC < 0.05 and 0 < e < 
.3/2 

55,2 

5t; 
UHC < UHC ,max and e > .-3/2 

5 ? 5 

(101) 

5£ 3/2 

For uHC < 0.1 the accuracy of the computed tjB is high enough to 
allow a maximum error in the average current of less than about 7%. 
For higher values of uHC the error increases so that for uHC > 0.25 the 
provided formula should not be used, with the exception of very low 
ohmic effects (e < 1) in which sufficient accuracy is retained for 
practically any value of uHC. 

The case of uHC > 0.1 is of little practical interest as it corresponds 
to poorly designed EDTs in which the excessively high cathodic 
contactor impedance compromises the performance ofthe system. A 
comparison between the approximate analytical solution and the 
numerically-computed one is provided in a later section ofthe article. 

VII. EDT Working Beyond the OML Regime 
When magnetic guiding effects are small, as it is the case in Earth 

orbit, OML current collection theory is valid for tethers whose 
equivalent radius^ does not exceed the local plasma Debye length XD 

or a fraction of the latter depending on the local ion/electron plasma 
temperature ratio [2,10]. In Low Earth orbit the plasma Debye length 
reaches a minimum value of about three millimeters in daytime 
conditions which means that, for instance, tape tethers up to about 
1 cm in width will collect OML current. Note, however, that if one 
neglects the small influence [2,10] ofthe varying bias along the tether 
length the present analysis can be extended to the case in which the 
tether works beyond the OML regime. This is done by including a 
scaling factor, G, which is a function ofthe tether cross section, the 
local plasma Debye length and the local ion/electron temperature 
ratio and can be derived from the two references cited above. In this 
fashion, the modified characteristic current to take into account 
electrical effects reads 

h 
R_ T, 

•/,, 

where G $ 1 is the current ratio / / / O M L given by Estes and 
Sanmartín [10] as afunction of the ratio R/XD between the equivalent 
tether radius and the local plasma Debye length and the ratio TJTe 

between the local electron and ion temperatures. 

^For a thin tape the equivalent radius is equal to one-fourth of the tape 
width. 

VIII. Computing Lorentz Force/Torque 
and Generated Power 

Once an accurate solution has been found for the current and 
potential profile one can finally compute all the quantities relevant to 
tether operation. These are the average current, which provides the 
resulting Lorentz force, the first moment of the current, associated 
with the resulting Lorentz torque on the tether and the power 
generated at the load placed before the plasma contactor at the 
cathodic end. 

A. Average Current and Lorentz Force 

The average nondimensional current along the tether line is 

Jo J& 
(102) 

which for the case of small ohmic effects [Eqs. (55) and (56)] yields 

!'av = !'av0 + e ! 'avl + e !'av2 ( 1 0 3 ) 

where 

^ / 2 ( 5 - 2 ^ ) - 2 M ( l - ^ ) 5 / 2 

1 

40 
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dv i 4400 

+2^(i-iBr/2] 

For the case of large ohmic effect we integrate Eqs. (75), (77), (82), 
(83), (88), and (95) to obtain 

&(£* < I) = 4,i 

= mi - 4&| + 6f) + 4(1 - lB)(H - 3IU + 3&f) 

4 # 

2..(*-&,«-so** v , ( i - ^ -.&-
r 
3/2 40 ' 

(104) 

4 f e & I) = 4,2 = ̂  - § (1 - IB)4 (105) 

The average current can then be written in the following compact 
form: 

. !l/2(5-2!B)-2,i(i-!By/2 

¡av = g n\h (106) 

where we have introduced the thrust ohmic efficiency: 

R 
0<e< 

Í • • 2 • 
!av0 + e ! a v l + e !av2 

i ) t h : 

4v(e = 0) 

!av0 5£ 
3/2 

5 ^ 2 < £ < ^ 2 

!av0 
¿3/2 

(107) 

