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Abstract: Here an inertial sensor-based monitoring system for measuring and analyzing 

upper limb movements is presented. The final goal is the integration of this motion-tracking 

device within a portable rehabilitation system for brain injury patients. A set of four inertial 

sensors mounted on a special garment worn by the patient provides the quaternions 

representing the patient upper limb’s orientation in space. A kinematic model is built to 

estimate 3D upper limb motion for accurate therapeutic evaluation. The human upper limb 

is represented as a kinematic chain of rigid bodies with three joints and six degrees of 

freedom. Validation of the system has been performed by co-registration of movements 

with a commercial optoelectronic tracking system. Successful results are shown that 

exhibit a high correlation among signals provided by both devices and obtained at the 

Institut Guttmann Neurorehabilitation Hospital. 

Keywords: motion tracking; inertial sensors; neurorehabilitation; upper limb; 

biomechanical model 
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1. Introduction 

The World Health Organization (WHO) predicts that by the year 2020, acquired brain injury (ABI) 

will be among the ten most common ailments. These injuries dramatically change the life of the 

patients and their families due to their physical, sensory, cognitive, emotional and socio-economic 

consequences. The cause of ABI can be either traumatic (car accidents, falls, etc.) or non-traumatic 

(strokes, brain tumors, infections, etc.). The most common ABIs are stroke and traumatic brain injury 

(TBI) [1]. 

Every year, nine million people around the world suffer from stroke [2]. Globally, cerebrovascular 

disease (stroke) is the second leading cause of death and the eighth cause of severe disability in the 

elderly. The WHO estimated that in 2005, stroke accounted for 5.7 million deaths worldwide, 

equivalent to 9.9% of all deaths, and was the predominant cause of disability, afflicting 30.7 million 

people [2]. Statistical data show that after a stroke, one third of patients die during the first month,  

and 40% of people who recover from the acute phase exhibit a high degree of impairment that 

decreases their independence. Only one third of patients recover their basic functions and can resume a 

normal life [3]. There are not accurate data on the prevalence of TBI in Europe, meanwhile data from 

the United States show a high prevalence of this pathology, with 5.3 million people living with a 

disability from TBI [4].  

New techniques of early intervention and the development of intensive ABI care have noticeably 

improved the survival rate. However, in spite of these advances, brain injuries still have no surgical or 

pharmacological treatment to re-establish lost function. Neurorehabilitation therapies address this 

problem by restoring, minimizing or compensating the functional alterations in a person disabled 

because of a nervous system injury. Medical evidence in neurorehabilitation is scarce and the 

assessment methods, especially those dealing with upper limb function, depend on clinician experience 

and subjectivity. Moreover, motion analysis assessments, which are more sensitive and provide 

objective data, are mainly centered on gait analysis, whereas upper limb tests are still not widely 

performed. Current upper limb motion assessments in neurologic population are focused on  

single-joint kinematics. Moreover, clinical tests are highly dependent on the examiner criteria. Further 

development of reliable and valid multi-joint biomechanical evaluations is required, particularly for 

goal oriented reaching movements [5]. The lack of standardized protocols due to the large variety of 

movements, complexity of the upper extremity and lack of international consensus to validate the 

protocols hampered the advance on this area [6]. 

Many attempts have been done to evaluate upper limb kinematics in neurologic population. 

Typically, these motion analyses are focused on the study of analytical tasks [7]. Moreover, current 3D 

kinematic models include sacrum or pelvic markers [8]. This might jeopardize the application of these 

models in neurologic population due to pelvic instability and lack of trunk control.  

Some advances occurred in the last five years with the publication of normal values during 

functional tasks in adults [6,9,10]. Nevertheless, protocols used in these studies include pelvic markers, 

hampering the application in neurologic population. 

One of the major objectives of neurorehabilitation is to provide patients with the capacity to 

perform specific activities of the daily life (ADL) required for an independent life. Recently, research 

has commonly addressed measurements of upper limb movements because these limbs are frequently 
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used to contact and manipulate objects [11]. Functional assessments based on motion tracking of ADL 

are needed to create new knowledge and increase the efficiency of ABI neurorehabilitation.  

