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a b s t r a c t

A reduced order model (ROM) is proposed to generate multi-parameter databases of some fluid-thermal

problems, using a combination of proper orthogonal decomposition, a gradient-like method, and

a continuation method. The resulting ROM greatly reduces the CPU time required by slower methods

based on genetic algorithm formulations. As a byproduct, the number of required snapshots is also

reduced, which yields an additional improvement of the computational efficiency. The work presented in

this article aims to facilitate the use of ROMs in industrial environments, in which time is a very

important asset. The methodology is illustrated with the non-isothermal flow past a backward-facing

step in the laminar regime, which is a representative problem, related to the engineering design of

micro-heat sinks.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

One of the applications of reduced order models (ROMs) in

fluid-thermal problems is the non-expensive generation of data-

bases of practical engineering interest. In fact, there are many

industrial situations in which the design engineer in charge of

a particular problem needs to fill in a multi-parameter database,

within a limited time span and, often, with limited resources. In this

context, ROMs are potentially attractive candidates to compute the

required data because they are much more computationally effi-

cient than their computational fluid dynamics (CFD) counterparts.

Obviously, some accuracy is lost in the process but, as is frequent in

engineering environments, a balance needs to be reached between

accuracy and cost.

Broadly speaking, the mathematical model of a fluid dynamics

ROM can be cast either as an interpolation method over a previous

sample of CFD solutions (Bui-Thanh [1], Lorente et al. [2], and

Amsallem et al. [3,4]) or using the governing equations to obtain

a better approximation. The latter can be classified into two cate-

gories: those that reduce the problem to a set of ordinary differential

equations (Galerkin projection on a set of previously calculated POD

modes [5]) and those that treat the problem as a minimization

problem (searching for the set of modal amplitudes that minimize

a pre-defined residual error in the NaviereStokes equations).

Examples of the former can be found in, e.g., the articles by Galletti

et al. [6], Sirisup andKarniadakis [7], Burkhard et al. [8], Barone et al.

[9], Kalashnikova et al. [10] and Rapun and Vega [11], and examples

of the latter in the articles by LeGresley andAlonso [12], Alonso et al.

[13], and Rouizi et al. [14], and Bache et al. [15]. In both cases, the

CPU time needed to compute the ROM ismuch smaller than the CPU

time required to run the CFD solver. As is to be expected, both

approaches have their own advantages and disadvantages: Galerkin

based ROMs tend to be fast but they tend to require the imple-

mentation of some additional artificial stabilization terms in order

to converge to a solution, especially in the case of non-linear

equations. Curing this instability has deserved great attention in

the literature; see, e.g., Kalashnikova et al. [10] and references there

in. ROMs based on minimization instead do not require these

additional artificial terms but tend to be slower; this ismore so if the

minimization strategy is based on stochastic methods of the genetic

algorithm type [13,15,16].

Against this background, the main object of this paper is to

improve the computational efficiency of the latter class of ROMs.

This will be done using a faster minimization strategy based on the

combination of a gradient-like method and a continuation method.

It must be taken into account that the overall efficiency also

depends on the number and the selection of the snapshots in the

multi-parameter space needed to generate a sufficiently accurate
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modal basis. In other words, the global efficiency of the method

depends on: (a) the ROM itself and (b) the selection of the snap-

shots. Concerning the latter, it happens that the larger the number

of computed snapshots the better the accuracy of the modal basis,

and the more expensive the generation of the database. In addition

to speeding up calculations, the ROM derived in this paper will also

allow for reducing the required number of snapshots, which will be

a byproduct of the ROM efficiency. The problem of searching for an

optimum distribution of snapshots within the multi-parameter

space is related to the so-called sampling problems, which have

been recently addressed in the context of POD by Astrid et al. [17],

Braconnier et al. [18], and Lorente et al. [19]. In these articles,

a sampling methodology is ingrained into the search for a combi-

nation of database points that yields the POD manifold that

contains the information required to fill in the database within

a given accuracy.

For the sake of clarity, the method will be illustrated addressing

a specific fluid-thermal problem. In particular, this technical work

has been written having in mind the context of engineering design

of micro-heat sinks. As it is well-known, these devices are making

their way into a number of industrial sectors and, accordingly, they

need to be extensively characterized. Specially, this is the case

whenever safety is a key factor such as it happens in aeronautics

and space. Therefore, undertaking development work aiming to

facilitate the extensive characterization of these micro-devices may

help to ease their dissemination. The selected test problem is the

2-D non-isothermal flow past a backwards facing step, which can

be considered as an idealized situation in which a heat sink micro-

channel presents a sudden expansion. In this test problem, the flow

topology is strongly dependent on the Reynolds number (because

of the sudden expansion), and on thermal effects (because of the

large variations of water viscosity with temperature).

Regarding the organization of the article, the methodology is

presented first. Then the test problem is described, results are

given, and, finally, conclusions are presented.Q1

2. The POD and residual minimization method

A brief description of the ROM derivation based on residual

minimization is provided first, emphasizing some improvements

reported in the literature to increase computational efficiency. Then,

the advantages and drawbacks of the genetic algorithms and

minimization tools in reducedordermodeling are discussed. Finally,

the combination of gradient-like and continuation methods that is

proposed in this paper is developed.

2.1. POD and residual definition

Let us consider a set of m partial differential equations and n

boundary conditions, involving m state variables

EQjðq1;.; qmÞ ¼ 0 in U; BCkðq1;.; qmÞ ¼ 0 at vU; (1)

for j ¼ 1,.,m and k ¼ 1,.,n, where vU is the boundary of the

computational domain U, and both the equations and boundary

conditions may depend on various parameters. These are solved for

N0 parameter values that must be representative of the parameter

range we intend to cover, obtaining N0 solutions qj1;.; qjN0
, which

will be called snapshots. The associated POD modes for each state

variable, denoted as Qj1;.;QjN0
, are calculated [5] as the eigenvec-

tors of the associated covariance matrix Rj, defined as

Rj
kl

¼ hqjk; qjli, where h; i is an appropriately defined inner product.