The above formulas simplify considerably for the particular case 
of zero load and negligible potential drop at the cathodic contactor 
(Q = uHC = 0). In such case tjB = 1, the average current is maximum 
and yields 
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(109) 

Once the nondimensional average current is known the Lorentz 
force can be readily computed as 

v / c h BL(u ( A uB) (110) 

where B is the magnetic field intensity while u t and uB are, 
respectively, the tether line unit vector directed along the current flow 
and the magnetic field unit vector. It is important to stress that if the 
EDT has only one cathodic plasma contactor placed at one tether end 
a nonnegligible current will flow only if the projection of the local 
electric field along the tether is oriented towards the same cathodic 
plasma contactor. 

A final design parameter of interest for EDT missions is the 
specific thrust. The latter is defined as the ratio between the magni­
tude of the Lorentz force and the tether mass, and can be written 
taking into account Eqs. (14) and (110): 

F =imIchBL\utAuB 

m pAL 
(111) 

The latter quantity is plotted in Fig. 5, for the case of zero load and 
zero potential drop at the cathode, utilizing Eq. (109). The plots 
confirms a key aspect, already known in the literature ([3]), regarding 
bare EDTs: best use of tether mass is made by pushing the design 
towards the dominant ohmic effect regime, i.e., employing longer 
tethers with smaller thickness (for tape tethers) or radius (for 
cylindric tethers). 

B. Lorentz Torque 

The (nondimensional) distance of the point of application of the 
force from the anodic end of the tether is 

-( PBtiAdt+ fticdt) (112) 
av \J0 JtB ) *-=r 

which for the case of small ohmic effects results in 

!5 = & + e & + e
2 & + 0(e
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Conversely, in the case of large ohmic effects we have 

(116) 
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and 

where 
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Once %d is known the torque about the tether center of mass G can 
be computed as 

t = / c h ¡ a v BL 2 ( | d - £G)[u, A (n, A uB)] (121) 

where £G is the dimensionless abscissa of the center of mass. 

C. Generated Power 

The power generated at the load in nondimensional form can be 
computed as 

w = — i"c(l)"Pc(l) (122) 

where 

Using Eqs. (42) and (46) we obtain the power generated for the 
small-ohmic-effect case: 

1 8 ^ / 2 - 3 5 ^ / ¿ + 4/x(l - ^ ) 5 / 2 ( 5 + 2&) 

14 2 S / 2 - 5 ^ / 2 + 2M(l -^) 5 / 2 
(114) 

W = Wn + ew, + 6 Wo + 6 W-i + 6 UJ,, + 6 UJc 
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(123) 

»o = S / 2 ( l - ^ ) - M ( l - ^ ) 5 / 2 (124) 

Fig. 5 Variation of the quantity d.„, which is proportional to the EDT 
specific thrust, as a function of the parameter e. No load is inserted at the 
cathodic end of the tether and the cathode potential drop is neglected. 
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The corresponding dimensional power generated at the load can be 
finally computed as 

W¿ = wIchEtL (136) 

-5 = - T J ^ K I - IB) + ̂ L^B
5/2d - IB)5/2 

160000 80000r 

4000 ^ l ( l - ^ ) 4 (129) 

where we have neglected terms of order ¡x2 and higher. 
For the case of large ohmic effects [Eqs. (94) and (95)] we obtain 

f* (I ~ ^)3 /2(5f ~ 2 l f lB + 2l |g | - 7&)(1 - ^ ) 5 / 2 

c £9/2 ^ i J U ^ 

D. Traditional Formulation 
The formulation of the bias and current profile commonly 

employed in the literature (see for instance [3]) refers to different 
dimensionless quantities, which are here denoted with a tilde 
superscript. Next we will provide conversion formulas between the 
two formulations. In the traditional formulation the nondimension-
alization of the current is done with respect to the short-circuit value 
so that 

/ 
Í — - T T T = & GAEt 

(137) 

As far as the length a characteristic reference value L* is used in the 
literature: 