Devices that accurately track human motion are a key component of current physical rehabilitative 

systems. These devices allow therapists to record movements performed by their patients so that they 

can remotely study the results. There are many commercial systems that make human motion tracking 

feasible. These systems use different sensor technologies, including electromagnetic, visual, 

mechanical and inertial sensors. It is important to note that currently, these systems are almost 

exclusively used for gait analysis. Upper limb motion analysis is still being developed. 

BTS SMART-D [12] and Vicon MX [13] are the most popular general-purpose high-precision 

optoelectronic digital systems for gait analysis. These systems basically consist of a set of infrared 

cameras directly connected to an integration box that contains appropriate software for data capture, 3D 

reconstruction, motion analysis and visualization of human movements. Although these two systems 

are well suited to the task of motion analysis, their complexity and characteristics make them 

infeasible for integration into a portable real-time rehabilitative system. Photogrammetry-based 

systems [14] use video cameras as acquisition devices to monitor how different body parts move. A 

good example of this type of system is the Kinescan [15]. 

Electromagnetic motion capture systems [16] are an alternative to those previously described. These 

systems have been widely used for tracking human movements in virtual reality due to their small size, 

high sampling rate and precision. The main advantage of these systems is the absence of marker 

occlusions because the electromagnetic signal is always ―seen‖ by the receiver within a maximum 

distance. Examples of magnetic motion capture systems are MotionStar [17] and LIBERTY [18]. On 

the other hand, one of the main weaknesses of these systems is the latency and jitter that arise due to 

the nature by which sensor measurements are conducted [19]. These disadvantages, along with 

possible interferences that can take place in uncontrolled environments, make electromagnetic systems 

not suitable for portable rehabilitative systems.  

Inertial measurements [20] are a technique designed to measure and report the orientation and 

velocity of an object without the need of an external reference. Inertial Measurement Units (IMUs) are 

based on the use and combination of different inertial sensor technologies, including accelerometers, 

gyroscopes and magnetometers, to provide an accurate estimation of orientation referenced to a fixed 

frame. Gyroscopes provide a measurement of the angular velocity applied to the object and thus an 

estimation of the rotated angle and actual orientation if an initial reference is provided. Because 

gyroscopes have different sources of dynamic drift, the estimation of orientation deteriorates with time. 

To correct these effects, accelerometers and magnetometers are added to the system through data 

fusion algorithms so that external references are provided for drift correction. Accelerometers give a 

measure of the direction of the gravity vector, and magnetometers provide measurements of the 

direction of the Earth’s magnetic field. With this technology, IMUs are able to accurately estimate 

their own orientation with respect to a fixed reference frame formed by gravity and the Earth’s 

magnetic North vectors. 

In the field of motion capture, IMUs can be used to provide continuous orientation data from 

unrestricted movements when the devices are correctly mounted on a subject. Because these sensors 

are sourceless, compact and light, they have become an interesting choice for portable motion tracking 

applications [21-24]. The FAB system [25] is a commercial system based on the application of inertial 
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technology to motion acquisition. This general-purpose system is able to monitor in real time different 

human movements regardless of the limb used. A full review of human motion tracking systems for 

rehabilitation can be found in [26]. 

The main goal of the present research was to develop a real-time portable upper limb motion 

acquisition system for upper limb DLAs and to perform a preliminary validation of the applied 

methodology so as to provide therapists with measurements of the motions performed by their patients 

so that an accurate and personalized therapeutic evaluation can be carried out. For this purpose, a 

kinematic model and a degrees of freedom (DoF) calculation methodology was created. The 

monitoring device proposed in this paper is also intended to work within a virtual reality (VR)-based 

rehabilitation system to provide the user with visual feedback about the upper limb position and 

performance relative to a certain established ADL pattern. 

This paper is organized as follows. Section 2 describes the whole inertial technology-based motion 

tracking system, from the defined biomechanical model to the methodology applied to calculate the 

different upper limb degrees of freedom, and the experimental work carried out for the system 

validation. Section 3 shows the obtained results, and finally, Section 4 states the conclusions extracted 

from this work. 

2. Methods 

2.1. System Description 

In this research, a portable motion capture system based on inertial measurement is proposed. For 

this purpose, commercially available MTi Xsens inertial sensing units have been used [27]. These 

miniaturized sensors include a combination of inertial sensors and an embedded processor to calculate 

an absolute orientation estimation (roll, pitch and yaw), acceleration, angular velocity and magnetic 

North in real time. 

