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Quantum key distribution (QKD) relies on quantum and classical procedures in order

to achieve the growing of a secret random string —the key— known only to the two
parties executing the protocol. Limited intrinsic efficiency of the protocol, imperfect
devices and eavesdropping produce errors and information leakage from which the set of

measured signals —the raw key— must be stripped in order to distill a final, information
theoretically secure, key. The key distillation process is a classical one in which basis
reconciliation, error correction and privacy amplification protocols are applied to the raw
key. This cleaning process is known as information reconciliation and must be done in a

fast and efficient way to avoid cramping the performance of the QKD system. Brassard
and Salvail proposed a very simple and elegant protocol to reconcile keys in the secret-
key agreement context, known as Cascade, that has become the de-facto standard for all
QKD practical implementations. However, it is highly interactive, requiring many com-

munications between the legitimate parties and its efficiency is not optimal, imposing an
early limit to the maximum tolerable error rate. In this paper we describe a low-density
parity-check reconciliation protocol that improves significantly on these problems. The

protocol exhibits better efficiency and limits the number of uses of the communications
channel. It is also able to adapt to different error rates while remaining efficient, thus
reaching longer distances or higher secure key rate for a given QKD system.

Keywords: Quantum cryptography, quantum key distribution, information reconcilia-
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1 Introduction

A quantum key distribution protocol is composed of two parts: a quantum and a classical

one [1]. The quantum part involves the actual transmission of qubits, its manipulation and

detection, and it is performed using a quantum channel. The classical part is done through

a public, albeit integrity-preserving, classical channel and involves basis reconciliation, error

correction and privacy amplification protocols. The quantum part results in the production

of a raw key at both ends of the quantum channel. The raw key must be cleaned from all

the unavoidable errors produced in this part. These include the intrinsic ones, due to the

limited efficiency of the protocol, and those arising either from the inevitable imperfections

in the physical setup or from eavesdropping. Intrinsic errors are easier to correct and this
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is usually done by bookkeeping of the detection events and subsequent discussion over the

classical channel about the preparation state of the qubits leading to the recorded events. For

example, in the standard BB84 protocol [2], half of the qubits detected by Bob will be in a base

orthogonal to the one in which they were prepared by Alice, leading to a 50% of detections

that do not directly contribute bits to the final secret key. In a real setup, the remaining bits

will still be affected from errors arising either from the physical implementation itself or from

an eavesdropper, these being in principle indistinguishable. The process to clean the key from

the errors is known as information reconciliation and is done through the classical channel.

The existence of optimal, although inefficient, protocols leaking a minimum of information

in the process was demonstrated in [3]. There, a practical protocol trading an acceptable

amount of leaked information for efficiency was also proposed. This reconciliation protocol,

known as Cascade, has become the de-facto standard for all QKD practical implementations.

However, it has several shortcomings that make it less than ideal under certain situations that

are expected to become more common in real world environments. Work has been done to

improve on Cascade [4, 5, 6, 7], but none of the resulting methods have become as widespread.

Recent advances in QKD systems have seen a tremendous increase in key generation

speed [8, 9, 10]. Current generation systems can be successfully used over longer distances

or in noisier environments than before, like those arising when integration with conventional

networks is required [11, 12]. This changes indicate that the reconciliation protocol must be

efficient at high key and error rates.

Cascade is a highly interactive protocol that requires a high number of uses of the public

channel to proceed. The number of uses raises markedly with the quantum bit error rate

(QBER), thus it is not well suited for next generation QKD systems. From a practical point

of view, the protocol must be implemented using two computers at both ends of the quantum

channel that process the key and communicate through the public channel. The typical access

latencies to the network are much higher than CPU operations, hence it is easy to produce

a bottleneck in highly interactive protocols. In fact, if a specialised communications network

is not used, the communications needs of Cascade are already the limiting factor in many

situations and with current systems, instead of the much more delicate quantum part. On

the other hand, a less than ideal efficiency limits the maximum number of errors that can

be corrected without publishing too much information, thus reducing the performance of the

system when working at a high error rate.

