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ABSTRACT

This paper introduces a new strategy for plane rectification in
sequences of images, based on the Expectation-Maximization (EM)
algorithm. Our approach is able to compute simultaneously the pa-
rameters of the dominant vanishing point in the image plane and the
most significant lines passing through it. It is based on a novel defini-
tion of the likelihood distribution of the gradient image considering
both the position and the orientation of the gradient pixels. Besides,
the mixture model in which the EM algorithm operates is extended,
compared to other works, to consider an additional component to
control the presence of outliers.

Some synthetic data tests are described to show the robustness
and efficiency of the proposed method. The plane rectification re-
sults show that the method is able to remove the perspective and
affine distortion of real traffic sequences without the need to com-
pute two vanishing points.

Index Terms— Plane rectification, vanishing point, Expectation-
Maximization, outliers rejection

1. INTRODUCTION

In the field of traffic applications the rectification of the road plane
has been extensively used as a great help to perform metric measure-
ments in static surveillance [1], and onboard systems [2].

Plane rectification can be done using the information contained
in vanishing points to compute the road-plane to image-plane ho-
mography. Typically, two orthogonal vanishing points are detected
and used to determine the line at the infinity and thus, the projective
distortion can be removed [3]. However, in road scenarios, there is
typically information about just one dominant vanishing point, hence
there are no reliable methods to compute such rectification. Fortu-
nately, as shown by Schaffalitzky [4], three or more lines that are
parallel (thus converging into a single vanishing point) and equally
spaced, can determine in closed form the line at the infinity, from
which, knowing the camera calibration matrix, an orthogonal van-
ishing point in the plane can be obtained. This way only one vanish-
ing point determined by such three lines must be detected to perform
plane rectification. In the road scenario, three lane markings corre-
sponding to two adjacent lanes satisfy this condition.

The estimation of the dominant vanishing point inside the lim-
its of the image can be of great complexity, considering the reduced
amount of information of the scenario and the large proportion of
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outliers. Specific methods that work on the image plane, using accu-
mulators [5], or transforms to the polar space [6] lacks the required
robustness for this scenario since they do not separate inliers from
outliers [7], which may cause very inaccurate estimations. General
methods, which work on the projective plane [8][9], do not specifi-
cally treat this scenario, and typically work very well for vanishing
points far away from the image boundaries. Besides, these strategies
typically require the knowledge of the calibration matrix to be able
to treat the points at the infinity.

In this paper we propose a robust tracking system, based on the
Expectation-Maximization algorithm [10] that is able to determine
the position of the dominant vanishing point of the image plane as
well as the required set of converging lines to perform the plane rec-
tification at each time instant. The main advantages of the proposal
come from the usage of the EM algorithm. On the one hand, it is
an iterative procedure that is guaranteed to converge, and that can be
used as a tracking system, as each estimate can be used in the next
time instant as initialization. On the other hand, a mixture model is
defined that considers an implicit classification between inliers and
outliers, which makes the method very robust. Besides, the likeli-
hood function uses the information of position and orientation of the
gradient pixels, which improves the models of previous approaches
only based on position [7].

2. VANISHING POINT TRACKING

This section introduces the likelihood model for gradient pixels,
which can be obtained with any method that approximates the gra-
dient, such as the Sobel operator. The EM algorithm leads to the
equations that describe the optimization problem, considering also a
distribution to handle the presence of outliers.

2.1. Likelihood model

Let xi = {ri,gi} be a data sample composed by ri = (xi, yi)
�,

a point of the image plane with significant gradient magnitude, and
the gradient vector gi = (gxi, gyi)

�.
Lines in the image plane are parameterized in the homogeneous

form as lj = (aj , bj , cj)
�, subject to a2j + b2j = 1. The perpendic-

ular distance from a point, ri, to a line, lj , is defined as fρ(ri, lj) =
ajxi + bjyi + cj . In the case the line passes through a vanishing
point v = (vx, vy)

�, then cj = −ajvx − bjvy and the function fρ

depends on the parameters lj and v:

fρ(ri, lj ,v) = aj(xi − vx) + bj(yi − vy) (1)

Therefore, a point lies in a line if fρ(ri, lj) = 0 holds. Con-
sidering Gaussian measurement noise, the likelihood of a point, ri,
belonging to a line j is defined as:
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p(ri|lj ,v) = 1√
2πσρ,j

exp

(
− 1

2σ2ρ,j

fρ(ri, lj ,v)
2

)
(2)

where σρ,j is the standard deviation of the normal distribution.
For each data sample, the gradient vector gi depicts the normal

to the direction of the edge at ri. The difference between the orien-
tation of a line j, which is given by the vectormj = (−bj , aj)