The motion capture system presented in this research work (Figure 1) is composed of four MTi 

sensing units strategically placed on the upper limb. All of the units are controlled by a sensor 

controller device designed specifically for this application. The units and the controller (Figure 2) 

communicate through a 4-wire data and power bus in such a way that the data from the units are sent 

to a PC via the controller using a standard USB connection. This sensor controller has been 

specifically designed and built to control the inertial sensing units; its main functionalities are the 

configuration of the units, their calibration, the synchronization of the data channel between the 

sensors and the computer, and the error management. An automatic configuration sequence is launched 

by the controller each time the system is powered up. This operation is applied to each sensor unit to 

configure the sensors for the application. The controller applies a sequence for the calibration of the 

units when needed, manages the communication among the sensing units and maintains a perfect 

synchronization of all sensor units to ensure minimal data loss and a good performance. The third 

functionality of the controller is to ensure a proper recovery of the system, if possible, when a failure 

takes place. 
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Figure 1. Schematic view of the motion capture system. 

 

Figure 2. System integration box. 

 

 

The present work mainly uses rotation matrices [28] to perform different calculations. These 

matrices, that represent the sensors 3D orientation, are provided by Xsens MTi inertial sensors 

following (1), where ψ is the rotation about the z-axis (yaw), θ is the rotation about the y-axis and φ is 

the rotation about the z-axis (roll): 

















































 

















cossin0

sincos0

001

·

cos0sin

010

sin0cos

·

100

0cossin

0sincos

·· XYZ RRRR  (1) 

Rotation matrices contain information about the relative position of two coordinate systems (in 

terms of Euler angles) so that they can be used to transform any point in one coordinate system to 

another. The main problem that inertial sensors experience when using these matrices for the 

expression of their orientation is the appearance of singularities when a gimbal lock takes place. A 

gimbal lock is the loss of one degree of freedom when the axes of two of the three gimbals are driven 

into the same place. To avoid these singularities, MTi inertial sensors can provide quaternions [28] as 

an efficient and non-singular alternative representation of their relative orientation. Quaternions can be 

interpreted as a rotation χ about a unit vector n: 




























2
sin,

2
cos


nq  (2) 



Sensors 2010, 10                            

 

 

10738 

In order to obtain singularity-free rotation matrices from quaternion representation, Equation (3) 

must be applied: 
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Given (1), sensor roll (φ), pitch (θ) and yaw (ψ) can be obtained by applying the  

following formulae: 
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Here, the arctangent is the four quadrant inverse tangent function. 

The acquisition system is then the combination of the motion capture system and the software 

module that calculates the corresponding kinematic model DoF. As can be observed in Figure 1, the 

motion capture system is composed of a set of four inertial sensing units and a sensor controller that, 

via USB interface, sends orientation data to the processing unit at a pre-programmed rate between 20 

and 80 frames per second. After the estimation of the corresponding DoF, the system provides output 

IP packets containing the biomechanical parameters of therapeutic interest. 

The processing unit, displayed in Figure 1, consists of two software modules: one that reconstructs 

the kinematic model and another that estimates the associated biomechanical parameters. Both of these 

modules are described in detail in the following sections. 

2.2. Kinematic Model 

Human upper limb motion can be approximated as the articulated motion of rigid body parts [29]. 

These segments are upper arm (between the shoulder and elbow joints), forearm (between the elbow 

and wrist joints) and hand (from the wrist joint on). It is important to take into account that, in this 

work, the back segment is considered for two main reasons: to create independence between 

calculations and user position (where the user is facing) and to provide a mechanism to consider the 

compensations of the actual movements by inclination. 

Every joint has its own local axis. Shoulder is modeled as a ball and socket joint with three DoF, 

located in the center of the humeral head. Movements are calculated between the vector representing 

the humerus and the trunk. Elbow is modeled as rotating hinge joint with two DoF with a single joint 

in the distal humerus. Finally, wrist is modeled as a single joint with only one DoF, that is calculated 

between the vector representing the hand and a fixed point representing the center of the wrist 

(between radial and cubital stiloid espinas). 