In this paper we describe a reconciliation protocol that overcomes these problems. The

protocol exhibits a better efficiency than Cascade, it can be adapted to a varying QBER with

a low information leakage, extending the usable range of the system. It limits the number of

uses of the public channel and its structure allows for a hardware implementation, avoiding

communications and CPU bottlenecks, thus being well suited to next generation QKD systems

in demanding environments. LDPC codes also have an structure that make them well suited

for hardware implementations

The paper is organised as follows: In Section 2, the information reconciliation problem in

the secret-key agreement context is described and the current status of error correction in QKD

is discussed. A new Information Reconciliation Protocol able to adapt to different channel

parameters is presented and its asymptotic behavior discussed in Section 3. In Section 4 the

results of a practical implementation of the protocol are shown. In particular the efficiency



228 Information reconciliation for QKD

of the protocol is compared to its optimal theoretical value and to Cascade.

2 Problem statement

2.1 Information reconciliation

Let Alice and Bob be two parties with access to dependent sources identified by two random

variables, X and Y respectively. Information reconciliation is the process by which Alice and

Bob extract common information from their correlated sources. In a practical setting Alice

and Bob hold x and y, two n-length strings that are the outcome of X and Y , and they

will agree in some string s = f(x,y) through one-way or bidirectional conversation [13]. The

conversation φ(x,y) is also a function of the outcome strings, and its quality can be measured

by the number of symbols involved in the conversation M = |φ(x,y)|.

Now, the problem of encoding correlated sources is a well known problem in information

theory. To independently encode X and Y at least a rate R ≥ H(X) + H(Y ) is needed.

However, in their seminal paper, Slepian and Wolf [14] demonstrated that to jointly encode

both variables it is enough with a rate R ≥ H(X,Y ) even if X and Y are encoded separately.

Moreover, if Y is available at the decoder only a rate of R ≥ H(X|Y ) is needed to encode

X (see Fig. 1), which in the information reconciliation context amounts for the minimum

information needed in order to reconcile Alice’s and Bob’s strings. To measure the quality of

a real reconciliation schema, that in a practical setting will encode X with a higher rate than

H(X|Y ), we use the efficiency parameter f ≥ 1 defined as:

Ireal = fH(X|Y ) ≥ Iopt (1)

where Ireal is the information published during the reconciliation process, Iopt is the mini-

mum information that would allow to reconcile Alice’s and Bob’s strings, and H(X|Y ) is the

conditional Shannon entropy.

However, there are two other parameters to consider when evaluating the quality of a

information reconciliation procedure: that is the computational complexity and the interac-

tivity. The first one stresses that a real information reconciliation procedure must be feasible.

Any sufficiently long random linear code of the appropriate rate could solve the problem [15],

however optimal decoding is in general an NP-hard problem. The interactivity of a reconcil-

iation protocol has to be taken into account because, specially in high latency scenarios, the

communications overhead can pose a severe burden on the performance of the QKD protocol.

Fig. 1. Source coding with side information.

In order to evaluate the quality of the reconciliation, we will concentrate in discrete variable

QKD protocols even if the ideas presented here can be easily extrapolated to other scenarios.

Most QKD protocols encode the information in discrete variables [2, 16], although there are
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many proposals on continuous variable protocols [17, 18, 19]. Errors on the quantum channel

are normally uncorrelated and symmetric or, if prior to the reconciliation Alice and Bob

apply a random permutation, they can behave as such [20]. In this situation Alice’s and

Bob’s strings can be regarded as the input and output of a binary symmetric channel (BSC),

characterized by the crossover probability ε, and the efficiency parameter f can be described

as the relationship between the length of the conversation M = |φ(x,y)| and the optimal

value N ·H(X|Y ) = N · h(ε):

f =
M

N · h(ε)
(2)

It was first shown in [21] that low-density parity-check (LDPC) codes used within Wyner’s

coset scheme [22, 15] are a good solution for the compression of binary sources with side

information. LDPC codes [26] are linear codes that have a sparse parity check matrix. These

codes, when decoded with the belief propagation algorithm, can perform very close to the

theoretical limit.