The square root of the eigenvalues of Rj, sj1;.;sjN0
, are known as

singular values. The state variables are expanded in terms of the

POD modes as

qj ¼
X

Nj

k¼1

AjkQjk: (2)

The singular values are sorted in decreasing order, and the

modes are ordered accordingly. The number of retained modes in

each state variable, Nj, is selected such that the truncation error is

smaller than some 3, namely

jerrorj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN0

k¼Njþ1

"

sjk
#2
=
XN0

k¼1

"

sjk
#2

r

' 3: (3)

The mode amplitudes are calculated minimizing a residual of the

equations and boundary conditions. In principle, such residual, R, can

be defined substituting (2) into the left hand sides of the equations

and boundary conditions, squaring, and adding for all points in the

computational domain NE and all points in the boundary NBC, as

R ¼
1

NE

X

m

j¼1

X

NE

k¼1

jEQjðxk; ykÞj
2 þ

1

NBC

X

n

j¼1

X

NBC

k¼1

jBCjðxk; ykÞj
2; (4)

where EQj(xk, yk) and BCj(xk, yk) denote the result of calculating the

expansions (2) at the mesh point (xk, yk) and substituting into the

left hand sides of the equations and boundary conditions (2). Note

that the continuity equation and the homogeneous boundary

conditions (such as no slip) need not be imposed in the expansion

(2). This is because the linear, homogeneous constraints are auto-

matically satisfied by the snapshots and also by the POD modes

(which are linear combination of snapshots). Thus, only the

remaining equations and boundary conditions need to be consid-

ered in the definition of the residual (4).

It should also be noted that, in principle, the residual (4) is

computed using the exact solution of the equations and boundary

conditions. These are not to be confusedwith those that are used by

the CFD solver, which in fact generally includes additional terms to

help convergence. In fact, adding these additional terms will be

convenient to avoid spurious solutions, see Section 4 below.

Calculation of the residual involves a computational effort that

scales with NE, which is usually quite large. As shown in [16], this

CPU effort can be greatly reduced considering a smaller number of

mesh points, which scales with the number of retained modes. The

latter is usually much smaller than the total number of mesh points

in the computational domain. The computational effort also

depends on the method that is used to minimize the residual.

2.2. Minimizing the residual with a genetic algorithm

In our previous work [13,15,16], we have used a genetic algo-

rithm (GA), which is reviewed briefly in Appendix C, to minimize

the residual. The advantage of the GA relies in its robustness since,

in principle, it provides the global minimum even if (i) no

approximation of the solution is available and/or (ii) the residual

exhibits several local minima and/or (iii) the residual is very steep

(even discontinuous). The main disadvantage of the method is the

relatively large (but still much smaller than its counterpart using

CFD) CPU time that can be needed for convergence, which is due to

both its slow convergence rate and the need to explore a significant

part of the POD manifold. In fact, the GA can only explore a finite,

user-defined set of values of the POD-amplitudes. Thus, in order to

define that part of the POD manifold that is to be explored, an

estimate of the solution is needed in practice. This estimate was

obtained in [13,15,16] by means of a combination of POD projection

and modal interpolation, which required that the snapshots be

spread around the parameter space; for each mode amplitude, the

span was defined to range between one half and twice the
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estimated value. In other words, the advantage (i) above is some-

what offset in practice. The POD þ GA method was thoroughly

studied in [16], attending to various issues related to the definition

of the residual, the required number of snapshots, the number of

retainedmodes, and the role of CPU errors. In particular, it was seen

that attention must be paid to CFD errors, which affect higher order

modes and should be filtered out. Otherwise, if too manymodes are

retained, the residual minimization can yield spurious solutions.

There is, of course, a conflict here since a sufficient amount of

modes must be retained to obtain a good approximation.

2.3. Gradient-like and continuation methods

Gradient-like methods are much faster than the GA due to their

super linear convergence rate. However, the standard Newton

method exhibits two main difficulties:

! It requires an accurate calculation of the gradient ðgi ¼ vaiRÞ

and the Hessian matrix ðGij ¼ v
2
aiaj

RÞ of the residual, a process

that is quite computationally expensive. This difficulty will be

overcome replacing the Newton method by a quasi-Newton

method. Specifically, a Broyden method [20] will be used that

is described in the Appendix A, at the end of the article.

! Both the Newton and quasi-Newton methods are local

methods that generally require a good initial guess. This diffi-

culty will be solved using the continuation method described

in Appendix B.

The resulting gradient-like þ continuation method will be

labeled as GL þ C method below.

3. The test problem

The problem of 2-D non-isothermal flow past a backward-facing

step in the laminar regime is considered. A sketch of the (non-

dimensional) geometry and the computational domain is presented

in Fig. 1 below. The flowmoves from left to right and it separates at

the step corner yielding a recirculation region, whose length LR
depends strongly on the flow parameters. The walls are adiabatic

except for a piece of the lower wall downstream of the step, where

a wall temperature is imposed. It is considered that the working

fluid is water and that both its viscosity and thermal conductivity

depend on temperature.

The conservation equations and boundary conditions of the

problem are:

V$u ¼ 0 (5)

u$Vuþ Vp%
1

Re
V$

h

m
!