Thus, the kinematic chain that this model produces consists of six variables or DoF: three in the 

shoulder joint (flexion/extension, abduction/adduction and rotation), two in the elbow joint 
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(flexion/extension and pronation/supination) and one in the wrist joint (flexion/extension). In terms of 

robot manipulators [30], this kinematic model can be approximated as the concatenation of one 3-DoF 

spherical joint, one 2-DoF Hooke joint and one revolute joint with just one DoF (Figure 3), always 

considering the human range of movements. It is important to consider at this point that when a 

manipulator has less than six DoF, it cannot attain general goal positions and orientation in 

tridimensional space [31]. 

Figure 3. Robot manipulator approach. 

 

 

Given this model, upper limb movement can be represented as the temporal evolution of the six 

defined degrees of freedom (how the different DoF change over time). It is important to note that, in 

the present work, relative angular values are provided following the methodology proposed in [32]. 

The proposed kinematic model includes important simplifications of the actual physiological  

upper limb: 

 Each joint is defined from a joint center. In particular, the shoulder joint is considered as a 

simple spherical joint that maintains functional shoulder movements but does not preserve the 

real physiological configuration. 

 The forearm is considered as a rigid body, meaning that pronation and supination movements 

must be considered around the elbow. 

 The hand is modeled as a rigid body. 

To represent the defined 6-DoF upper limb model, a set of four inertial sensors has to be mounted 

on the subject as depicted in Figure 4. This setup consists of one reference sensor attached to the back 

of the subject (parallel to the scapular spine), one on the upper arm (along the external long head of the 

triceps), another on the distal forearm (dorsal) and the last one on the dorsal hand surface. In this 

figure, global and local reference frames can be also observed: 

 The global reference frame z-axis is defined along the axial axis (from the feet to the head) of 

the subject, the x-axis along the sagittal (from the left shoulder to the right shoulder) axis and 

the y-axis along the coronal axis (from the back to the chest). 

 The y-axis of the back sensor local frame is defined along the sagittal axis of the subject, the  

x-axis along the coronal axis and the z-axis along the axial axis. 
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 The x-axis of the upper arm and forearm sensor local frames are defined along the segment 

they represent with the y-axis parallel to their axis of rotation and the z-axis perpendicular  

to both. 

 Finally, the hand sensor is located in such a way that the y-axis is defined along the hand 

segment, the x-axis perpendicular over the hand surface and the z-axis perpendicular to both. 

Figure 4. Schematic view of the inertial sensor location. 

 

 

For the virtual reconstruction of the upper limb, it is necessary to solve a inverse kinematic problem 

such that the sensor space I is mapped onto the posture space Φ. The solution to this problem consists 

of determining the biomechanical parameters of interest from the position and orientation of the local 

frames (attached to the segments) relative to the base frame, that is, the Earth. 

Assuming that RGS is the rotation matrix that rotates a vector in the sensor coordinate system (S) to 

the global reference system (G), then: 

  S

T

SGSGSG xRxRx ··   (7) 

Using the above formula and considering the position of the inertial sensor relative to the segment it 

represents (back segment along the positive z-axis, upper arm and forearm along the positive x-axis 

and hand segment along the negative y-axis), the reconstruction of the upper limb position is 

performed as follows: 
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In the above formulae, B

GSR , A

GSR , F

GSR and H

GSR represent the 3 × 3 rotation matrices corresponding 
to 

the four different sensors (one per model segment), whereas parameters lB, lA, lF and lH represent the
 

subject anthropometric measurements. The vectors back, arm, forearm and hand correspond to the
 

relative upper limb segments in base frame coordinates. 
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2.3. Facing Effect Correction 

The first step, prior to the calculation of the degrees of freedom, is to make the system independent 

of the direction the user is facing. This is performed by means of the data provided by the sensor 

located on the back surface of the patient. 

For facing correction, the following operations must be carried out: 

 Creation of a correction rotation matrix with zero roll and the pitch and the yaw equal to the 

facing coefficients (deviation from the initial calibration that has to be done to align the sensors 

coordinate frames with the global reference frame). 

 Correction of the facing effect by applying an inverse rotation of the upper arm segment 

rotation using (9): 

A

GScorrection

A

GS RRR
effectfacingno

·1. 