(i2e (20f - 63f& + 63&| - 21g)(l - £B)4 
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and 

-Le^l) = ^=§d-? f ir-^(i-? f i)
7 

The generated power can then be written in the following compact 
form: 

«' = [?f(l-?S)-Ml-? f i)
5 / 2]->7H , 

where we have introduced the power ohmic efficiency: 

(132) 
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w0 + ew0 + .. + e>w5 

w0 

0<e<- 3/2 

W0 

W0 
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Let us now search for the a possible value of the control parameter 
%B providing maximum power, hence obeying 

áw 
•«T) = o (134) 

For small ohmic effects Eq. (134) yields a nonlinear equation not 
solvable analytically. In the range 0 < e < 1.5 an accurate solution 
(within 2% of relative error) of Eq. (134) can be again obtained with a 
perturbation method: 

•opt\5 , (IS*) 
3 2V6 22 

+ é 

' 5 + " 15 
3483 

312500 

^ " 4 5 ^ +€ 
( 126VI5 54VI0 \ 
V 3125 + _ 6 2 ^ ^ J 

(135) 

For higher values of e Eq. (134) must be handled numerically. The 
corresponding curve is plotted in Fig. 4 (dashed line). As e increases 
the corresponding ^ p t decreases in such a way that the current profile 
always remains in the low ohmic effect region. An inspection of the 
exact numerical solution of the current and potential profile confirms 
that the power profile as a function of %B has only one maximum, 
which corresponds to the aforementioned curve. All in all we can 
conclude that optimum power generation always occurs in the small 
ohmic effects regime. 
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Fig. 6 Comparison between dimensionless current and local bias 
profile obtained numerically (solid line) and with the proposed analytical 
method (dash-line) for different values of e and %B. The coefficient ft has 
been set to 1/43. 



Fig. 7 Percentage error between approximate [Eq. (132)] and 
numerical solution for the dimensionless average current. The 
parameter \i is here set to zero (insulated cathodic segment). The lower 
dash-line corresponds to optimal power generation. The upper dash-dot 
line represents the condition %B = | . Note that in this case (fi = 0) the 
condition §# > § cannot be reached. The case of \i ^ 0 produces a very 
similar plot. 

Our parameter e can be directly related to the ratio L/L* using 
Eqs. (27) and (138): 

1 (L\3/2 

2\L*) 
(139) 

The conversion of the nondimensional abscissa with our new 
formulation yields 

and as a particular case our parameter %B can be written as 

_IBL* _ lB 
^B~ L ~ ( 2 e ) 2 / 3 

Similarly for the potential we have 

AV L 
<p: EfL* L 
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IX. Global Solution and Accuracy 

To test the accuracy of the proposed method an extensive test 
campaign has been conducted in which our analytical solution is 
compared with the numerical solution of the current and local bias 
equations employing a shooting method. Figure 6 compares current 
and potential profile curves for different (£fi, e) configurations 
corresponding to low and high ohmic effects. The error remains very 
small across the whole profile. 
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Fig. 9 Comparison between analytically- (dash-line) and numerically-
computed (solid line) dimensionless average current as a function of the 
parameter §# and for five different values of the coefficient e. The 
coefficient ¡i is here set to 1/43. 

Figure 7 plots the error between the analytically and the 
numerically-computed average current across a relatively large span 
of the (e, £fi) parameter space. The maximum error does not exceed 
5% demonstrating that the present method is particularly effective for 
the computation of the average current. This can also be seen in 
Figs. 8 and 9 where we compare the average current computed with 
the two methods for varying e and £fi. 

Figure 10 plots the error between the analytically and the 
numerically-computed generated power across a relatively large 
span of the (e, £fi) parameter space. In this case the maximum error 
can reach up to 35%. However, the poor-accuracy region is of little 
practical interest as it corresponds to values of the parameters %B and e 

Fig. 10 Percentage error between approximate [Eq. (132)] and 
numerical solution for the generated power. The parameter \i is here set 
to zero (insulated cathodic segment). The lower dash-line corresponds to 
optimal power generation. The case of \i ^ 0 produces a very similar 
plot. 