�,

and the one of the data sample is defined as fφ(gi, lj) =
g�
i mj

‖gi‖|mj‖ .
Considering, as in the case of the position, a normal distribu-

tion on the orientation, the likelihood of a vector gi to represent the
orientation of a line is given by:

p(gi|lj) = 1√
2πσφ,j

exp

(
− 1

2σ2φ,j

fφ(gi, lj)
2

)
(3)

Assuming that the position of data samples and their orientation
are independent, the joint likelihood of xi to represent a line lj is:

p(xi|lj ,v) = p(ri|lj ,v)p(gi|lj) (4)

which is the expression that links each data sample with a hypothe-
sized line oriented in the direction of a vanishing point.

2.2. Mixture model likelihood

If we consider nowM lines, the likelihood of a data sample is given
by the mixture model:

p(xi; Θ,Ω) =

M∑
j=1

ωj p(xi|lj ,v) (5)

where Θ = {v, {lj}M
j=1} and Ω = {ωj}M

j=1, are the parameters
of the likelihood distribution. Note that the weighting factors must
satisfy

∑M
j=1 ωj = 1, as they can be seen as the a priori probability

values for each component of the mixture.
The joint probability density of all the data samples, assumed

to be i.i.d., is given by p(X |Θ) =
∏N

i=1 p(xi; Θ,Ω). The log-
likelihood function transform the product into a summation, expand-
ing the expression of the mixture defined in (5):

log p(X |Θ) =
N∑

i=1

log
M∑

j=1

ωj pj(xi|lj ,v) (6)

The MLE problem to be solved is to find the parameters Θ that
maximize log p((X |Θ)). However, partial derivatives of the log-
likelihood with respect each parameter yield expressions that depend
on the derivative of a natural logarithm of a sum, which is not ana-
lytically tractable.

2.3. EM algorithm

The EM strategy offers a solution to this MLE problem [10]. The
EM algorithm proceeds iteratively, applying two steps: E-step, that
obtains the conditional probability of each data sample to belong to
each of the components of the mixture model; and M-step, which
searches for the values of the target parameters that maximize the
likelihood function.

The conditional probability of the samples to belong to a specific
component j is given by:

p(j|xi,Θ
∗) =

ω∗
j pj(xi|lj ,v)∑M

k=1 ω
∗
kpk(xi|lk,v)

(7)

where Θ∗ and ω∗
j are, respectively, the set of parameters and the a

priori probabilities for component j at the previous iteration. From
here on, p(j|xi,Θ

∗) will be denoted as γij .

Regarding the M-step, the estimation of the a priori probabilities
is given by ω̂j = 1

N

∑N
i=1 γij , which is, as expected, independent

of the rest of parameters of the model. For the maximization related
to the line parameters, Lagrange multipliers are required to add the
restriction a2 + b2 = 1which leads to a linear system of equations:

Cnj = λnj (8)

where nj = (aj , bj)
�, andC = σ̂−2ρ A+σ̂−2φ B. MatricesA andB

contain, respectively, the information given by the weighted samples
of position and orientation. For the sake of simplicity in the notation,
we define the weighted sample mean of a generic data set {zi}N

i=1, as

ξ(z) =
∑N

i=1 ziγij(
∑N

i=1 γij)
−1, yielding the following matrices:

A =

(
ξ(x̃2) − ξ2(x̃) ξ(x̃ỹ) − ξ(x̃)ξ(ỹ)

ξ(x̃ỹ) − ξ(x̃)ξ(ỹ) ξ(ỹ2) − ξ2(ỹ)

)
(9)

where random variables, x̃ and ỹ include the vanishing point com-
ponents: x̃i = xi − vx and ỹi = yi − vy , and:

B =

(
ξ(g2y) −ξ(gxgy)

−ξ(gxgy) ξ(g2x)

)
(10)

The maximization of the vanishing point is obtained as:

v̂ =

(
M∑

j=1

N∑
i=1

Njγij

)−1 M∑
j=1

N∑
i=1

r�i Njγij (11)

where Nj = njn
�
j is a 2 × 2 matrix. As expected, the maximum

likelihood estimation of aj and bj depend on v as in (9), and vicev-
ersa, as shown in (11). Therefore, the maximization process must be
done in a two-steps process, which is known as gradual M-step [7].
That way it is necessary to proceed fixing one of this parameters and
updating the other, so that in two steps, both parameters are updated.