 (9) 

2.4. DoF Calculation 

Shoulder  

Because the shoulder joint is the first joint within the upper limb kinematic chain, the three defined 

DoF can be directly calculated from the upper arm sensor roll, pitch and yaw using Equations (4), (5) 

and (6) right after the facing effect correction (using 
effectfacingnoA

GSR


matrix) and considering the sensor 

location relative to the back segment reference frame. 

Shoulder flexion/extension (FexS) is directly related to upper arm sensor pitch. Flexion and 

extension differentiation is made on a 3D coordinate basis: if the upper arm tip is in front of the 

subject, the movement is flexion (positive value); otherwise, it is extension (negative value). Equation (10) 

must be applied to match [32]. Note that when the upper arm tip is aligned with the horizontal plane of 

the shoulder, the flexion/extension takes a value of 90°. This calculation is valid for both left and  

right arms. 

 










extensionpitch

flexionpitch
extensionflexion

;º90

;º90
/  (10) 

Shoulder abduction/adduction (AbdS) is directly related to upper arm sensor yaw. In the case of the 

right arm, this DoF corresponds to the upper arm sensor yaw changing its sign, whereas in the case of 

the left arm, abduction/adduction directly matches sensor yaw. Abduction (separation) and adduction 

(approaching) differentiation is also made depending on the current position of the upper arm tip in 

such a way that, if the upper arm tip separates from the subject, the abduction/adduction takes a 

positive value; on the other hand, if the upper arm tip approaches the subject, the abduction/adduction 

takes a negative value. When the upper arm tip is aligned with the vertical plane of the shoulder, the 

abduction/adduction takes a value of 0°. 

Shoulder rotation (RotS), assuming that the sensor is perfectly linked to the arm’s bony 

prominences, can be directly obtained by subtracting 90° from the upper arm sensor roll (roll-90°) in 

the case of the right arm or subtracting 90° from the minus sensor roll in the case of the left arm (-roll-90°). 
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Elbow 

In the case of the elbow joint, it is necessary to proceed to an inverse rotation of the forearm sensor 

rotation matrix ( F

GSR ), considering the previous segment (upper arm) in such a way that the data 

provided by the sensor representing the forearm are not affected by the shoulder joint movements or by 

the facing effect. This inverse rotation is carried out in the following way: 

F

GS

A

GS

F

GS RRR ·
1' 

  (11) 

After the inverse rotation, elbow flexion/extension (FexE) matches sensor yaw in the case of the 

right arm and minus sensor yaw in the case of the left arm. 

Elbow pronation/supination (PronoE) can be obtained from the information provided either by the 

forearm sensor or by the hand sensor. Ideally, in the case of having the sensors perfectly attached to 

the bony prominences of the upper limb, the forearm sensor would reflect the entire 

pronation/supination movement. As this is not the case in the current implementation, the most 

efficient way of calculating elbow pronation/supination is to use the hand sensor as the main source  

of information.  

First, it is necessary to proceed to an inverse rotation of the hand sensor that considers previous 

segment configurations (forearm and upper arm) so that the data provided by this sensor are not 

affected by the shoulder or by the elbow joint movements and the facing effect. This inverse rotation is 

carried out in the following way: 

H

GS

F

GS

H

GS RRR ·
1' 

  (12) 

Elbow pronation/supination corresponds to the addition of the forearm sensor roll and the wrist 

sensor minus pitch (changing the sign of the global operation in the case of the right arm and keeping it 

in the case of the left arm) after their corresponding inverse rotations (both values are obtained from 
'F

GSR and 'H

GSR  respectively). The forearm sensor roll is added to the hand sensor pitch to compensate the 

forearm sensor displacement during a pronation/supination movement, because prior to the hand 

sensor pitch extraction, the inverse rotation directly affects the pronation/supination value. Elbow 

pronation values are positive and supination values are negative. 

Wrist 

In the case of the wrist joint, it is also necessary to proceed to an inverse rotation that considers 

previous segments. This inverse rotation is executed following (12). Wrist flexion/extension (FexW) 

can be directly obtained from the sensor roll for the left and right arm. Flexion has negative values and 

extension has positive values. 