Vuþ VuT
"i

¼ 0 (6)

u$VT %
1

RePr
V$½kVT ' ¼ 0 (7)

where u is the velocity vector, whose x and y components are

denoted as u and v, respectively, p is the pressure, T is the

temperature, Re is the Reynolds number, Pr is the Prandtl number, m

is the viscosity, k is the thermal conductivity, vx and vy stand for

partial derivatives and D ¼ v
2
xx þ v

2
yy is the Laplacian operator. The

spatial variables, the velocity, and the pressure are non-

dimensionalized with the hydraulic diameter of the inlet section,

the inlet average velocity, and the dynamic pressure, 2~h
inlet

, ~U
inlet

,

and rinletð~U
inlet

Þ2, respectively; the non-dimensional temperature is

defined as T ¼ ð~T % ~T
inlet

Þ=ð~T
max

% ~T
inlet

Þ, where tildes denote

dimensional quantities and the superscript max stands for the

maximum temperature imposed at the non-adiabatic part of the

lower wall (353 K). The working fluid is water, whose viscosity and

thermal conductivity are temperature dependent. Assuming that

the temperature at the entrance is ~T inlet ¼ 293 K and using well-

known correlations [21] for water, the non-dimensional viscosity

and thermal conductivity are given by

m ¼ m293K

!

1% 1:1292( T þ 0:4904( T2
"

(8)

k ¼ k293K

!

1þ 0:1572( T % 0:047( T2
"

(9)

The inlet Reynolds and Prandtl numbers are defined as

Re ¼ 2~rinlet
~hinlet

~uinlet=
~mð~T inletÞ and Pr ¼ ~cp~mð~T inletÞ=

~kð~T inletÞ

Concerning the boundary conditions, at the inlet section, x ¼ 0,

the flow is assumed to be Poiseuille-like and the temperature, equal

to the coolant temperature,

u ¼ %24ðy% 1Þ

$

y%
1

2

%

; v ¼ 0; vxp ¼
%48

Re
;

T ¼ 0 at x ¼ 0; ð10Þ

and a stress free boundary condition ðvxu ¼ vxv ¼ v
2
xxp ¼

vxT ¼ 0Þ is imposed at the outlet section. The boundary condition

at the non-adiabatic part of the lower wall is

u ¼ v ¼ 0; T ¼ Twall if 5 < x < 10 and y ¼ 0: (11)

The remaining part of the lower wall and the upper wall are

thermally insulated. Note that only the non homogeneous

boundary conditions (11) and (12) have been displayed. As

explained in Section 2.1, the homogeneous boundary conditions

need not be considered in the construction of the ROM.

Note that we are giving boundary conditions for pressure at

both the entrance and the exit of the domain, which in principle are

not necessary because the pressure is just a Lagrange multiplier in

incompressible the NaviereStokes equations, which is needed to

compensate for the (extra) continuity equation. But the boundary

conditions for pressure are just the ones that match with parallel

flow at both the entrance and exit. A pressure boundary condition

at the entrance is explicitly given (and used in the ROM construc-

tion) because this is convenient to improve precision in the analysis

of next section.

CFD computations are carried out in an equispaced mesh that

exhibits 32,051 points, using the steady-state version of the flow

solver developed by one of the authors of the present article,

described in [22]. In particular, the solver is based on a pseudo-

compressibility approach (see [22,23] for details), which also

requires a boundary condition for pressure at solid walls. This is

obtained integrating (near thewall) themomentum equation in the

direction perpendicular to the wall (except at the corners, where

the direction that bisects the corners is considered), with one sided

(into the flow domain) derivatives, and imposing no slip at thewall.

The solver includes various stabilizing terms in all equations, which

are included to avoid instabilities without the need of using too fine

of a mesh. These stabilizing terms will be considered below.

Additional details of the solver are not needed in this article.Fig. 1. Sketch of the test problem.
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4. Results

The GL þ C method will be applied to the test problem in the

following parameter range (Fig. 2): 50 ! Re ! 250 and 0 ! Twall ! 1.

Three figures of merit will be considered, namely the horizontal

reattachment length, LR, defined as the horizontal length on the

lower wall of the recirculation bubble (see Fig. 1), the pressure drop

DP, defined as the difference between the vertically averaged

pressure values in the outflow and the inflow sections of the

computational domain, and the Nusselt number, defined as in

[13,15,16], namely

Nu ¼
~Q
0

2
 

~Tmax $ ~T inlet

!

k
 

~Twall

!

~hinlet

¼

Z

10

5

vyTðx;0Þdx (12)

where ~Q
0
is the (dimensional) heat flux through the non-adiabatic

part of the lower wall. The relative error in the figures of merit is

defined as the difference between their values computed by the

ROM and the CFD solver divided by their respective mean CFD-

values throughout the parameter space, which are LR ¼ 1:99,

DP ¼ $2:19, and Nu ¼ 3:08, and errors are defined in %. In other

words, errors are defined as

ErrorðLRÞ ¼
jLR;ROM $ LR;CFDj

LR
( 100 (13)

ErrorðDpÞ ¼
jDpROM $ DpCFDj

Dp
( 100 (14)

ErrorðNuÞ ¼
jNuROM $ NuCFDj

Nu
( 100 (15)

These errors will be computed at the five test points P01,.,P05,

whose location in the parameter space is given in Table 1, where the

specific values of the CFD computed figures of merit are also

provided.

To beginwith, POD is applied to the 25 CFD calculated snapshots

indicated in Fig. 2. These snapshots have proven to be representa-

tive enough [16] for the steady states in the considered parameter

space.

The number of modes that are to be retained in each flow

variable is now decided according the a priori error estimate (3).

Fig. 3 shows the normalized energy associated with each POD

mode, Ei ¼ s2
i =
P

i

s2
i , vs. the mode number. Note that the number

of nonzero singular values in the velocity components and the

pressure is equal to the number of snapshots, namely 25; the

temperature instead only shows 20 nonzero singular values

because the 5 snapshots associated with Twall ¼ 0 are strictly

isothermal. Also note that the energy decays fairly fast in the four

flow variables, which means that the redundancies associated with

the parameters are well accounted for by POD. The error bound 3¼

10$4 in (3) (which approximately corresponds to the energy level

Ei ¼ 10$8 in Fig. 3) is a good root mean square (RMS) error bound

in this problem [16] and yields the following numbers of modes

14; 17; 8; and 19 modes (16)

in the flow variables u, v, p, and T, respectively. The disparity in the

required number of modes is due to the spatial structure of the flow

variable distributions. The temperature fields are more complex

than the velocity and pressure fields (appreciated in the slower

decay in Fig. 3) and require retaining almost all available modes.