The fundamental idea is to assign each source vector to a bin from a set of 2H(X|Y )+ι

known bins, the encoder describes the bin to the decoder, and the decoder searches for the

source vector inside the described bin. Let x and y be two binary strings of length n, and

C a [n, k] binary linear code specified by its parity matrix H. The syndrome s of a vector

x is the n − k string defined as s = Hx being s = 0 for all the codewords in C. Each

syndrome s defines a coset Cs as the set of all strings, {x}, that verify Hx = s. Wyner’s

schema consists in assigning each source vector to one of the cosets of C. Encoding x amounts

then to compute its syndrome, and decoding is simply to find the member in Cs closest to y.

An LDPC message passing decoder was modified in [21] to take into account the syndrome

decoding proposed by Wyner. This same procedure can be applied to the QKD scenario.

2.2 Previous work

As mentioned in the introduction, the most widely used and best known protocol for error

correction in the QKD context is Cascade. Proposed by Brassard and Salvail [3], this protocol

runs for a fixed number of passes. In each pass, Alice and Bob divide their strings into blocks

of equal length. The initial block length depends on the estimated error probability, p, and it

is doubled when starting a new pass. For each block they compute and exchange its parity. A

parity mismatch implies an odd number of errors, and a dichotomic search allows both parties

to find one of the errors. Whenever an error is found after the first pass, it uncovers an odd

number of errors masked on the preceding passes and the algorithm returns to correct those

errors previously undetected. This cascading process gives name to the protocol. Several

papers propose improvements on Cascade [4, 5], these papers analyse how the block length

is to be chosen and increased in order to optimise the efficiency of the reconciliation, but the

main characteristics remain unaltered. Cascade, although highly interactive, is reasonably

efficient and easy to implement. It is well known and has become the de-facto standard,

hence we have chosen Cascade as the benchmark to compare against.

Winnow [6] is another well know reconciliation protocol in the QKD context, it requires

only two communications between the parties. In the first communication Alice and Bob

exchange the parities of every block. After that, they exchange the syndrome of a Hamming
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code for correcting single errors in each block with a parity mismatch. The protocol incorpo-

rates a privacy maintenance procedure by discarding one bit per parity revealed (i.e. m bits

are discarded when a syndrome of length m is exchanged). Its main advantage is a reduction

on the number of communication needed, however the efficiency of the protocol is worse than

that of Cascade in the error range of interest. Recently, some interesting improvements have

been proposed for selecting an optimum block length in this protocol [7].

Modern coding techniques have not been applied to discrete variable QKD until recently.

LDPC codes were proposed and used on [23]. But as the codes had not been specifically

designed for the problem, aside from the inherent advantage of forward error correction, the

efficiency was worse than that of Cascade. These codes have been also used in the context

of continuous variable QKD [19]. LDPC codes were first optimized for the BSC on [24], and

although the results were close to optimal for the designed codes, the efficiency curve exhibited

a saw behaviour due to a lack of information rate adaptability in the proposed procedure [27].

Since the error rate can vary among transmissions, it is important for a protocol to be able

to cope with this change.

3 Rate-compatible reconciliation

Although linear codes are a good solution for the reconciliation problem, since they can be

tailored to a given error rate, their efficiency degrades when it is not known beforehand. This

is the case in QKD, where the error rate is an a priori unknown that is estimated for every ex-

change. The QBER might vary significantly in two consecutive key exchanges, specially when

the quantum channel is transported through a shared optical fibre that can be used together

with several independent classical or quantum channels that can add noise. To address this

problem there are two different options: (i) it is possible to build a code once the error rate

has been estimated, and (ii) a pre-built code can be modified to adjust its information rate.

The computational overhead would make the first option almost unfeasible except for very

stable quantum channels, something difficult to achieve in practise and impossible in the case

of a shared quantum channel in a reconfigurable network environment [11]. In this paper we

propose the use of the second strategy as the easiest and most effective way to obtain a code

for the required rate, for which we describe a protocol that adapts pre-built codes in real time

while maintaining an efficiency close to the optimal value.