2.5. Experimental Work 

To validate the inertial technology-based motion acquisition system proposed in this paper, BTS 

SMART-D was used for co-registration. This device is a commercial optoelectronic tracking system 

used to record DoF from upper limb ADLs. The system consisted of 6 infrared cameras with a 

recording rate of 140 Hz and two video cameras to register the entire subject’s movement. Smart 
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Capture and Smart Analyzer Software were used. A sixteen-marker model derived from [8] was 

created for this purpose (Figure 5). The system to be validated is composed of the previously described 

motion capture system and a test garment where the sensing units are mounted. Since at this point of 

the research the test garment is not reliable enough (does not keep sensing units positions constant and 

linked to the upper limb bony prominences), it is important to remark that the aim of this experiment is 

to validate the proposed DoF calculation methodology, so that in this preliminary validation only one 

subject has been used.  

Figure 5. Marker model. 

 

 

The motions used for validation were the following, both designed by therapists from the Institut 

Guttmann Neurorehabilitation Hospital: 

 Pure movements: shoulder flexion/extension, shoulder horizontal abduction-adduction, 

shoulder internal rotations, elbow flexion, elbow pronation/supination and wrist  

flexion-extension (trying not to move the rest of the degrees of freedom). 

 Serving water from a jar (setup depicted in Figure 6): a glass jar (with a capacity of 1.5 L) 

with 150 mL of water was placed to the right (and a bit behind) of the glass (with a capacity 

of 170 mL). Two solid dots indicate the correct position for the glass and the jar. The subject 

was asked to fill the glass with the water and leave the jar in the initial position.  

Figure 6. Serving water from a jar ADL setup. 
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Inertial sensors, configured to work with a sampling rate of 50 Hz, that compose the motion 

acquisition system described in this work need to be calibrated prior to being used. This calibration 

allows every sensor to align its local reference frame with the global one. After this calibration, all 

orientation matrices provided by the sensors use the same reference to express their relative 

orientation. Figure 7 depicts the calibration position of the four sensors from an overhead view.  

Figure 7. Calibration setup. 

 

 

After orientation calibration, sensors were mounted on a test garment worn by the user (Figure 8). 

This test garment allocates the three sensors mounted on the upper limb in the following positions 

(back sensor position is not relevant): 

 Upper arm sensor: 18 cm from acromion. 

 Forearm sensor: 25 cm from epicondyle. 

 Hand sensor: 5.5 cm from distal radio-cubital joint.  

Figure 8. Test garment along with BTS markers for co-registration. 
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Manual synchronization was done to match the BTS and inertial sensor system signals. For this 

purpose, at the beginning of each registration, a double wrist flexion-extension movement was 

performed in such a way that reliable synchronization peaks were present in both signals (see Figure 9, 

where the circled peaks were used for synchronization).  

Figure 9. Synchronization signals. 

 

To perform an accurate comparison of the BTS and inertial systems, signal alignment must be 

carried out. As there are two synchronization waves in both signals and the sampling frequencies of 

both systems are known, the following alignment procedure was used: 

1. Signal trimming: elimination, in both signals, of the samples before the start synchronization 

wave and after the end synchronization wave. At this point, although the signals have a 

different number of samples, the time duration is the same, so the sampling frequency ratio 

between both signals can be obtained. 

2. Resampling of the inertial system signal: as the inertial sensor monitoring system sampling 

frequency is lower than the BTS, it is necessary to stretch its signal.  

Validation data were acquired from one female subject with the following anthropometric 

measurements: 

 Acromion to epicondyle: 35.5 cm. 

 Epicondyle to radio-cubital joint: 25 cm. 

 Radio-cubital joint to 3rd metatarsal head: 8 cm. 

Once the signals have been aligned, the following similarity parameters are calculated to evaluate 

system performance: 

 Correlation coefficient between signals. 

 Mean difference between significant peaks in pure movements: the difference between all the 

significant peaks of the signals is obtained and a mean function is applied (this measurement is 

used only in pure movements because their signals basically consist in successive peaks). 