Going beyond this energy level of the last temperaturemodewould

not improve the description of the temperature field, since almost

all modes on the temperature are already retained. The pressure

requires fewer modes than the velocity components (see Fig. 3)

because it remains almost constant in the y-direction in most of the

fluid domain.

The truncated expansions resulting from retaining the numbers

of modes (16) are substituted into the residual R, defined as in

eq. (4), with EQj and BCj standing for the momentum and energy

eqs. (6)e(8) and the boundary conditions (11)e(12). Note that

(as anticipated in Section 2) the continuity eq. (5) and the

remaining boundary conditions are homogeneous and need not be

considered. Also, as anticipated right after eq. (4), the residual is

calculated using only a limited number of test points. Based on

Fig. 2. Parameter space in the Twall vs. Re plane, snapshots (the 25 cross points of the

mesh), and test points (P01eP05).

Table 1

Test points coordinates and figures of merit.

Test point Re Twall LR DP Nu

P01 75 0.875 1.28 $3.59 4.48

P02 225 0.875 2.78 $0.98 6.15

P03 75 0.125 1.18 $3.71 0.57

P04 225 0.125 2.64 $1.01 0.74

P05 175 0.375 2.26 $1.38 2.47

Fig. 3. Normalized energy of the POD modes for u (solid, thick line), v (solid, thin line),

p (dashed, thin line), T (dashed, thick line).
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a former calibration in reference [16], the residual is calculated

using 84 mesh points uniformly spread out in the following rect-

angular projection window: 5.5  x  10, 0 < y < 1.Note that using

these 84 mesh points (instead of the 32,051 points contained in the

computational mesh) greatly reduces the CPU time needed to

calculate the residual. The resulting residual is then used in the

GL þ C method (namely, it is minimized using the gradient-like

method described in the Appendix A, which is combined with

the continuation method described in Appendix B); at each test

point, continuation is performed with 31 ¼ 10#5 from the nearest

snapshot in the parameter space. For reference, the errors of the

results obtained minimizing the residual with a GA (as explained in

Section 2.2) are also shown in Table 2. The CPU time required to

calculate each flow distribution using the GL þ C method is of the

order of 2 s, which compares well with the CPU times required by

both the GA (10 min) and the CFD solver (6 h). In addition,

construction of the ROM requires running the CFD solver to

calculate the snapshots, which is by far the most computationally

expensive part of the process. In this context, an effectivemethod to

minimize the required number of snapshots would be quite

convenient, as already mentioned in Section 1.

Table 2 shows that, unfortunately, the results with the GL þ C

method are not as good as could be expected, although it is to be

noted that a 10% error is the typical band discrepancy when per-

forming MEMS experimental testing. In particular, the reattach-

ment length at the test point P04 and the Nusselt number at the test

points P01 and P02 show errors that are too large. The results with

the GA are closer to their CFD counterparts than those provided by

the GL þ C in some cases (test points 4 and 5) even though the

GLþ Cmethod yields a smaller residual. This is unexpected because

the convergence of the GL þ C method is much better than that of

the GA. Thus, a closer look at the GL þ C method is necessary. The

possible reasons for the discrepancy are:

1. The retained number of modes is not sufficiently large.

2. The residual is calculated with not enough mesh points.

3. The continuation method is not fine enough.

4. The GL þ C converged solutions are local minima, and not the

global minima that result from the GA.

5. The residual used by the ROM is based on the exact

NaviereSkokes þ energy equations, while the CFD solver

includes some artificial stabilization terms.

These five possible reasons are now considered. The first

possibility is checked retaining all modes: 25 modes per variable

except T, which only has 20 modes because of redundancies (the

temperature fields in the five lowest snapshots in Fig. 2 are all

identically zero), giving a total number of 95 modes. Results are

shown in Table 3. The counterparts using the GA are not provided

because of the huge computational time that would be neededwith

this number of modes; note that the GA CPU time increases expo-

nentially with the number of unknowns, while it increases only

slightly when using the GL þ C method, which only requires 9.3

CPU seconds per 5 points. Table 3 shows that some of the results are

somewhat improved, but the errors in the reattachment length at

point P04 and the Nusselt number at P02 are still quite large. Thus,

it is concluded that increasing the number of modes does not solve

the difficulty.

Similarly, the possible reasons 2 and 3 are checked repeating the

calculations using a residual based on all points in the projection

window (11,075), and also refining the continuation method. The

results (omitted here for the sake of brevity) do not improve,

showing that none of these two reasons is responsible for the

discrepancy.

In order to further check that none of the first three reasons

above is responsible for the discrepancies, we use the method to

reconstruct some of the snapshots themselves, taking as initial

guess projection of the CFD solution on the POD modes. Retaining

all modes, the GL þ C method yields the results shown in Table 4.

This table makes it very clear that something is awry in the

GL þ C method, which is finding a different solution from that

provided by the CFD solver in those snapshots with larger Reynolds

numbers, which are the most demanding ones from the compu-

tational point of view: the GL þ C method is finding a spurious

solution, fairly different from the CFD solution, in spite of the fact

that, since all themodes are retained, the initial guess (projection of

the CFD solution onto the PODmanifold) exactly coincides with the

CFD calculated snapshot. This leaves us with only the last two

possibilities anticipated above.