3.1 Rate modulation

Puncturing and shortening are two common strategies used to adapt the rate of a linear

code. This process of adapting the information rate of a pre-built code will be referred as rate

modulation. When p punctured symbols of a codeword are removed, a [n, k] code is converted

into a [n− p, k] code. Whereas, when shortening, s symbols are removed during the encoding

process, and a [n, k] code is converted into a [n − s, k − s] code. A graphical representation,

on a Tanner graph, of the procedures just described for puncturing and shortening and its

effects on the rate of the sample code is shown in Fig. 2.

These procedures may be regarded as the transmission of different parts of the codeword

over different channels (see Fig. 3). Since puncturing is a process by which p codeword symbols

are eliminated, it can be seen as a transmission over a binary erasure channel (BEC) with

erasure probability of 1, BEC(1). Shortening is a process by which s codeword symbols are
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Fig. 2. Examples of puncturing and shortening strategies applied to a linear code represented by
its Tanner graph. In the puncturing example (left) one symbol is deleted from the word and a [8,4]

code, with rate R = 1/2, is converted to a [7,4], increasing its rate to R = 4/7. In the shortening
example (right), one symbol is deleted from the encoding and the same [8,4] code is converted to
a [7,3] code, the rate now decreases to R = 3/7.

known with absolute certainty, as such it can be seen as a transmission over a BEC with

erasure probability of 0, BEC(0). The remaining symbols are transmitted by the real channel

which in the present paper can be modelled by a binary symmetric channel with crossover

probability ε, BSC(ε)

Supposing that R0 is the original coding rate, the modulated rate is then calculated as:

R =
R0 − σ

1− π − σ
=

k − s

n− p− s
(3)

where π and σ represent the ratios of information punctured and shortened respectively.

Both strategies, puncturing and shortening, can be applied simultaneously. Given a [n, k]

code and n′ ≤ n bits, if puncturing and shortening are applied with a constant number d of

punctured and shortened symbols, a single code can be used to protect the n′ bits for different

error rates. There are two consequences of applying a constant d: (i) there is a limit to the

minimum and maximum achievable information rates. These limits, expressed as a function

of δ = d/n, define the correction interval:

0 ≤ Rmin =
R0 − δ

1− δ
≤ R ≤

R0

1− δ
= Rmax ≤ 1 (4)

(ii) puncturing and shortening procedures cause an efficiency loss [28]. Therefore, there is a

tradeoff between the achievable information rates and reconciliation efficiency.

This efficiency loss, caused by high levels of puncturing and shortening, can be avoided if

a set of n codes ζi with different information rates is used: R0(ζ1) ≤ R0(ζ2) ≤ R0(ζn). The

target error range can then be partitioned into, [Rmin(ζ1), Rmax(ζ1)] ∪ [Rmin(ζ2), Rmax(ζ2)] ∪

...∪ [Rmin(ζn), Rmax(ζn)], not necessarily with the same size. The number of intervals depends

on the width of the error rate range to cover and on the desired efficiency. The compromise

between the width of the interval covered and the achieved efficiency in the one code case

is transferred to a compromise between efficiency and the added complexity of managing
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Fig. 3. Channel model. Puncturing and shortening on a LDPC code results in the division of

the original binary symmetric channel used to reconcile Alice’s x string with Bob’s y into three
different channels: a binary erasure channel with erasure probability of 1 (for the fraction π of
punctured symbols), a BEC with erasure probability of 0 (for the fraction σ of shortened symbols)
and a binary symmetric channel with crossover probability ε (for the rest of the symbols).

several codes. Fig. 4 shows the computed efficiency thresholds for several families of codes

with different coding rates.

3.2 Protocol

We now proceed to describe a rate-compatible information reconciliation protocol using punc-

turing and shortening techniques as described above.

Step 0: Raw key exchange. Alice and Bob obtain a raw key by running a QKD protocol

through a quantum channel (see Section 2). This key exchange may be modelled as follows.