 Mean difference along the whole signals in ADL motions. 
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3. Results and Discussion 

Table 1, where the biomechanical parameters are referred with abbreviations (FexS, AbdS, RotS, 

FexE, PronoE and FexW), shows the results obtained for pure movement co-registrations. Movements 

are repeated twice to validate system performance. As can be extracted from the data, the mean 

correlation coefficient obtained from all the movements is 0.957, meaning that both signals are almost 

identical in shape for all DoF. From these correlation values, it can be deduced that the mean peak 

difference is due to the noise generated by the test garment, which does not attach the sensing units to 

the bony structures of the upper limb under analysis and does not keep sensors’ locations constant. 

This noise is increased in the case of shoulder rotation, where the sensor, instead of being linked to 

bony prominences, is linked to the arm flesh and therefore does not reflect the real rotation (the higher 

differences that take place between the FexS and FexS2 and between AbdS1 and AbdS2 are due to 

sensor displacement between capture sessions). This error is forward-propagated to the forearm and 

hand sensor when obtaining pronation-supination measurements, which increases the calculation error.  

Table 1. Results of pure movement co-registrations. 

 Correlation 
Mean peak diff. 

(degrees) 

FexS 0.997 13.2 

FexS 2 0.992 13.6 

Mean 0.994 13.4 

 

AbdS 0.895 13.6 

AbdS 2 0.842 20.9 

Mean 0.718 17.25 

 

RotS 0.994 61 

RotS 2 0.995 59.9 

Mean 0.995 60.45 

 

FexE 0.992 10 

FexE 2 0.976 1.6 

Mean 0.984 5.8 

 

PronoE 0.962 24.5 

PronoE 2 0.974 23.7 

Mean 0.968 24.1 

 

FexW 0.980 10.8 

FexW 2 0.995 12.5 

Mean 0.987 11.65 

 

On the other hand, Table 2 shows the results obtained from the serving water from a jar ADL, 

which was repeated five times for validation purposes. As in the previous case, high correlation 



Sensors 2010, 10                            

 

 

10747 

coefficients were obtained for all DoFs (a total mean of 0.93) so that the measurements provided by 

the inertial technology-based motion acquisition system and those provided by the BTS are almost 

identical. In this case, the mean difference between the signals of both devices is also due to garment 

noise and is more evident in shoulder rotation. 

Table 2. Results of serving from a jar co-registrations. 

 

Shoulder flex-ext Shoulder abd-add Shoulder rotation Elbow flex-ext Elbow prono-sup Wrist flex-ext 

Corr. 
Mean diff. 

(degrees) 
Corr. 

Mean diff. 

(degrees) 
Corr. 

Mean diff. 

(degrees) 
Corr. 

Mean diff. 

(degrees) 
Corr. 

Mean diff. 

(degrees) 
Corr. 

Mean diff. 

(degrees) 

Jar 1 0.998 13.5 0.905 6.3 0.849 28 0.980 18.8 0.960 10.6 0.960 25.7 

Jar 2 0.992 14.6 0.909 8.5 0.884 27.2 0.982 17 0.840 13.3 0.897 27.2 

Jar 3 0.995 13.8 0.895 7.8 0.830 28.1 0.977 19.3 0.956 10.8 0.916 26.1 

Jar 4 0.995 14.2 0.909 7 0.877 29.3 0.977 18.8 0.942 11.4 0.897 29.8 

Jar 5 0.996 13 0.921 7.6 0.824 31.8 0.980 19.1 0.927 12.4 0.948 25.6 

Mean 0.995 13.82 0.908 7.44 0.853 28.88 0.979 18.6 0.925 11.7 0.924 26.88 

 

The obtained results are very promising as all the problems that have been found can be associated 

with the test garment used in the co-registration sessions. These errors can be avoided by the 

combination of two different but related areas of research: 

 Creation of a test garment that maintains the linkage of sensors to the upper limb bony 

prominences so that noise due to the misalignment of the sensors and the different bony 

structures can be minimized. 

 Modeling of the error that the garment introduces so that post-processing can be applied to 

the calculations proposed in this paper. 