Let us now check the local/global character of the minima of the

residual. The converged values of the residuals in Table 2 provided

by the GA and the GL þ C are of the order of 2 $ 10#5 and 5 $ 10#6,

respectively. Comparison of the associated POD-modes amplitudes

is also enlightening. The converged amplitudes at these values turn

out to be fairly different at the problematic test points. For illus-

tration, the first 10mode amplitudes provided by the GA associated

with the temperature at the test point P02 are 1.01, #1.4 $ 10#2,

2.3 $ 10#3, #1.5 $ 10#3, 3.7 $ 10#4, #1.1 $ 10#4, #5.6 $ 10#5,

1.6 $ 10#5, #1.2 $ 10#5, and #2.7 $ 10#6, while their counterparts

provided by the GL þ C are 1.25, #3.3 $ 10#2, 1.1 $ 10#2,

4.2 $ 10#4, #4.2 $ 10#6, #1.7 $ 10#3, 8 $ 10#5, 5.9 $ 10#4,

7.1 $ 10#5, and 2.1 $ 10#4. Thus:

a) It is the amplitudes of the higher order modes that show the

largest relative discrepancies. And the values of the higher
Table 2

Relative errors in % resulting fromminimizing the residual with both the GA and the

GL þ C methods, retaining the numbers of modes displayed in (14). Errors smaller

than 0.1% are rounded off to zero hereafter.

Test point GA GL þ C

LR (%) DP (%) Nu (%) LR (%) DP (%) Nu (%)

P01 0 0.4 1.5 1 1.3 8.7

P02 0 0.2 8 4 0.5 7.2

P03 0 0.9 5.2 0 1.7 0.8

P04 0 0.1 5.9 9.1 0.5 3.1

P05 0 0.2 1.6 4 0.1 2.6

Table 3

Relative errors in % resulting fromminimizing the residual with the GL þ C method,

retaining all modes (25 for u, v, and p; 20 for T).

Test point GL þ C method

LR (%) DP (%) Nu (%)

P01 1 0.6 0.7

P02 0 0 9.3

P03 0 0 1.4

P04 7 0 3.3

P05 2 0.5 3.2

Table 4

Relative errors in % obtainedwith the GLþ Cmethod, retaining all modes (25 for u, v,

and p; 20 for T) in five snapshots.

Re Twall LR (%) DP (%) Nu (%)

50 1 0 0.3 0.9

100 1 1 0.4 0.2

150 1 0 0.9 5.6

200 1 1 1 10.9

250 1 4 0.8 12.3
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order modes provided by the ROM are generally larger than

their GA counterparts.

b) The residual is better minimized by the GL þ C method, but in

spite of this, the solution provided by the GA is closer to its CFD

counterpart. This is due to the fact that the spurious solution

provided by the GLþ Cmethod exhibits quite large highermode

amplitudes, which cannot be reached by the GA, since it is

outside the span allowed in theGA (see Section 2.2). Limiting the

span in the GA somewhat filters spurious solutions, which are

allowed in the GL þ C method. In other words, these spurious

solutions (with smaller residuals than the correct solution) were

not accessible to the GA (Tables 2 and 3) for the simple reason

that the span allowed in the GA searching excluded them.

The fact that the spurious solution provided by the GL þ C

method is associated with too large higher order mode amplitudes

suggest that CFD errors might play a role in the discrepancies. In

other words, the gradient-like method minimizes a residual based

on the exact equations, but using modes resulting from CFD

calculations (which involve CFD errors not accounted for in the

residual calculation) and selecting spurious values of the higher

order modes amplitudes.

Two types of CFD errors are present:

i. Standard discretization errors. These could only be avoided

using either a finer mesh (which would increase the

computational effort to calculate the snapshots) or a better

discretization scheme instead of equispaced finite differences

(which would make the proposed method strongly depen-

dent on the CFD mesh).

ii. Since the calculation of the residual is based on the exact

governing equations, the effect of the artificial stabilizing

terms that are added to the CFD solver are seen as errors by

the ROM.

If the culprits of the spurious solutions were the errors of the

type (i), then the effectiveness of the ROM would be limited. Let us

analyze the role of the second type of “errors”, which leads us to the

fifth possible reason mentioned above. To this end, we replace eqs.

(5)e(8) by the steady-state equations that are actually CFD solved.

This results in adding to the left hand sides of eqs. (5)e(8) the

following four terms

d1Dpþ d2D
2p; d3D

2u; d4D
2
v; and d5D

2T (17)

which are added to the continuity equation, the horizontal and

verticalmomentumequations, and the energyequation, respectively,

with d1 ¼ 1:6" 10#5, d2 ¼ 2:56" 10#8, and d3 ¼ d4 ¼ d5 ¼

2:56" 10#6. Using the resulting new equations in the calculation of

the residual, the GL þ C method produces the results shown in

Table 5, for the same snapshots considered in Table 4.

The GL þ C method now produces acceptable solutions (within

2% of the CFD solutions) in the five snapshots. Thus, it seems that

the reason for the spurious solutions has been found.

Nevertheless, the results in Table 5 are obtained with all modes

retained, and must be confirmed using the same number of POD

modes retained in the construction of the ROM above. Thus, we use

the GL þ C method with the artificial dissipation terms included,

retaining the modes indicated in eq. (14), to calculate the solutions

at the five test points. Results are provided in Table 6, as obtained

initiating continuations at two of the corners of the parameter

space, as indicated in the caption. Note that now the results are

reasonably good and, furthermore, they are independent of the

point where continuation is initiated. Thus, the difficulty has been

solved.

In the Introduction, it was stated that the Galerkin procedure

exhibits a higher order mode truncation instability while the

present method does not. This remains true as the present method

converges to the CFD solution without needing any additional

artificial stabilizing terms, not contained in the CFD formulation. In

other words, the ROM inherits the instability of the CFD code, but it

does not produce any additional intrinsic higher order mode

instabilities, as the Galerkin method does. If CFD were based on the

exact equations, no additional stabilizing terms would be needed.