Alice sends to Bob the string x, an instance of a random variableX, of length ℓ = n−d through

a binary symmetric channel with crossover probability ε, BSC(ε) (or a black box behaving

as such). Bob receives the correlated string, y, but with discrepancies to be removed in the

following steps.

Step 1: Pre-conditions. Prior to the key reconciliation process Alice and Bob agree on

the following parameters: (i) a pool of shared codes of length n, constructed for different

coding rates; (ii) the size of the sample, t, that will be used to estimate the error rate in

the communication; and (iii) the maximum number of symbols that will be punctured or

shortened to adapt the coding rate, d = p+ s = nδ.

Step 2: Error rate estimation. Bob chooses randomly a sample of t bits of y, α(y), and

sends them and their positions, β(y), to Alice through a noiseless channel (i.e. the public and

integrity-preserving channel used in the classic part of a QKD protocol). Using the positions

received from Bob, β(y), Alice extracts an equivalent sample in x, α(x), and estimates the

crossover probability for the exchanged key by comparing the two samples:
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Fig. 4. Efficiency thresholds for different codes with information rates, R0 = 0.5, 0.6 and 0.7 as a
function of the quantum bit error rate (QBER). Two δ values, 0.1 (solid line) and 0.05 (dashed)
have been used to adapt the rate for each code. As a comparison, a single code covering all of the
QBER range of interest, with rate R0 = 0.5 and δ = 0.5, is presented to show how the efficiency

degrades for high δ values, although a broader range is covered. The codes have been optimised
using the density evolution algorithm for the BSC. The Cascade efficiency was calculated using the
same sample size (2×105). The block size used in the first step, k1, is given by k1 = ⌈0.73/QBER⌉

(optimized in [33]) and doubled in every subsequent step kn = 2kn−1. The sawtooth behaviour of
the Cascade efficiency reflects the points where k1 changes.
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ε′ =
α(x) + α(y)

t
(5)

Once Alice has estimated ε′, she knows the theoretical rate for a punctured and shortened

code able to correct the string. Now she computes the optimal rate corresponding to the

efficiency of the code she is using: R = 1− f(ε′)h(ε′); where h is the binary Shannon entropy

function and f the efficiency. Then she can derive the optimal values for puncturing and

shortening, p and s respectively, as:

s = ⌈(R0 −R(1− d/n)) · n⌉

p = d− s
(6)

Step 3: Coding. Alice creates a string x+ = g(x, σε′ , πε′) of size n. The function g defines

the n − d positions to take the values of string x, the p positions to be assigned random

values, and the s positions to have values known by Alice and Bob. The set of n−d positions,

the set of p positions and the set of s positions and their values come from a synchronised

pseudo-random generator. She then sends s(x+), the syndrome of x+, to Bob as well as the

estimated crossover probability ε′.

This process can be regarded as jointly coding (and decoding) the original strings sent

through a BSC(QBER) with p bits sent through a binary erasure channel (BEC) with erasure

probability 1, and s bits sent through a noiseless channel (see Fig. 3).

Step 4: Decoding. Bob can reproduce Alice’s estimation of the optimal rate R, the po-

sitions of the p punctured bits, and the positions and values of the s shortened bits. Bob

then creates the corresponding string y+ = g(y, σε′ , πε′). He should now be able to decode

Alice’s codeword with high probability, as the rate has been adapted to the channel crossover

probability. Bob sends an acknowledgement to Alice to indicate if he successfully recovered

x+.

Step 5: (Optional) Interactive decoding. If Bob does not succeed in recovering Alice’s

string, Alice can reduce the information rate of the code by revealing some r∗ ≤ p of the

punctured bits on the public channel, that become shortened bits (see Fig. 5). Steps 3 and

4 are then repeated, Alice computes the new syndrome and sends it to Bob, who tries to

decode and send an acknowledge to Alice. Let p(i) and s(i) be the number of punctured

and shortened bits respectively in the i-th round of the proposed protocol, and r(i+1) the

number of punctured bits to be revealed for the next round, the new proportion of punctured

and shortened bits used for the reconciliation are calculated as p(i+1) = p(i) − r(i+1) and

s(i+1) = s(i) + r(i+1), respectively. These steps can be repeated while Bob does not find the

correct string and there are punctured bits that have not been revealed as shortened bits, i.e.

while p ≥ 0.