As previously commented, the lack of upper arm sensor movement while the shoulder rotates can 

be modeled to reduce the error that this effect introduces. This modeling depends not only on the 

garment but also on the rehabilitation session in case the garment does not guarantee constant sensor 

positions every time it is used. For minimizing this error, a calibration procedure was designed. First, a 

full-range shoulder rotation movement must be registered using BTS to generate a normalized pattern 

of the movement to calibrate (note that this calibration signal is valid for all calibrations in the future 

so BTS device is not necessary anymore); this signal will be obtained only once as it can be used for 

all future calibration. To have more reliable and consistent information, it is recommended that this 

calibration signal be created from data acquired from multiple subjects. Once the calibration signal is 

ready, the subject, wearing the garment with the inertial sensors mounted on it, performs the same 

movement (full-range shoulder rotation) so that both signals can be aligned and a transfer function can 

be derived. This transfer function contains all of the information needed to eliminate the noise 

introduced by both the misalignment between sensors and bones and the effects of having the sensor 

on the arm surface instead of being linked to the bony prominences in shoulder rotation movements. 

The main limitation of this method is that it does not consider the movement of the sensing units while 

certain motion is being performed (intra-session sensors displacements); nevertheless, this problem can 

be partially solved by having a garment that keeps the sensors fixed to the initial linkage points. 



Sensors 2010, 10                            

 

 

10748 

Muscle movements, that also affect sensor relative position, are not modeled by the present calibration 

method so some residual error will still be present.  

In this way, if the proposed calibration procedure is performed before the rehabilitation session 

begins, garment noise will be minimized. The minimization of the shoulder rotation calculation error 

will also have an effect on the elbow pronation-supination calculation because the error will not be 

forward-propagated. 

For the data and the test garment described in the current study, a previous calibration procedure 

was applied to pure internal rotation movements. Table 3 shows the results obtained for two pure 

shoulder internal rotations after a calibration procedure was carried out. In this case, the subject 

performed a full shoulder internal rotation movement immediately before the co-registration so that the 

transfer function depicted by Figure 10 could be obtained and applied (in this case, this transfer 

function can be modeled with a second-order polynomial function). After these co-registrations, a 

marked increase in the calculation performance can be observed as both signals (in both cases) are 

almost identical (Figure 11). 

Table 3. Results after calibration for pure internal rotation movements. 

 Correlation 
Mean peak diff. 

(degrees) 

Mean peak diff. no calibration 

(degrees) 

RotS 0.998 0.27 60.9 

RotS 2 0.996 0.81 59.9 

Mean 0.997 0.54 60.4 

Figure 10. Transfer function that models test garment noise (modeled with a second-order 

polynomial function). 

 

 

Figure 11 shows BTS and inertial system shoulder rotation signals when an internal rotation 

movement was performed. It can be observed that, after applying a transformation following the 

transfer function displayed in Figure 10, both signals are almost identical. It is important to take into 

account at this point that this transfer function is subject- and session-dependent. 
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Figure 11. (a) Internal rotation signals provided by both systems after calibration.  

(b) Internal rotation signals provided by both systems without calibration. 

 

(a) 

 

(b) 

4. Conclusions 

In this work, a portable upper limb acquisition system based on inertial technology is proposed. For 

this purpose, an upper limb kinematic model is defined along with a methodology for calculating  

the six degrees of freedom associated with the model. 

Due to its modular design, the system is completely scalable by changing only the input interface. 

In this way, if any other sensing hardware is able to provide the same information as the inertial 

sensors used in this work, no major changes are needed for the rest of the system to obtain the  

same results.  

The fact that the system provides IP packets containing the same calculated biomechanical 

parameters as output, also makes it independent from the rest of the rehabilitation system, meaning that 

this motion acquisition system is not only portable in terms of mobility, but also in terms of 

compatibility with other equipment. 

Preliminary validation data demonstrate the accuracy of the inertial technology-based motion 

analysis system proposed in this paper. A very high correlation was found between the inertial system 

and validation signals obtained from the BTS SMART-D. The difference between signals is mainly 

due to the mounting location of the sensors on the test garment; the present study showed how an 

appropriate calibration methodology can overcome these limitations. 

Future work mainly will address the full validation of the shoulder rotation calibration methodology 

in ADL motions and the creation of a smart garment that is able to minimize the effects of sensor 

misplacements. Also, the integration of the motion analysis system within a system visualization 

interface that allows therapists to evaluate user motions in real-time will be researched. 

In addition, future work will focus on the integration of the inertial technology-based motion 

acquisition device with a feedback system that, by comparing the acquired signal with the available 

motion models, provides users with feedback about their performance so that they can adapt their 

trajectory in real-time. 
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