Summarizing, the ROM proposed in this article consists in

minimizing the residual with the GLþ Cmethod (Appendices A and

B), calculating the residual with the equations considered by the

CFD solver (artificial stabilizing terms included). This method has

been checked to be both consistent and robust, which is further

illustrated now with two extensions.

A rougher continuation method (with larger continuation steps)

produces the same results. In fact, we have checked that one

continuation step (which only requires less than two CPU seconds)

is enough to compute all test points, with the initial condition

located at any of the 25 snapshots. In other words, the GL þ C

method converges to the right solutionwhen the initial guess is any

of the CFD calculated snapshots. This means that continuation is

not really necessary for this particular test problem, which must be

due to an appropriate convexity property, which could not be

guessed a priori. Such a convexity property is not expected in

general fluid dynamic-thermal problems, which will generally

require using the continuation method.

Table 5

Counterpart of Table 6 retaining all modes and calculating the residual with the

modified governing equations that include the artificial stabilizing terms

(mimicking the CFD solver).

Re Twall LR (%) DP (%) Nu (%)

50 1 1 0.1 1.7

100 1 1 0.7 0.8

150 1 1 1 1.1

200 1 1 0.8 0.8

250 1 0 0.4 1.4

Table 6

Counterpart of Table 5 (GLþ C, with artificial stabilizing terms) at the five test points,

retaining the modes indicated in eq. (14); continuation is initiated at the indicated

snapshots.

Initial Re Initial Twall Test point LR (%) DP (%) Nu (%)

50 0 P01 2 0.7 3.5

250 1 P01 2 0.7 3.5

50 0 P02 2 0 0.6

250 1 P02 2 0 0.6

50 0 P03 1 1 2.5

250 1 P03 1 1 2.5

50 0 P04 3 0 4.2

250 1 P04 3 0 4.2

50 0 P05 0 0.1 0.5

250 1 P05 0 0.1 0.5

Table 7

Comparison of the relative errors when using the 25 original snapshots and the 16

snapshots on the boundary on the parameter space.

Test point 25 snapshots 16 snapshots

LR (%) DP (%) Nu (%) LR (%) DP (%) Nu (%)

P01 2 0.7 3.5 1 0.8 2.7

P02 2 0 0.8 2 0.1 0.5

P03 1 1 2.5 1 1.1 2.1

P04 3 0 4.2 2 0.1 4.2

P05 0 0.1 0.5 0 0.2 0.6
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The second extension results from the observation that we have

a robust ROM, able to calculate the solution at any point of the

parameter space, initiating continuation at any point of the

parameter space. Thus, the CFD calculated snapshots are only

needed to compute the POD manifold. The latter should require

a smaller number of snapshots than those required in reference

[16], where an initial guess of the solution was necessary to define

the genetic algorithm span. In order to check this, the number of

retained snapshots will be decreased, with snapshots located in the

parameter space in two different fashions, namely either concen-

trated in the boundary or spread in the parameter space, empha-

sizing the robustness of the method. As an example of concentrated

snapshots, only those 16 snapshots indicated with crosses in Fig. 3

(located at the boundary of the parameter space) are considered.

The resulting POD manifold is truncated as above (with the same

RMS error), which now requires 12, 13, 8, and 10 modes in u, v, p,

and T, respectively. The resulting errors in the figures of merit are

shown in Table 7, which shows that reducing the number of

snapshots from 25 to 16 (which essentially divides by 1.5 the CFD

computational effort) produces, basically, the same results.

As an example of more evenly distributed snapshots, the 13

snapshots indicated with black filled diamonds in Fig. 3 are

selected. Truncating the associated PODmanifold as above requires

12, 13, 8, and 11 modes in u, v, p, and T, respectively. The associated

results are shown in Table 8, which are almost as good as those

obtained above, and show that location of the snapshots in the

parameter space is not critical to the solution. The number of

modes that need to be retained will change however. Even though

the number of snapshots has been decreased by three, the number

of modes retained is basically the same as when 16 snapshots were

retained. This is not surprising since the 13 snapshots are distrib-

uted in a more even fashion and each snapshot contributes less

redundant information to the POD basis.

The results above show that the ROM developed in Section 4

provides the figures of merit with reasonable accuracy. It also

approximates well the distributions of the flow variables in the

computational domain, as illustrated in Fig. 4, where the vertical

distributions of u and T are provided at two representative sections,

namely x ¼ 6 (within the circulation region) and x ¼ 13 (in the

downstream region), as obtained with the three sets of snapshots

considered above (Fig. 5). Q2

5. Concluding remarks

A ROM has been developed that is based on a combination of

POD-mode expansions (from a set of CFD calculated snapshots),

residual minimization, and continuation in the parameter space. In

particular, the residual minimization is based on a Broyden-type,

quasi-Newton method. Such a method produced spurious solu-

tions in situations in which a GA led to the correct solution. By

spurious we mean here solutions that are not close to the CFD

solution. The reason was thoroughly checked, concluding that the

difficulty is solved by using in the definition of the residual the

same governing equations the CFD solver is based upon; namely,

including the same artificial dissipation terms. Note that inclusion

of the artificial terms is not related with any intrinsic instability of

the method, but with an instability that was already present in the

CFD solver.

The resulting method is both:

! Quite computationally efficient since calculation of each flow

state only requires less than 2 CPU seconds (see Section 4)

Table 8

Counterpart of Table 7 using the 13 snapshots indicated in Fig. 3.

Test point 25 snapshots 13 snapshots

LR (%) DP (%) Nu (%) LR (%) DP (%) Nu (%)

P01 2 0.7 3.5 0 0.6 6.0

P02 2 0 0.8 3 0 1.1

P03 1 1 2.5 1 0.8 2.6

P04 3 0 4.2 3 0 4.3

P05 0 0.1 0.5 1 0.1 0.3

Fig. 4. Location of the two sets of 13 (diamonds) and 16 (crosses) snapshots in the

parameter space; location of the test points is also recalled.