2.4. Outliers control

In our EM scheme proposal, the presence of outliers is handled with
the inclusion of an additional component, pM′(xi|v), for the mix-
ture model. That way, M components are assumed by the EM to
represent the data samples drawn from theM most significant lines
in the scene. The rest of the data samples are absorbed by the outlier
distribution. Hence, in our approach, the complete mixture model
hasM ′ = M + 1 components.

The mixture model (5) is rewritten as:

p(xi; Θ,Ω) = ωM′ pM′(ri|v) +
M∑

j=1

ωj p(xi|lj ,v) (12)

where the components j = 1, 2, . . . ,M are the ones already de-
scribed, and pM′(xi|v), is the outlier distribution. We propose to
define this distribution as the sum of a uniform distribution of value
ρ = (πWH)−1 that integrates to one within the data range, and a
normal distribution on the distance of the data samples position, ri,
to the vanishing point, d2(ri,v) = (xi − vx)

2 + (yi − vy)
2:

pM′(ri|v) = ρ+
1√
2πσ

exp

(
− 1

2σ2
d2(ri,v)

)
(13)
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Table 1. Mean number of iterations for pEM and gpEM (100 tests).

Parameters noise # it. pEM # it. gpEM

{σa,b = 0.10, σvx,y = 10} 8.4 4.7
{σa,b = 0.15, σvx,y = 15} 9.2 5.1
{σa,b = 0.20, σvx,y = 20} 12.7 6.5
{σa,b = 0.25, σvx,y = 25} 16.4 7.8

The uniform component models the general uncertainty about
outliers, while the second term models that data samples near the
vanishing point are more likely outliers (as they are images of very
remote elements of the scene). The equations of the EM algorithm
are still valid by just updating the mixture model with the outlier
distribution.

3. HOMOGRAPHY COMPUTATION

The road plane rectification can be done by means of a projective
transform, known as homography, that links, up to scale, points in
the plane coordinate system and their image in the image plane. Typ-
ically the homography is computed using the DLT algorithm [11],
using at least four correspondences between points of the image
plane and road plane, or in an stratified manner, knowing two van-
ishing points and other information about the scene, such as known
length or angle ratios[3].

In this paper we propose to use the DLT method, for which we
need to find four image points that correspond to points in the road
that form a rectangle. This way we can remove both the projective
and the affine distortion, which is enough for the purposes of the
application (the only remaining distortion is an anisotropic scaling
and rotation). In order to do so, we use the information of the lines
obtained with the EM vanishing point tracker, that we assume to
be equally spaced in the plane. To compute the line at the infinity,
without need to compute two orthogonal vanishing points, we follow
the method of Schaffalitzky [4]:

l∞ = det[l1, l2, l]l3 − det[l, l2, l3]l1 (14)

where l is any 3-vector for which the determinants are nonzero.
Knowing the camera calibration matrix, K, we can translate

both the line at the infinity and the known vanishing point, v1, to
the camera coordinate system, as l′∞ = K�l∞ and v′1 = K−1v1
and compute the position of the orthogonal vanishing point as
v′2 = l′∞ × v′1. This way we can trace two lines converging in
v2 that intersect with two of the lines obtained with the EM. The
intersection of these lines are the four required points.

4. RESULTS

In this section we first compare the proposed EM procedure with the
one of Minagawa [7]. For fair comparisons, we add the outlier distri-
bution to this approach and test the benefits of using the orientation
information to the models. We will denote this method as point-EM
(or pEM), and ours as gradient-point-EM (gpEM). In second place,
we present some results of the plane rectification achieved through
the computation of the vanishing point and the line at the infinity as
described in previous sections.

4.1. Synthetic data tests

For the experiments, let’s consider three lines converging into a com-
mon vanishing point, as shown in Fig. 1 (a), for which a set ofN data

0 50 100 150 200

0

50

100

150

200

x

y

(a)

0 50 100 150 200

0

50

100

150

200

x

y

(b)

0 5 10 15 20 25 30 35
�5

�4.5

�4

�3.5

�3

�2.5

Iteration

M
ea

n 
lo

g�
lik

el
ih

oo
d

Bad initialization � 3 converging lines

pEM
vpEM

(c)

0 50 100 150 200

0

50

100

150

200

x

y

(d)

Fig. 1. Synthetic data test: (a) the ground truth model with N =
100 data samples drawn with Gaussian noise; (b) initialization, in
dotted lines, and final estimation in solid lines; (c)likelihood value at
each iteration in solid lines for the proposed method, in dotted lines
for the method without using the orientation information; (d) adding
300 outliers, the estimation is still correct.

samples are drawn, corrupted by Gaussian noise. For these experi-
ments we define σρ = 5 (pixels) and σφ = 0.1 (rads), which is in
line to the expected noise present in a real image.