Fig. 8 Comparison between analytically- (dash-line) and numerically-
computed (solid line) dimensionless average current as a function of the 
parameter e and for three different values of the coefficient §#. The 
coefficient ¡i is here set to 1/43. 

Fig. 11 Comparison between analytically- (dash-line) and numeri­
cally-computed (solid line) dimensionless generated power as a function 
of the parameter e and for six different values of the coefficient §#. The 
coefficient ¡i is here set to zero. 
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Fig. 12 Comparison between analytically- (dash-line) and numeri­
cally-computed (solid line) dimensionless generated power as a function 
of the parameter %B and for five different values of the coefficient e. The 
coefficient \i is here set to zero. Note the existence of an optimum value of 
%B for maximum power and the negligibly small error obtained around 
optimal conditions. 

Fig. 13 Comparison between dimensionless anodic segment length 
computed analytically through Eq. (101) (dash-line) and numerically for 
varying e, zero load (Í2 = 0) and four different values of the 
dimensionless potential drop at the cathode (vHC). In this example the 
cathodic segment is insulated (/¿ = 0). Note that for vHC = 0 we have 

which are far from the optimum power generation condition given by 
Eq. (134). Conversely, the error obtained under maximum power 
generation condition is negligible. This can also be seen in Figs. 11 
and 12 where we compare the generated power computed with the 
two methods for varying e and tjB. 
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Fig. 14 Comparison between dimensionless anodic segment length 
computed analytically through Eq. (101) (dash-line) and numerically for 
varying e, zero load (Í2 = 0) and four different values of the 
dimensionless potential drop at the cathode (vHC). In this example the 
uninsulated cathodic segment (/¿ = 1/43) makes it possible to have 
%B > £ f° r sufficiently small vHC and high e, in which case %B reaches a 
minimum to then grow beyond £. 
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Fig. 15 Average current computation time for the three different 
methods: analytical (dash), semi-analytical (dot) and numerical (solid). 

Figures 13 and 14 compare the numerically and analytically 
computed dimensionless anodic segment length tjB as a function of 
the parameter e and for different values of the plasma contactor 
potential drop uHC. The error remain relatively small as long as UJJC is 
not too high, which is reasonable for practical EDT applications. 

As far as the Lorentz torque is concerned, the relative error, not 
reported here, between the exact and approximate solution does not 
exceed 1% across the whole parameter space. 

Finally, the performance of the provided solution in terms of 
computation speed has been compared with the one computed 
numerically with a standard shooting method and with the method 
provided by [5]. As can be seen in Fig. 15 the analytical solution 
provides more than 3 orders of magnitude improvement in 
computation time. 

X. Conclusions 
This paper provided an accurate analytical formulation describing 

the current and potential profile for passive bare EDTs in the OML 
regime. The compact analytical formulas employ two nondimen-
sional parameters e and tjB. The first represents the ratio between 
tether contact and ohmic impedance, the second is the nondimen-
sional voltage drop at the power generating load gauged by the 
electric field potential difference across the tether length. All 
quantities relevant to EDT mission design and operation can be 
computed directly with the provided formulas. The average current 
along the tether, and hence the resulting Lorentz force, can be 
estimated with accuracy of better than 5% across the whole parameter 
space. While the error on the evaluation of the generated power can 
be higher the low-accuracy region (going from a 5 to 30% maximum 
error) is of little interest for real EDT applications as it corresponds to 
a badly chosen value of the load impedance, providing low specific 
power and poor efficiency. 

A comparison with existing numerical methods shows an 
improvement of more than three orders of magnitude in terms of 
computational speed showing that the proposed analytical solution 
can be advantageously employed for the numerical analysis of orbital 
and attitude control and dynamics involving bare EDTs. 
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