Fig. 5. Distributions of the horizontal velocity and the temperature at the test point

P05, at x ¼ 6 (top) and x ¼ 13 (bottom) for CFD (solid, thick line), 13 snapshots (solid,

thin line), 16 snapshots (dashed line), and 25 snapshots (dash-dotted line).
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while it needs 10 CPU minutes and 6 CPU hours using a ROM

based on a GA method and the CFD solver, respectively.

Of course, this computational effort must be added to that

associated with the CFD calculation of the snapshots, but such

calculation if performed only once. In any event, this is a significant

added value envisaging practical engineering design applications.

Furthermore, the method’s accuracy (which is of the order of 5%

when compared with the CFD results) is comparable to (or even

better than) the spread bandwidth ( 10%) that is typical of

experimental testing activities in MEMS.

! Quite robust since the result is fairly independent of the

continuation path. Also, the required number of snapshots is

reasonably small, and furthermore its location in the parameter

space is not critical, even though an optimal selection would

allow to further decrease its number. Again, this feature makes

the method attractive for engineering design application.

Thus, we expect that the ROM developed in this paper be a step

further in current efforts to disseminate the use of reduced order

models in industrial environments.

Acknowledgments

This research has been funded by the Spanish Ministry of

Education and Science under Grants DPI2009-07591 (E.B, D.A., and

A.V) and TRA2010-18054 (JMV). The authors are indebted with

three anonymous referees, whose comments and suggestions hel-

ped to clarify the presentation of the results.

Appendix A. The gradient-like method

The gradient-like method is designed to calculate the POD-

mode amplitudes (which are considered together in a vector a) that

minimize the residual. The method is a (quasi-Newton) Broyden’s

method, which proceeds in the following steps:

1. The initial values of the amplitudes, a0, and a positive-definite

matrix,M1, are selected. Here, we selectM1¼I¼ the unit matrix.

2. The amplitudes vector a ¼ ða1;.; aNÞ is updated using the

formula anþ1 ¼ an þ anþ1Mnþ1gn, where g ðgi ¼ vaiRÞ is the

gradient vector, and the scalar anþ1 is determined upon one-

dimensional minimization of the residual R, which is done using

theRegula falsimethodtosolve theequationg ¼ 0 (i.e., imposing

that the gradient along the associated straight line be zero).

3. The matrix Mn is updated to Mnþ1, using the Broydene

FletchereGoldfarbeShanno (BFGS) method [20], which yields

Mnþ1 ¼ Mn þ

 

I þ

!

v
n
1

"T
Mndn1

!

dn0
"T
dn1

!

!

dn0
"T
dn0

!

dn0
"T
dn1

&
dn0
!

dn1
"T
Mn þMndn1

!

dn0
"T

!

dn0
"T
dn1

where dn0 ¼ an & an&1 and dn1 ¼ gn & gn&1. Here, the superscript T

denotes the transpose.

4. If the L2 norm of the vector gnþ1 is smaller than some pre-

defined 31, then iteration ends. Otherwise, the method

proceeds back to step 2.

After trying several quasi-Newton methods, the BFGS formula

above has been chosen as the one that exhibits better performances

in various POD/residual minimization problems. The resulting

method exhibits a super linear convergence rate, a low time cost

(the number of operations scales with the square of the number of

retained POD modes), and robustness (the matrix M is always

positive-definite).

Appendix B. The continuation method

Continuation is performed with a natural parameter continua-

tion [24] method straight lines in the parameter space. It is

convenient to scale the parameters such that they vary from 0 to 1.

In the test case considered in this paper, this is made using the

rescaled Reynolds number (Re & 50)/200 and the wall temperature

Twall. In each step of the continuation method, the gradient-like

method is applied as described in Appendix A. The continuation

method starts in a given snapshot and proceeds in four steps:

1. The initial guess of the amplitudes vector is calculated as the

projection of selected snapshot on the PODmanifold. The initial

step size is selected (as, e.g., ds ¼ 0.05).

2. The parameters are updated moving a step of length ds along

the continuation line.

3. For the new parameter values, the amplitudes are calculated

running the gradient-like method in Appendix A using as initial

guess the solution in the former continuation step. Now, we

have three possibilities:

i. If convergence does not occur in a number of steps ten

times larger than the number of unknowns (the total

number of amplitudes in the four flow variables), then ds is

halved and the process is repeated from step 2.

ii. Otherwise, the converged solution is accepted at the

current parameter values. Concerning ds, (a) it is doubled at

the next continuation step if convergence occurs in

a number of steps smaller than the number of unknowns

and (b) it is maintained otherwise.

4. If the final point in the continuation curve is reached the

process ends. Otherwise, the process proceeds back to step 3

with the continuation step ds as defined above.

Appendix C. The genetic algorithm

The genetic algorithm (GA) is used to obtain the global

minimum of the residual defined in Eq. (4), which depends on

m ¼ 6 'n variables (the amplitudes Ajk). The algorithm uses NI

individuals, each of whom exhibits m chromosomes (the ampli-

tudes Ajk); each chromosome in turn consists of 8 genes, which are

the bits that codify this particular amplitude. Fitness of an indi-

vidual is defined according to the value of the residual (4) associ-

ated to their genes. The GA allows the individuals to compete

among themselves, mutating, and breeding, as follows. The algo-

rithm uses an initial number, 0.1 ' NI, of equal individuals with the

genes obtained by POD þ interpolation, and the remaining 0.9 ' NI

with randomly selected genes. At the beginning of each generation,

the individuals are ordered according to their fitness. The first

0.1 ' NI individuals, known as elite individuals, survive to the next

generation. The remaining 0.9 ' NI individuals compete randomly

among themselves as follows: two randomly chosen individuals

compare their fitness and the best fit survives; such competition is

done 0.9 ' NI times. Then, the survivors cross their genes in

randomly chosen pairs to produce a maximum of 0.9 ' NI new

individuals whose genes are chosen randomly from the genes of

the parents. Another 0.1 ' NI genes of the new individuals

(excluding the elite) suffer a further random mutation. The

resulting new individuals plus the elite individuals form the
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is designed to calculate the PODis designed to calculate the PODis designed to calculate the POD

the

, using the Broyden, using the Broyden



population for the next generation. The process is stopped if either

(a) the fitness of the best fit individual remains unchanged for 50

generations, or (b) NG generations occur without accomplishing

condition (a). In either case, the individual with the lowest fitness is

considered the optimal individual and its genes are assumed to

codify the solution of the minimization problem.