4 Simulation results

In this section we discuss the efficiency of the rate-compatible information reconciliation

protocol without the interactive decoding step, comparing the results of the protocol to regular

LDPC codes as proposed in [24] and to Cascade. The purpose of this simulations is to highlight

that the proposed protocol extends the working range in QKD, allowing to distill a key in a

wider QBER range than previous information reconciliation protocols.
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Fig. 5. Protocol sequence for interactive reconciliation. The figure shows how punctured symbols

are converted into shortened symbols in each round, thus repeating coding and decoding steps
for different coding rates. The interactive protocol concludes when the target string has been
reconciled or there are no more punctured symbols to be revealed.

Fig. 6 shows the efficiency, calculated as defined in Eq. (1), in the reconciliation process

simulated for three different alternatives: (i) using the Cascade protocol, (ii) using LDPC

codes without adapting the information rate, and (iii) using LDPC codes adapting the infor-

mation rate with the rate-compatible protocol proposed here. The target error range selected

is [0.055, 0.11], where a high efficiency protocol is a must. Low QBER rates do not demand

a close to optimal efficiency since other requisites, such as the throughput, are more critical

in obtaining a high secret key rate. In order to achieve a efficiency close to 1, the error range

[0.055, 0.11] has been divided into two correction intervals: R0(ζ1) = 0.5, R0(ζ2) = 0.6 and

δ = 0.1. The codes have been constructed using families of LDPC codes specifically opti-

mised for the BSC. Generating polynomials of these families can be found in [24], however

they were not designed for shortening and puncturing. Taking into account these parameters

in the generating polynomial design process would allow to cover the whole QBER range with

high efficiency.

The construction process has been also optimised using a modified progressive edge-growth

algorithm for irregular codes with a detailed check node degree distribution [32]. A codeword

length of 2× 105 bits has been used.

The results show that there is a small price to pay for the rate adaptation. LDPC codes

without puncturing and shortening behave slightly better near their threshold, however for the

δ value chosen the penalty is very small and the rate-compatible protocol allows to reconcile

strings in all the range with f ≤ 1.1. The unmodulated LDPC codes exhibit an undesirable

saw behaviour that can lead to efficiencies worse than that of Cascade unless many different

codes are calculated, incurring in an unacceptable penalty in CPU time. The new protocol

works at a much better efficiency than Cascade, that performs in all the tested range with

f ≥ 1.17.
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Fig. 6. Computed efficiency for medium to high error rates, a typical range expected in shared
quantum channel environments, long distances or high losses scenarios, such as in networks, and
where obtaining high efficiency is critical. The solid line is the Cascade efficiency. Its parameters

are the same than for Fig. 4. The dotted line represents the modulated LDPC thresholds. For
all LDPC results shown here δ = 0.1. The long, thick, dashed lines joined by thin dashed lines is
the efficiency of an unmodulated code. Short dash and dash-dotted lines are the results for the

modulated codes. Dash-dotted is for a rate R0 = 0.6 and short dash are for R0 = 0.5, triangles
and diamonds are used to mark the computed points. The smooth and efficient behaviour of the
modulated, rate adapted codes, as compared to the unmodulated version is to be noted. The gain
in efficiency over Cascade allows for an extended usability range of the system at high QBER.
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5 Conclusions

We have demonstrated how to adapt an LDPC code for rate compatibility. The capability

to adapt to different error rates while minimizing the amount of published information is

an important feature for secret-key reconciliation in the QKD context, specially whenever

it is used in long distance links or in noisy environments such as those arising in shared

optical networks. In these demanding environments high efficiency is necessary to distill a key.

The protocol improves on Cascade, allowing to reach efficiencies close to one while limiting

the information leakage and having the important practical advantage of low interactivity:

only one message is exchanged by both parties. This high efficiency allows to extend the

working range in QKD, that is, it allows to distill a key in a wider QBER range than previous

information reconciliation protocols.
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