An example initialization and final estimation are shown in
Fig. 1 (b). As previously mentioned, the algorithm iterates until
convergence is achieved. We define the convergence related to the
mean log-likelihood value, which is given by:

L̄(Θ|X ) =
1

N

N∑
i=1

log

M∑
j=1

ωj p(xi|lj ,v) (15)

At each iteration, indexed as k, the improvement of mean log-

likelihood is checked as ΔL̄k =
L̄k−L̄k−1
L̄k−1

. When ΔL̄k is below

a certain threshold, ε, the process is considered to have converged.
Typically it is accurately enough to use ε = 10−5. In Fig. 1 (c), a
comparison of the convergence of the gpEM and the pEM is shown.
It is clear that our method achieves faster convergence for this exam-
ple, showing just a small oscillation at the firsts iterations due to the
gradual M-step.

This experiment was repeated several times, using different ini-
tializations of the parameter set, with similar results. For conve-
nience, the parameters were initialized randomly, using zero mean
Gaussian noise and a defined standard deviation for each parameter.
Table 1 shows the results, in terms of the mean number of required
iterations to converge, for 100 executions of the proposed method,
and the method we compare with. The contents of the table reveal
that the required number of iterations of the pEM increases dramati-
cally as the initialization get worse, while for the gpEM, the number
of iterations is approximately delimited and in all cases much more
lower than for pEM. The conclusion is that the utilization of gradient
information makes the system much faster and less dependent on the
deviation of the initialization.

Another test is done to demonstrate the need for the outlier dis-
tribution. Its addition to the mixture model aims to absorb the mis-
matching between the data set and the model. The performance of
our method against outliers randomly distributed among the image is
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shown in Fig. 1 (d). As shown, the data set of the example in (a) con-
tains a large number of outliers. The outlier distribution makes that
most part of outliers are discarded for the estimation process of the
hypothesized lines, so that the result is correct. This method shows
excellent results in all cases and only begins to suffer significant er-
rors when the proportion of outliers reaches 75%. The color code
is the following: blue, red and green lines are fitted using the cor-
responding colored data samples, which are automatically selected.
The black data samples are those marked as outliers.

4.2. Plane rectification results

We have applied our method to different road sequences, with a for-
ward looking camera installed inside a vehicle. Fig. 2 shows some
example images of the computed sequences.

The EMworks as a tracker, where each instantaneous estimation
is used as initialization for the next time instant, since the motion be-
tween two consecutive frames is low. For this reason, initializations
are quite close to the optimal solution and the EM algorithm finds it
with just very few iterations, typically between two and three.

As shown in the examples of Fig. 2 (a), where outliers are de-
picted as black dots, the method is very robust, leading to the correct
estimation of the vanishing point, since outliers are absorbed by the
outlier distribution and thus do not corrupt neither the estimation of
the vanishing point nor the parameters of the lines. This is particu-
larly significant in the example of the last row of Fig. 2. This way,
the estimation of the target parameters is very steady along time, and
thus the proposed method allows to compute a road plane rectifica-
tion adapted to the motion of the vehicle. Therefore, this proposal
overcomes problems of other approaches that also compute road rec-
tification but without updating the information of the homography
[2].

This strategy can also be applied to static surveillance scenarios,
to avoid the computation of the second vanishing point, for which
typically there is not enough information, or its hard to obtain [1].

Fig. 2 (c) shows examples of the obtained plane rectification.
The two first rows depict a typical road, with well painted lane mark-
ings and straight lanes. The third one is more complex as there is
less information about lane markings and there is also curvature in
the road, which is much more simple to estimate using the rectified
images.

5. CONCLUSIONS

In this paper we have introduced a new approach towards plane rec-
tification, using the EM algorithm for the task of vanishing point
tracking in sequences of images. Our strategy allows to compute si-
multaneously the dominant vanishing point of the scene as well as
the most significant lines in that orientation. The proposed method
is very robust against large amounts of outliers, thanks to the inte-
gration of an outlier distribution into the EM framework.

The plane rectification is achieved by means of the computation
of the line at the infinity, avoiding to compute a second vanishing
point, which is not typically feasible in traffic scenarios. The results
show that the proposed method is able to remove the projective and
the affine distortion of the images, which results on a stable genera-
tion of fronto-parallel views of the road plane.
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