References

[1] Bui-Thanh, Proper Orthogonal Decomposition Extensions and Their Applica-
tions in Steady Aerodynamics, Master Thesis: Singapore-MIT Alliance 2003.

[2] L. Lorente, J.M. Vega, A. Velázquez, Generation of aerodynamic databases using
high order singular value decomposition, J. Aircraft 25 (2008) 1779e1788.

[3] D. Amsallem, C. Farhat, An interpolation method for adapting reduced-order
models and applications to aeroelasticity, AIAA J. 46 (2008) 1803e1813.

[4] D. Amsallem, J. Cortial, K. Calberg, C. Farhat, A method for interpolating
manifolds structural dynamics reduced-order models, Int. J. Numer. Methods
Eng. 80 (2009) 1241e1258.

[5] T.R. Smith, J.Moehlis, P. Holmes, Low-dimensionalmodelling of turbulence using
the proper orthogonal decomposition: a tutorial, Nonlinear Dyn. 41 (2005)
275e307.

[6] B. Galletti, C.H. Bruneau, C. Zannetti, A. Iollo, Low order modeling of laminar
flow regimes past a confined square cylinder, J. FluidMech. 194 (2004) 92e116.

[7] S. Sirisup, G.E. Karnadakis, A spectral viscosity method for correcting the long
term behavior of POD models, J. Comp. Phys. 194 (2004) 92e116.

[8] J. Burkhard,M.Gunzburger,H.C. Lee, PODandCVTbased reducedordermodeling
of NaviereStokes flows, Comp. Meth. Appl. Mech. Eng. 196 (2006) 337e355.

[9] M.F. Barone, I. Kalashnikova, D.J. Segalman, H. Thornquist, Stable Galerkin
reduced order models for linearized compressible flow, J. Comput. Phys. 288
(2009) 1932e1946.

[10] I. Kalashnikova, M.F. Barone, On the stability and convergence of a Galerkin
reduced order model (ROM) of compressible flow with solid wall and far-field
boundary treatment, Int. J. Numer. Methods Eng. 83 (2010) 1345e1375.

[11] M.-L. Rapun, J.M. Vega, Reduced order models based on local pod plus
Galerkin projection, J. Comp. Phys. 229 (2010) 3046e3063.

[12] P. LeGresley, J. Alonso, Investigation of Non-Linear Projection for POD
Based Reduced Order Models for Aerodynamics (2001) AIAA Paper 2001-
0926.

[13] D. Alonso, A. Velazquez, J.M. Vega, Robust reduced order modeling of heat
transfer in a back step flow, Int. J. Heat Mass Transfer 52 (2009)
1149e1157.

[14] Y. Rouizi, Y. Favennec, J. Ventura, D. Petit, Numerical model reduction of 2D
steady incompressible laminar flow: application on the flow over a backward
facing step, J. Comp. Phys. 228 (2009) 2239e2255.

[15] E. Bache, J.M. Vega, A. Velazquez, Model reduction in fluid-thermal problems
with variable geometry, Int. J. Thermal Sci. 49 (2010) 2376e2384.

[16] D. Alonso, A. Velazquez, J.M. Vega, A method to generate computationally
efficient reduced order models, Comp. Meth. Appl. Mech. Eng. 198 (2009)
2683e2691.

[17] P. Astrid, S. Weiland, K. Willcox, T. Backx, Missing point estimation methods in
models described by proper orthogonal decomposition, IEEE Trans. Autom.
Control 53 (2008) 2237e2250.

[18] T. Braconnier, M. Ferrier, J.C. Jouhaud, M. Montagnac, P. Sagaut, Towards and
adaptive POD/SVD surrogate model for aeronautic design, Comput. Fluids 40
(2011) 195e209 Q3.

[19] L.S. Lorente, J.M. Vega, A. Velazquez, Finding the Smallest Manifold that
Contains All the Information Required to Generate a Multiparametric Aero-
dynamics Database. Aerospace Sci. Tech., submitted for publication.

[20] R. Fletcher, Practical Methods of Optimization. John Wiley & Sons, 2007.
[21] F.P. Incropera, D.P. Dewitt, Introduction to Heat Transfer. John Wiley & Sons,

1996, Table A-6, pp. 764.
[22] B. Mendez, A. Velazquez, Finite point solver for the simulation of 2-D laminar

incompressible unsteady flows, Comp. Meth. Appl. Mech. Eng. 193 (2004)
825e848.

[23] A. Velazquez, J.R. Arias, B. Mendez, Laminar heat transfer enhancement
downstream of a backward facing step by using a pulsating flow, Int. J. Heat
Mass Transfer 51 (2008) 2075e2089.

[24] H.B. Keller, Lectures on Numerical Methods on Bifurcation Problems. Tata
Institute of Fundamental Research, SpringereVerlag, 1986.

E. Bache et al. / International Journal of Thermal Sciences xxx (2011) 1e9 9

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

THESCI3545_proof ■ 29 September 2011 ■ 9/9

Please cite this article in press as: E. Bache, et al., A computationally efficient reduced order model to generate multi-parameter fluid-thermal
databases, International Journal of Thermal Sciences (2011), doi:10.1016/j.ijthermalsci.2011.08.022


